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Chapter 1

(RELATIONSAND FUNCTIONS)

«*There is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. HARDY «*

1.1 Introduction

Recall that the notion of relations and functions, domain, P A SRy
co-domain and range have been introduced in Class XI| '
aongwith different types of specific real valued functions
and their graphs. The concept of the term ‘relation’ in
mathematics has been drawn from the meaning of relation
in English language, according to which two objects or
quantitiesarerelated if thereisarecognisable connection
or link between the two objects or quantities. Let A be
the set of students of Class XII of aschool and B be the
set of studentsof Class X| of the same school. Then some
of the examples of relations from A to B are ey e
() {(a, b) € A xB: aisbrother of b}, Lejeune Dirichlet
(i) {(a, b) e AxB:aissister of b}, (1805-1859)
@) {(a, b) e A xB: ageof aisgreater than age of b},
(iv) {(a, b) € A x B:total marks obtained by ain the final examination islessthan
thetotal marks obtained by bin thefinal examination},
(v) {(a, b) e AxB:alivesinthesamelocality asb}. However, abstracting from
this, we define mathematically arelation R from A to B as an arbitrary subset
of A x B.
If (&, b) € R, we say that a isrelated to b under the relation R and we write as
a R b. In general, (a, b) € R, we do not bother whether there is a recognisable
connection or link between a and b. Asseenin Class X1, functions are special kind of
relations.
Inthischapter, wewill study different types of relationsand functions, composition
of functions, invertiblefunctionsand binary operations.
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1.2 Typesof Relations

In this section, we would like to study different types of relations. We know that a
relation in aset A isasubset of A x A. Thus, the empty set ¢ and A x A are two
extremerelations. For illustration, consider arelation Rintheset A ={1, 2, 3,4} given by
R={(a, b): a—b=10}. Thisisthe empty set, asno pair (a, b) satisfies the condition
a—b=10. Similarly, R"={(a, b) : |a—b | >0} isthewhole set A x A, as all pairs
(& b) in A x A satisfy | a — b | > 0. These two extreme examples lead us to the
following definitions.
Definition 1 A relation R in a set A is called empty relation, if no element of A is
related to any element of A, i.e, R=¢0 c A xA.
Definition 2 Arelation Rinaset A iscalled universal relation, if each element of A
isrelated to every element of A, i.e, R=A X A.

Both the empty relation and the universal relation are some times called trivial
relations.

Example 1 Let A be the set of al students of a boys school. Show that the relation R
inA givenby R={(a, b) : aissister of b} isthe empty relationand R ={(a, b) : the
difference between heights of a and b isless than 3 meters} isthe universal relation.

Solution Since the school isboys school, no student of the school can be sister of any
student of the school. Hence, R = ¢, showing that R is the empty relation. It is also
obviousthat the difference between heights of any two students of the school hasto be
less than 3 meters. This showsthat R” = A x A isthe universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely
roaster method and set builder method. However, arelation R in the set {1, 2, 3, 4}
defined by R = {(a, b) : b =a + 1} is also expressed as a R b if and only if
b =a+ 1 by many authors. We may a so use this notation, as and when convenient.

If (&, b) € R, we say that aisrelated to b and we denoteit asa R b.

One of the most important relation, which playsasignificant rolein Mathematics,
is an equivalence relation. To study equivalence relation, we first consider three
types of relations, namely reflexive, symmetric and transitive.

Definition 3A relation Rinaset Aiscalled
(i) reflexive, if (a, @) € R, for every ae A,
(i) symmetric, if (a, &) € Rimpliesthat (a, a)) € R, foral a, a, e A.
(i) transtive, if (a,, a) € Rand (a, a,)e Rimpliesthat (a,, a,)e R, fordl a;, a,
a, € A.
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Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T bethe set of all trianglesin aplane with R arelation in T given by
R={(T, T): T iscongruentto T,}. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T, T,)e R=T, iscongruentto T,= T,iscongruentto T, = (T,, T,) € R. Hence,
R is symmetric. Moreover, (T, T,), (T,, T,) € R=T, is congruentto T, and T, is
congruentto T, = T, iscongruentto T, = (T,, T,) € R. Therefore, Risan equivalence
relation.

Example 3 Let L betheset of al linesinaplaneand R betherelation in L defined as
R={(L, L) : L, isperpendicular to L,}. Show that R is symmetric but neither
reflexive nor transitive.

Solution Risnot reflexive, asaline L, can not be perpendicular to itself, i.e., (L, L,)

¢ R Rissymmetricas (L, L)) e R L

= L, isperpendicularto L,

= L, isperpendicular to L, L,

= (LyL)eR L
Risnot transitive. Indeed, if L, is perpendicular to L, and Fig1.1

L, isperpendicular to L, then L, can never be perpendicular to
L. Infact, L ispardleltolLie,(L,L)e R, (L,L)e Rbut(L,L)¢e R

Example 4 Show that the relation R inthe set {1, 2, 3} givenby R={(1, 1), (2, 2),
(3,3), (1, 2), (2, 3)} isreflexive but neither symmetric nor transitive.
Solution Risreflexive, since (1, 1), (2, 2) and (3, 3) liein R. Also, Risnot symmetric,

as(1,2)e Rbut (2, 1) ¢ R. Similarly, Risnot transitive, as(1,2) e Rand (2,3) e R
but (1, 3) ¢ R.

Example 5 Show that the relation R in the set Z of integers given by
R={(a, b): 2dividesa—b}
isan equivalencerelation.

Solution Risreflexive, as 2 divides (a—a) for al ae Z. Further, if (a, b) € R, then
2 dividesa—b. Therefore, 2 dividesb —a. Hence, (b, @) € R, which showsthat R is
symmetric. Similarly, if (a, b) e Rand (b, ) € R, thena—b and b —c are divisible by
2.Now, a—c=(a—b) + (b-c) iseven (Why?). So, (a—c) isdivisible by 2. This
showsthat R istransitive. Thus, R isan equivalencerelationin Z.
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In Example 5, note that all even integers are related to zero, as (0,  2), (0, + 4)
etc., liein R and no odd integer isrelated to 0, as (0, + 1), (0, £ 3) etc., donot liein R.
Similarly, all odd integers are related to one and no even integer is related to one.
Therefore, the set E of al evenintegers and the set O of all odd integers are subsets of
Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of O are related to
each other.
(i) No element of E isrelated to any element of O and vice-versa.
(i) EandOaredigointandZ =Eu O.

The subset E is called the equivalence class containing zero and is denoted by
[O]. Similarly, O isthe equiva ence class containing 1 and is denoted by [1]. Note that
[0] #[1],[0] =[2r] and [1] =[2r + 1], r € Z. Infact, what we have seen aboveistrue
for an arbitrary equivalence relation R in a set X. Given an arbitrary equivalence
relation R in an arbitrary set X, R divides X into mutually disjoint subsets A, called
partitionsor subdivisions of X satisfying:

(i) all elementsof A arerelated to each other, for al i.
(i) no element of A isrelated to any element of A, i #].
(i) WA =XandA NA=0,i#].

The subsetsA, are called equivalence classes. The interesting part of the situation
isthat we can go reverse also. For example, consider a subdivision of the set Z given
by three mutually disjoint subsetsA_ , A, and A, whose unionisZ with

A ={xe Z:xisamultipleof 3} ={...,-6,-3,0,3,6, ...}
AZZ{XE Z:x—1isamultipleof 3} ={...,—5,-2,1,4,7, ...}
A,={xe Z:x-2isamultipleof 3} ={...,-4,-1,2,5,8, ...}

Define arelation Rin Z given by R = {(a, b) : 3 divides a — b}. Following the
arguments similar to those used in Example 5, we can show that R is an equivalence
relation. Also, A, coincideswith the set of all integersinZ which arerelated to zero, A,
coincides with the set of all integers which are related to 1 and A, coincides with the
set of all integersin Z which are related to 2. Thus, A, = [0], A, = [1] and A, = [2].
Infact, A, =[3r], A,=[3r+1] andA,=[3r + 2], fordlre Z.

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by
R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence
relation. Further, show that all the elementsof thesubset {1, 3,5, 7} arerelated to each
other and all the elements of the subset {2, 4, 6} are related to each other, but no
element of the subset {1, 3, 5, 7} isrelated to any element of the subset {2, 4, 6}.
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Solution Given any element a in A, both a and a must be either odd or even, so
that (a, a) € R. Further, (a, b) € R = both a and b must be either odd or even
= (b, a) e R. Similarly, (a, b) € Rand (b, c) € R = dl elements a, b, ¢, must be
either even or odd simultaneously = (a, ¢) € R. Hence, R is an equivalence relation.
Further, all the elements of {1, 3, 5, 7} are related to each other, as all the elements
of this subset are odd. Similarly, all the elements of the subset { 2, 4, 6} arerelated to
each other, as all of them are even. Also, no element of the subset {1, 3, 5, 7} can be
related to any element of {2, 4, 6}, aselementsof {1, 3, 5, 7} are odd, while elements
of {2, 4, 6} are even.

|EXERCISE 1.1|
1. Determinewhether each of thefollowing relations are reflexive, symmetric and
trangtive:
() RelationRinthesetA={1, 2,3, ..., 13, 14} defined as
R={(xy):3x-y=0}
(i) Relation Rintheset N of natural numbers defined as
R={(x,y):y=x+5andx <4}
(i) RelationRinthesetA={1,2,3,4,5,6} as
R={(xy):yisdivisible by x}
(iv) RelationRintheset Z of all integers defined as
R={(x,y) : x—yisaninteger}
(v) ReéationRinthesetA of human beingsinatown at aparticular timegiven by
(@ R={(x,y) : xandywork at the same place}
(b) R={(xy):xandy liveinthe samelocality}
(©) R={(xy) : xisexactly 7 cmtaler than y}
(d) R={(x,y): xiswifeof y}
(e) R={(x,y) : xisfather of y}
2. Show that the relation R in the set R of real numbers, defined as
R ={(a, b) : a<b? isneither reflexive nor symmetric nor transitive.
3. Check whether therelation R defined inthe set {1, 2, 3, 4, 5, 6} as
R={(a b): b= a+ 1} isreflexive, symmetric or transitive.
Show that the relation R in R defined as R = {(a, b) : a < b}, isreflexive and
transitive but not symmetric.

5. Check whether therelation R in Rdefined by R={(a, b) : a< b3} isreflexive,
symmetric or transitive.

B
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11.

12.
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Show that the relation R in the set {1, 2, 3} givenby R = {(1, 2), (2, 1)} is
symmetric but neither reflexive nor transitive.
Show that the relation R in the set A of all the books in alibrary of a college,
given by R = {(x, y) : xand y have same number of pages} is an equivalence
relation.
Show that therelation Rintheset A ={1, 2, 3, 4, 5} given by
R ={(a b) : |]a—Db|iseven}, is an equivalence relation. Show that al the
elementsof {1, 3, 5} arerelated to each other and all the elements of {2, 4} are
related to each other. But no element of {1, 3, 5} isrelated to any element of { 2, 4}.
Show that each of therelation Rintheset A={xe Z : 0<x <12}, given by
(i) R={(a, b):|Ja—Db|isamultiple of 4}

(i) R={(a,b):a=b}
isan equivalence relation. Find the set of all elementsrelated to 1 in each case.
Give an example of arelation. Whichis

(i) Symmetric but neither reflexive nor transitive.

(if) Transitive but neither reflexive nor symmetric.

(i) Reflexive and symmetric but not transitive.

(iv) Reflexiveand transitive but not symmetric.

(V) Symmetric and transitive but not reflexive.
Show that the relation R in the set A of points in a plane given by
R ={(P, Q) : distance of the point Pfrom the origin is same asthe distance of the
point Q fromtheorigin}, isan equivalencerelation. Further, show that the set of

all pointsrelatedto apoint P+ (0, 0) isthe circle passing through Pwith origin as
centre.

Show that therelation R defined inthe set A of all trianglesasR={(T, T,) : T,
issimilarto T, }, isequivalencerelation. Consider threeright angletriangles T,
with sides 3, 4, 5, T, with sides 5, 12, 13 and T, with sides 6, 8, 10. Which
trianglesamong T, T, and T, are related?

Show that the relation R defined in the set A of all polygonsasR ={(P, P,) :
P, and P, have same number of sides}, is an equivalence relation. What is the
set of al elementsinA related to theright angletriangle T with sides 3, 4 and 5?
Let L bethe set of dl linesin XY plane and R be the relation in L defined as
R={(L, L, :L, isparalel toL}. Show that Risan equivalencerelation. Find
the set of al linesrelated to theliney = 2x + 4.
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15. LetRbetherelationintheset{1,2,3,4} givenby R={(1, 2), (2,2),(1, 1), (4,4),
(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) Risreflexiveand symmetric but not transitive.
(B) Risreflexive and transitive but not symmetric.
(C) Rissymmetric and transitive but not reflexive.
(D) Risanequivalencerelation.

16. LetRbetherdationintheset Ngivenby R={(a, b):a=b—-2, b>6}. Choose
the correct answer.

(A) 24eR (B) 38eR (C) (6,8cR (D) (87)eR

1.3 Typesof Functions

Thenotion of afunction along with some specia functionslikeidentity function, constant
function, polynomial function, rational function, modulusfunction, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have a so been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplinesaswell, wewould liketo extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f, f,, f, and f, given by the following diagrams.

InFig 1.2, we observethat theimages of distinct elementsof X, under thefunction
f, are distinct, but the image of two distinct elements 1 and 2 of X, under f, is same,
namely b. Further, there are some elements like e and f in X, which are not images of
any element of X under f , whileall elementsof X, areimages of some elementsof X,
under f.. The above observations|ead to the following definitions:

Definition 5A function f: X — Y isdefined to be one-one (or injective), if theimages
of distinct elements of X under f are digtinct, i.e,, for every x, X, € X, f(x) = f(x)
implies x, = x,. Otherwisg, f is called many-one.

The function f, and f,in Fig 1.2 (i) and (iv) are one-one and the function f, and f,
inFig 1.2 (ii) and (iii) are many-one.
Definition 6 A function f: X — Y is said to be onto (or surjective), if every element
of Y isthe image of some element of X under f, i.e., for every y € Y, there exists an
element x in X such that f(x) = y.

Thefunctionf,andf,inFig 1.2 (iii), (iv) areonto and thefunction f inFig 1.2 (i) is
not onto as elements e, f in X, are not the image of any element in X, under f..
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fi a

1

N [

. e

3 d

e

4 f

X, X, X X
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X, (iii) X, X, (@iv) X4
Figl.2(i)to(iv)

Remark f: X — Y isontoif and only if Rangeof f =Y.
Definition 7 A functionf: X — Y is said to be one-one and onto (or bijective), if fis
both one-one and onto.

Thefunctionf, inFig 1.2 (iv) is one-one and onto.

Example 7 Let A bethe set of all 50 students of Class X inaschool. Letf: A — Nbe
function defined by f(x) = roll number of the student x. Show that f is one-one
but not onto.

Solution No two different students of the class can have sameroll number. Therefore,
f must be one-one. We can assume without any |oss of generality that roll numbers of
studentsarefrom 1 to 50. Thisimpliesthat 51 in Nisnot roll number of any student of
the class, so that 51 can not beimage of any element of X under f. Hence, fisnot onto.

Example 8 Show that the function f: N — N, given by f(x) = 2x, is one-one but not
onto.

Solution The function f is one-one, for f(x)) = f(X)) = 2x = 2x, = x, = X,. Further,
fisnot onto, asfor 1 € N, there does not exist any x in N such that f(x) = 2x = 1.
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Example9 Provethat thefunctionf: R — R, given by f (x) = 2%, isone-one and onto.
Solution fisone-one, asf(x) =f(x) = 2x, = 2x, = X, = X,. Also, given any real

number y in R there exists % in R such that f(%) =2. (%) =y. Hence, f is onto.

Y
A
) =2x
X'<€ >
0 X
v
Y/
Figl3

Example10 Show that thefunctionf: N— N, givenby f (1) =f(2) =1and f(X) = x—1,
for every x> 2, is onto but not one-one.

Solution fisnot one-one, asf(1) =f(2) = 1. But fisonto, asgivenanyye N, y#1,
we can choose x asy + 1 such that f(y + 1) =y+1-1=y. Alsofor 1 € N, we
havef(1) = 1.

Example 11 Show that the functionf: R — R, Y
defined asf (X) = X2, is neither one-one nor onto. 5
fx)=x
Solution Sincef(-1) =1 =1f(1), f is not one-
one. Also, the element — 2 in the co-domain R is
not image of any element x in the domain R X,,f(—1)=1 f(1)=1=X
(Why?). Therefore f is not onto. x=-1 %=1
Example 12 Show that f : N — N, given by
x+1if xisodd, v
f(x)= L. : Y’
x—-1if xiseven The image of 1 and -1 under f is 1.

is both one-one and onto. Figl.4
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Solution Supposef(x,) =f(x,). Notethat if x, isodd and x, is even, then we will have
X, +1=x,-1,i.e,Xx,—x =2whichisimpossible. Similarly, the possibility of x, being
even and x, being odd can aso be ruled out, using the similar argument. Therefore,
both x, and x, must be either odd or even. Suppose both x; and x, are odd. Then
f(x) =f(x) = x +1=x,+1=x =x, Similarly, if both x, and x, are even, then also
f(x) =f(x) = x —1=X%X,—-1= X =X, Thus, f is one-one. Also, any odd number
2r + 1intheco-domain N istheimage of 2r + 2inthedomain N and any even number
2r in the co-domain N isthe image of 2r — 1 in thedomain N. Thus, f is onto.

Example 13 Show that an onto functionf: {1, 2, 3} — {1, 2, 3} isaways one-one.

Solution Supposef is not one-one. Then there exists two elements, say 1 and 2 in the
domain whose image in the co-domain is same. Also, the image of 3 under f can be
only one element. Therefore, the range set can have at the most two elements of the
co-domain{1, 2, 3}, showingthat f isnot onto, acontradiction. Hence, f must be one-one.

Example 14 Show that aone-one function f: {1, 2, 3} — {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different
elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary
finite set X, i.e., aone-one function f : X — X is necessarily onto and an onto map
f: X — X isnecessarily one-one, for every finite set X. In contrast to this, Examples 8
and 10 show that for aninfinite set, thismay not betrue. In fact, thisisacharacteristic
difference between afinite and an infinite set.

EXERCISE 1.2|

1
1. Show that the functionf : R, — R, defined by f(x) = X is one-one and onto,

whereR_ isthe set of all non-zero real numbers. Istheresult true, if the domain
R, isreplaced by N with co-domain being same as R,?
2. Check theinjectivity and surjectivity of thefollowing functions:
(i) f:N—> Ngivenby f(x) =x?
(i) f:Z > Z givenby f(x) = x?
(i) f: R > Rgivenby f(x) = x
(iv) f:N—> Ngivenby f(x) =x3
(v) f:Z —> Z givenby f(x) = x®
3. Provethat the Greatest Integer Functionf: R — R, given by f(X) =[X], isneither
one-one nor onto, where [X] denotes the greatest integer less than or equal to x.
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Show that the Modulus Functionf: R — R, given by f(x) = | x|, is neither one-
one nor onto, where | x | isx, if xispositive or 0 and |x|is—X, if X is negative.

Show that the Signum Functionf : R — R, given by

1,if x>0
f(x)=40,if x=0
-1,if x<0

is neither one-one nor onto.

LetA={1,23},B={4,56,7} andletf={(1, 4), (2,5), (3, 6)} beafunction
from A to B. Show that f is one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(i) f: R — R defined by f(x) = 3 —4x
(i) f: R — R defined by f(x) = 1 + 2

Let A and B be sets. Show that f: A x B — B x A such that f(a, b) = (b, a) is
bijectivefunction.

N1 i nisodd
Letf: N — N bedefined by f(n) = N foral ne N.
,if niseven

State whether the function f is bijective. Justify your answer.
LetA=R—{3} and B =R —{1}. Consider the function f: A — B defined by

X
f(x) = (—j . Is f one-one and onto? Justify your answer.

x-3
Let f: R —» R be defined as f(x) = x*. Choose the correct answer.
(A) fisone-oneonto (B) fismany-oneonto
(C) fisone-one but not onto (D) fisneither one-one nor onto.
Letf: R — R be defined as f(x) = 3x. Choose the correct answer.
(A) fisone-oneonto (B) fismany-oneonto

(C) fisone-one but not onto (D) fisneither one-one nor onto.
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1.4 Composition of Functionsand Invertible Function

In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination is assigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of studentsin the answer scripts and assigns a fake code number to each
roll number. Let B < N bethe set of all roll numbersand C — N be the set of all code
numbers. Thisgivesriseto two functionsf: A— Bandg: B — Cgivenby f(a) =the
roll number assigned to the student a and g(b) = the code number assigned to theroll
number b. In this process each student is assigned aroll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student iseventually attached acode number.

Thisleadsto thefollowing definition:

Definition 8Letf: A — B andg: B — C betwo functions. Then the composition of
f and g, denoted by gof, is defined as the function gof : A — C given by

gof () =g(f(¥), v xe A.

Figl5

Example15Letf:{2,3,4,5 —{3,4,5 9 andg:{3,4,5 9} - {7, 11, 15} be
functions defined as f(2) = 3, f(3) =4, f(4) = f(5) =5and g(3) = g(4) =7 and
g(5) = g(9) = 11. Find gof.

Solution We have gof(2) = g(f(2) = g(3) =7, gof(3) = g(f(3)) =g4) =7,
gof(4) = g(f(4)) =g(5) =11 and gof (5) = g(5) = 11.

Example 16 Find gof and fog, if f : R > Rand g : R — R are given by f(x) = cos x
and g(x) = 3x%. Show that gof # fog.

Solution We have gof (x) = g(f(X)) = g(cos x) = 3 (cos x)? = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x® = cos (3%?). Note that 3cos” x # cos 3x?, for x = 0. Hence,
gof # fog.
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3xX+4
5x-7

Example 17 Show that if f :R—{é}—) R—{g} is defined by f(X)=

and

R-I3L LRI isaefinedby 900 =2 thenfog=1 andgof =1 where
g: = 5 [ isdefinedby =3 thenfog =1, and gof = I , where,

3 7
A=R—{g},B=R—{g};IA(x)=x, vXxe A, I (X)=x Vxe Barecaledidentity

functions on setsA and B, respectively.
Solution We have

7((3x+4)j+

_ \6x-7) _ 20x+28+20x-28 41X
5((3x+4)j_3 15x+20-15x+21 41
(5x-7)

3X+ 4)

gof (><)=<91(5X_7

3((7X+4)j+

_ (5x-3) _ 21X+12+20X—12=ﬂzx

5((7x+4)j_7 35x+20-35x+21 41
(5x-3)

X+ 4)

Similarly, fog(x) = f
milarly, fog(x) (5x_3

Thus, gof (x) = x, vx e B and fog(x) = X, vx € A, which implies that gof = I,
and fog =1 ,.

Example 18 Show that if f : A— B and g: B — C are one-one, then gof : A — C is
also one-one.

Solution Suppose gof (x,) = gof (x,)

= g(f(x)) =a(f(x,)
= f(x) =f(x), asgisone-one
= X, =X, asfisone-one

Hence, gof is one-one.

Example 19 Show that if f: A — B and g : B — C are onto, then gof : A — Cis
also onto.

Solution Given an arbitrary element z e C, there exists a pre-image y of z under g
such that g (y) = z, since g isonto. Further, for y € B, there exists an element x in A
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with f(x) =y, sincef isonto. Therefore, gof (x) = g(f(x)) = g(y) = z, showing that gof
isonto.

Example 20 Consider functionsf and g such that composite gof is defined and is one-
one. Aref and g both necessarily one-one.

Solution Consider f: {1, 2, 3, 4} — {1, 2, 3,4, 5, 6} defined asf(x) = x, v x and
0:{1,2,3,4,56} -{1,2,3,4,5,6} asg(x) =x,forx=1,2,3 4andg(5) =g(6) =5.
Then, gof (X) = X v X, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Aref and g both necessarily onto, if gof is onto?

Solution Considerf: {1,2,3,4} —-{1,2,3,4} andg:{1,2,3,4} —>{1, 2, 3} defined
asf()=1,f(2=2 f(3)=f(4)=3,9(1)=1,9(2)=2andg(3)=g(4) =3.Itcanbe
seen that gof isonto but f is not onto.

Remark It can be verified in general that gof is one-one implies that f is one-one.
Similarly, gof isonto impliesthat gisonto.

Now, we would like to have close look at the functions f and g described in the
beginning of this section in reference to a Board Examination. Each student appearing
in Class X Examination of the Board isassigned aroll number under thefunction f and
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submitsto the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. Further, the processreverseto f assignsaroll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. We observe that while composing f and g, to get gof, first f
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f : {1, 2, 3} — {a, b, ¢} be one-one and onto function given by
f(1) =a, f(2) =band f(3) = c. Show that there existsafunctiong: {a, b, ¢} — {1, 2, 3}
suchthat gof = I, and fog =1, where, X = {1, 2,3} andY ={a, b, c}.

Solution Consider g: {a, b, c} - {1,2,3} asg(a)=1,g(b)=2andg(c) =3. Itis
easy to verify that the compositegof =1, istheidentity function on X and the composite
fog =1, istheidentity functionon'Y.

Remark Theinteresting fact isthat the result mentioned in the above exampleistrue
for an arbitrary one-one and onto function f: X — Y. Not only this, even the converse
isalsotrue,i.e, if f: X —» Y isafunction such that there existsafunctiong:Y — X
such that gof = |, and fog = I, then f must be one-one and onto.

The above discussion, Example 22 and Remark |ead to the following definition:



RELATIONS AND FUNCTIONS 15

Definition 9 A functionf: X — Y isdefined to be invertible, if there exists afunction
g:Y — Xsuchthat gof=1 andfog=1,. Thefunctiongiscalledtheinverseof f and
is denoted by .

Thus, if f isinvertible, then f must be one-one and onto and conversely, if fis
one-one and onto, then f must be invertible. Thisfact significantly helpsfor proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actua inverse of f is not to be determined.

Example 23 Letf: N — Y be afunction defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3for somexe N}. Show that f isinvertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y,y = 4x + 3,

(y-3)
4

for some x in the domain N. This shows that X= . Defineg: Y — N by

(4x+3-3) _

g(y)=(y—:13).Now, gof () = g(F(X)) = g(dx + 3) = X and

fog(y) = f(g(y)) =f (():3)): 4(y4—3)

and fog = I, which impliesthat f isinvertible and g isthe inverse of f.

+3 =y-3+3=Yy. Thisshowsthat gof =

Example24 LetY ={n?: ne N} c N. Consider f: N — Y asf(n) = n?. Show that
fisinvertible. Find theinverse of f.

Solution An arbitrary element y in Y is of the form n?, for some n € N. This
impliesthat n = ,/y . Thisgivesafunctiong: Y — N, defined by g(y) = \/y . Now,

2
gof(n) = g(n?) = /n2 = nand fog(y) = f(/y)=(y/y) =y, which shows that
gof =1, and fog = I,. Hence, f isinvertible with f *=g.

Example25Letf: N — R beafunction defined as f (x) = 4x2 + 12x + 15. Show that
f: N— S, where, Sistherange of f, isinvertible. Find the inverse of f.

Solution Let y be an arbitrary element of rangef. Theny = 4x? + 12x + 15, for some

Jy—-6/)-3
xin N, whichimpliesthat y = (2x + 3)? + 6. This gives xzw,asyz 6.
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Jy-6/-3
Lausdefineg:SAbeg(y)zw.
Now gof(x) = g(f(X)) = g(4x*+ 12x + 15) = g((2x + 3)* + 6)
_ ((Veex+37+6-6)-3) (2x:3-9_
2 2
2
and fog (y) = f((( y_6)_3)j=[z(( y_6)_3)+3] +6
2 2
=((\/ﬁ)—3+3))2+6=( y—6) +6=y-6+6=y.
Hence, gof =1 and fog =I.. Thisimpliesthat f isinvertible with f =* = g.

Example 26 Consider f: N - N, g: N —> Nand h: N — R defined asf(x) = 2x,
gy)=3y+4andh(® =snz vx yandzinN. Show that ho(gof) = (hog) of.

Solution We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))) = h(g(2x))

=h(3(2x) +4) =h(6x +4) =sin (6x +4) ¥V xeN.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2x) = h(g(2x))

=h(3(2x) + 4) =h(6x + 4) =sin (6x + 4), v x € N.
This shows that ho(gof) = (hog) of.
Thisresult istruein general situation aswell.
Theorem11ff: X ->Y,g:Y > Zand h:Z — Sarefunctions, then

ho(gof) = (hog) of.

We have
ho(gof ) () = h(gof (x)) = h(g(f(x))), vxin X
and (hog) of (x) = hog(f (X)) = h(g(f(x)), v xin X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1, 2, 3} —> {a, b, c} andg: {a, b, c} — {apple, ball, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f -, g* and (gof)™* and show that
(gof) * =1 “og™.
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Solution Note that by definition, f and g are bijective functions. Let
f*{a b, ct - (1,2 3} and g*: {apple, bal, cat} — {a, b, c} be defined as
fHa} =1, f b} =2, fHc} =3, g{apple} =a, g{bal} =band g*{cat} =c.
It is easy to verify thet f “of =1, ,fof*=1_, ,,9%0g=1_,,ad gog"=
where, D = {apple, ball, cat}. Now gof : {1, 2 3} —>{app|e baII cat} isgiven by
gof (1) = apple, gof(2) = ball, gof (3) = cat. We can define
(gof)™*: {apple, ball, cat} — {1, 2, 3} by (gof)™ (apple) = 1,(gof)™ (ball) = 2 and
(gof)™ (cat) = 3. It is easy to see that (gof)™ o (gof) =1, , , and
(gof) o (gof)™ = 1. Thus, we have seen that f, g and gof are invertible.
Now, - og™ (apple)= f g (apple) = f “(a) = 1 = (gof)* (apple)
f-tog™ (ball) = f *(g*(ball)) = f *(b) = 2 = (gof)* (bal) and
f=og™ (cat) = f *(g™(cat)) = f 7(c) = 3 = (gof)™ (cat).
Hence (gof)?*=f og™.
The aboveresult istrue in general situation also.
Theorem2Letf: X > Y andg:Y — Z betwo invertible functions. Then gof isaso
invertible with (gof)™ = fog™.
To show that gof is invertible with (gof)™ = f2og™, it is enough to show that
(f*og™)o(gof) = I, and (gof)o(f~og™) = L.
Now, (f~*og™) o(gof) = ((f*og™) og) of, by Theorem 1
= (f*o(g™og)) of, by Theorem 1
= (f*ol,) of, by definition of g*
=1,
Similarly, it can be shown that (gof )o(f *og ™) =1..

Example 28 Let S={1, 2, 3}. Determine whether the functionsf : S— Sdefined as
below haveinverses. Find f %, if it exists.

(@ f={(112),(22),(3 3)}
(b) £={(12),(2 1), G 1}

(¢ £={(123).,(32),(2 1}

Solution

(@) Itiseasytoseethat f isone-oneand onto, sothat f isinvertiblewith theinverse
flof fgivenby f1={(1, 1), (2 2),(3,3)} =H.

(b) Sincef(2) =f(3) =1, f isnot one-one, so that f isnot invertible.

(c) Itiseasytoseethatf isone-oneand onto, sothat f isinvertible with

f1={(3 1), (2 3),(1, 2)}.
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|EXERCISE 1.3|
Letf:{1,3,4 - {1,2 5 andg:{1, 2,5 — {1, 3} begiven by
f={(1,2),(3,5), (4,1} andg={(1, 3), (2, 3), (5, 1)} . Write down gof.
Let f, g and h be functions from R to R. Show that
(f + gyoh = foh + goh
(f . g)oh = (foh) . (goh)

Find gof and fog, if
(i) fO9 =Ix]and g(x) =|5x -2

1

(i) T(x) =8¢ and g(x) = X°.

100 = 4D L2 ow that fof () = x, for adl xe2. What is th
X = (6x—4) " 3 ow that fof (x) = x, for x¢§. at is the
inverse of f ?

State with reason whether following functions have inverse
(i) T:{1,2,3,4} - {10} with
f ={(1, 10), (2, 10), (3, 10), (4, 10)}
(i) 9:{5/6,7,8 —>{1,2, 3,4} with
9={(5.4).(6,3),(7.4), (8,2}
@) h:{2,3,4,5 —{7,9, 11, 13} with
h={(2,7),(3,9), (4, 11), (5, 13)}

X
Show that f: [-1, 1] — R, given by f (X) = m isone-one. Find theinverse
of the function f : [-1, 1] — Range f.

Hint: F R fy=f —Lf in[-1, 1], i _
(Hint: Fory e Rangef,y="f(x) = 12’ orsomexin[-1,1],i.e,x= -y

Consider f: R — R given by f(x) = 4x + 3. Show that f isinvertible. Find the
inverse of f.

Consider f: R, — [4, ) given by f(X) = x> + 4. Show that f isinvertible with the
inversef-tof f given by f(y) = \/y—4,whereR, isthe set of all non-negative
real numbers.
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Consider f: R, — [—5, ) given by f (X) = 9x* + 6x—5. Show that f isinvertible

(e)3)

with f(y) = ( 2

Let f: X — Y beaninvertible function. Show that f has unique inverse.

(Hint: suppose g, and g, aretwo inverses of f. Thenfor adl y € Y,

fog,(y) = 1,(y) = fog,(y). Use one-one ness of f).

Consider f: {1, 2,3} —{a, b,c} givenbyf(1) =a,f(2) =bandf(3) =c. Find
f 1 and show that (f )= f.

Letf: X — Y bean invertible function. Show that the inverse of f L isf, i.e,,
(fhH?t=Hf.

1
If f: R — R be given by f(x) = (3—x%)3, then fof (x) is

1
(A) 3 (B) x° (€ x (D) B=x).
4
Letf:R-— {—f} — R be afunction defined asf (x) = X . Theinverse of
3 3x+4

fisthemap g: Rangef > R — {—g} given by

__ %y __4y
(A) g(y)—3_4y B 9 23y
4y _ 3y
©) g(y)——s_4y (D) 9() 73y

1.5 Binary Operations

Right from the school days, you must have come across four fundamental operations
namely addition, subtraction, multiplication and division. The main feature of these
operationsis that given any two numbers a and b, we associate another number a + b

a
ora—borabor —, b=0. Itisto benoted that only two numbers can be added or

b

multiplied at atime. When we need to add three numbers, we first add two numbers
and theresult isthen added to the third number. Thus, addition, multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we want to
have a general definition which can cover al these four operations, then the set of
numbers is to be replaced by an arbitrary set X and then general binary operation is
nothing but association of any pair of elements a, b from X to another element of X.
Thisgivesriseto agenera definition asfollows:

Definition 10 A binary operation * on aset A isafunction = : A x A — A. We denote
* (a, b) by a * b.

Example 29 Show that addition, subtraction and multiplication are binary operations
onR, but divisionisnot abinary operation on R. Further, show that divisionisabinary
operation on the set R, of nonzero real numbers.

Solution  +:R xR — Risgiven by
(a,b)—>a+hb

—:R xR — Risgiven by
(a,b)—>a-b
xR xR — Risgiven by
(@ b) — ab
Since‘+’, ‘= and ‘x’ arefunctions, they are binary operations on R.

But +: Rx R — R, givenby (a, b) —» %, isnot afunction and hence not abinary

a
operation, asfor b =0, b is not defined.

However,+: R, x R, —» R, given by (a, b) — % is a function and hence a

binary operationon R_.

Example 30 Show that subtraction and division are not binary operations on N.

Solution —: N x N — N, givenby (a, b) —» a—Db, isnot binary operation, astheimage

of (3,5) under ‘— is3—-5=—2¢ N. Smilarly,+: NxN — N, givenby (a,b) > a+b
3

is not a binary operation, astheimage of (3, 5) under +is3+5= 5 ¢ N.

Example 31 Show that # : R x R — R given by (a, b) — a + 4b? is a binary
operation.

Solution Since * carries each pair (a, b) to aunique element a + 4b?in R, * isabinary
operation on R.
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Example 32 Let P be the set of al subsets of agiven set X. Show that u: Px P — P
givenby (A,B) >AuBandn:PxP— Pgivenby (A, B) > An B arebinary
operations on the set P,

Solution Since union operation u carrieseach pair (A, B) in P x Pto aunique element
A U B inP uisbinary operation on P. Similarly, the intersection operation N carries
each pair (A, B) in Px Ptoaunique element A N B in P, nisabinary operation on P

Example 33 Show that the v : R x R — R given by (a, b) - max {a, b} and the
A R xR — Rgivenby (a, b) » min{a, b} are binary operations.
Solution Since v carries each pair (a, b) in R x R to a unique element namely
maximum of aand b lyingin R, v isabinary operation. Using the similar argument,
one can say that A isalso abinary operation.
Remark v (4, 7)=7,v (4, -7)=4, A(4 7)=4and A (4, -7)=-T7.

When number of elementsinaset A issmall, we can express abinary operation : on
the set A through a table called the operation table for the operation *. For example

considerA={1,2,3}. Then, theoperation v on A defined in Example 33 can be expressed
by thefollowing operationtable (Table 1.1) . Here, v (1,3)=3, v (2,3)=3, v (1,2 =2

Tablel.1
\% 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

Here, we are having 3 rows and 3 columns in the operation table with (i, j) the
entry of the table being maximum of i™" and j™ elements of the set A. This can be
generalised for general operation * : A xA — A IfA={a, a, .., a}. Then the
operation table will be having n rows and n columns with (i, j)" entry being a * a.
Conversely, given any operation table having n rows and n columns with each entry
being an element of A={a, a,, ..., a }, we can define abinary operation * : A XA — A
givenby a * a = theentry in the i"" row and j'" column of the operation table.

One may note that 3 and 4 can be added in any order and the result is same, i.e.,
3+4 =4+ 3, but subtraction of 3 and 4 in different order give different results, i.e.,
3—4+#4-3. Similarly, in case of multiplication of 3 and 4, order isimmaterial, but
division of 3 and 4 in different order give different results. Thus, addition and
multiplication of 3 and 4 are meaningful, but subtraction and division of 3 and 4 are
meaningless. For subtraction and division we havetowrite‘ subtract 3from4’, * subtract
4from3’, ‘divide3by 4 or ‘divided by 3.
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Thisleadsto thefollowing definition:

Definition 11 A binary operation * on the set X is called commutative, if a*= b =b* a,
for every a, b e X.

Example 34 Showthat +: R x R > R and X : R x R —» R are commutative binary
operations, but —: R xR - Rand +: R, x R, —» R_ are not commutative.

Solution Sincea+b=b+aandaxb=bxa, yva be R, '+ and ‘x" are
commutative binary operation. However, ‘— is not commutative, since3—4 =4 —3.
Similarly, 3+ 4 # 4+ 3 showsthat ‘+' isnot commutative.

Example 35 Show that * : R x R — R defined by a = b =a + 2b isnot commutative.

Solution Since3#4=3+8=11and 4 * 3=4+ 6 = 10, showing that the operation *
isnot commutative.

If we want to associate three el ements of aset X through a binary operation on X,
we encounter a natural problem. The expression a * b * ¢ may be interpreted as
(a=b) = cora=(b:*c)andthese two expressions need not be same. For example,
(8—5)—2#8—(5-2). Therefore, association of three numbers 8, 5 and 3 through
the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case
of addition, 8 + 5 + 2 has the same value whether we look at it as (8 + 5) + 2 or as
8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through addition is
meaningful without using bracket. Thisleadsto thefollowing:

Definition 12 A binary operation * : A x A — A issaid to be associative if
(axb)yxc=a=x(b=*c), va b,c e A.

Example 36 Show that addition and multiplication are associative binary operation on
R. But subtraction is not associative on R. Division is not associativeon R_.

Solution Addition and multiplication are associative, since(a+hb) + c=a+ (b +c) and
(axbyxc=ax(bxc) v a b, ce R However, subtraction and division are not
associative, as (8 -5) -3#8—-(5-3)and (8 +5) +3# 8+ (5+ 3).

Example 37 Show that * : R x R - R given by a * b — a + 2b is not associative.

Solution The operation * is not associative, since
(8%5)*3=(8+10)*3=(8+10) +6 =24,
while 8x(5%3)=8x#(5+6)=8x*11=8+22=230.

Remark Associative property of abinary operation isvery important in the sense that
with this property of a binary operation, we can write a, * @, * ... * a which is not
ambiguous. But in absence of thisproperty, theexpressiona, * a,* ... * @ isambiguous
unlessbracketsare used. Recall that in the earlier classes brackets were used whenever
subtraction or division operations or more than one operation occurred.
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For thebinary operation‘+' on R, theinteresting feature of the number zeroisthat
a+0=a=0+a,i.e, any number remains unatered by adding zero. But in case of
multiplication, the number 1 playsthisrole,asax 1=a=1xa, v ainR. Thisleads
to thefollowing definition:

Definition 13 Given abinary operation = : A x A - A, anelementee A, if it exists,
is called identity for the operation #,ifa*e=a=e=*a, v ae€ A.

Example 38 Show that zero is the identity for addition on R and 1 isthe identity for
multiplication on R. But thereisno identity element for the operations
—-'RxR->Rad+:R xR —R.

Solutiona+0=0+a=aandaxl=a=1xa, yae Rimpliesthat 0 and 1 are
identity elementsfor the operations‘+ and * x’ respectively. Further, thereisno element
einR witha—e=e—-a, v a. Similarly, we can not find any element ein R_ such that
a+-e=e+a, vainR, . Hence ‘'~ and‘+" do not have identity el ement.

Remark Zero isidentity for the addition operation on R but it is not identity for the
addition operationon N, as0 ¢ N. In fact the addition operation on N does not have
any identity.

One further notices that for the addition operation + : R x R — R, given any
ae R, thereexists—ain R such that a + (— a) = 0 (identity for ‘+') = (- a) + a

. : : 1
Similarly, for the multiplication operationon R, givenany a= 0in R, we can choose 3

1 1
in R suchthat a x Q- 1(identity for ‘x’) = a x a. Thisleadsto thefollowing definition:

Definition 14 Given abinary operation * : A X A — A with theidentity element einA,
an element a e A issaid to be invertible with respect to the operation *, if there exists
anelement bin A suchthat a*= b=e=b:* aandbiscaled theinverse of a and is
denoted by a™.

Example 39 Show that —a istheinverse of a for the addition operation ‘+ on R and
1

a istheinverse of a = 0 for the multiplication operation ‘X’ on R.

Solution Asa+ (—a)=a—a=0and (—a) + a=0,—aistheinverse of afor addition.

1 1 1
Similarly, fora=0, axaz 1= Ex aimpliesthat a istheinverseof afor multiplication.
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Example 40 Show that —aisnot theinverse of a e N for the addition operation + on
1
N and gis not theinverse of ae N for multiplication operation x on N, for a # 1.

Solution Since—a ¢ N, —a can not be inverse of a for addition operation on N,
although — a satisfiesa+ (-a) =0=(-a) + a

1
Similarly, fora= 1inN, a ¢ N, whichimpliesthat other than 1 no element of N

hasinversefor multiplication operation on N.
Examples 34, 36, 38 and 39 show that addition on R isacommutative and associative
binary operation with O as the identity element and —a astheinverseof ain R v a.

EXERCISE 1.4
1. Determinewhether or not each of the definition of  given below givesabinary
operation. Intheevent that = is not abinary operation, givejustification for this.
(i) OnZ*, definexbya*b=a-b
(i) On Z*, define = by a * b= ab
(i) On R, define = by a* b =ab?
(iv) OnZ*, define= by a*b=]a-Db]|
(v) OnZzZ* definexbya=xb=a
2. For each binary operation * defined below, determine whether * iscommutative
or associative.
(i) OnZ, defineaxb=a-b
(i) OnQ, defineaxb=ab+1

: ab
(i) OnQ, definea* b = -

(iv) OnZ*, definea* b= 2%

(v) OnZ*, defineaxb=a°

- - __a
(Vi) OnR —{-1}, definea* b = brl

3. Consider the binary operation A on the set {1, 2, 3, 4, 5} defined by
a A b=min{a, b}. Write the operation table of the operation A .
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4. Consider abinary operation * on the set {1, 2, 3, 4, 5} given by the following
multiplicationtable (Table1.2).
(i) Compute (2 * 3) = 4and 2 = (3 * 4)
(i) Is=* commutative?
(i) Compute (2 = 3) * (4 = 5).
(Hint: usethefollowing table)

Tablel.2
% 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. Let *” be the binary operation on the set {1, 2, 3, 4, 5} defined by
a+" b =H.C.F of aand b. Is the operation #" same as the operation * defined
in Exercise 4 above? Justify your answer.

6. Let * bethe binary operation on N givenby a = b =L.C.M. of aand b. Find
(i) 5%7, 20*16 (i) Is* commutative?
(i) Is * associative? (iv) Findtheidentity of *inN
(v) Which elements of N are invertible for the operation *?

7. lIs= defined on the set {1, 2, 3,4, 5} by a* b =L.C.M. of a and b a binary
operation? Justify your answer.

8. Let * be the binary operation on N defined by a = b = H.C.F. of a and b.
Is * commutative? |s * associative? Does there exist identity for this binary
operation on N?

9. Let = beabinary operation on the set Q of rational numbers as follows:

() a*xb=a-b (i) a*b=a%+Db?
(i) a*b=a+ab (iv) a*b=(a-b)?
(v)a*bz% (Vi) a*b=ab?

Find which of the binary operations are commutative and which are associative.
10. Show that none of the operations given above has identity.
11. Let A=N x N and * be the binary operation on A defined by
(& b)=(c,d=(@+c b+d)
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Show that * is commutative and associative. Find the identity element for * on
A, if any.
12. State whether the following statements are true or false. Justify.
(i) For an arbitrary binary operation = onaset N,a*a=a vae N.
(i) If = isacommutative binary operationon N, thena = (b c) = (c* b) * a
13. Consider a binary operation * on N defined asa * b = a® + b%. Choose the
correct answer.
(A) Is=* both associative and commutative?
(B) Is#* commutative but not associative?
(C) Is* associative but not commutative?
(D) Is=* neither commutative nor associative?

Miscellaneous Examples

Example 41 If R and R, are equivalence relationsin aset A, show that R, " R, is
also an equivalencerelation.

Solution Since R and R, are equivalencerelations, (a,a) € R, and (a, @) € R, vae A.
This implies that (a, @) € R, R,, vV a, showing R, N R, is reflexive. Further,
@beRNR =>@beR ad(@beR =({maeR adb aecR, =
(b, ) € R, " R, hence, R, N R, is symmetric. Similarly, (a, b) e R, " R, and
b,ge RNR, = (@ ce R ad(ace R, = (ac)e R R, This shows that
R,Nn R, istransitive. Thus, R, " R, is an equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers
defined by (%, ¥) R (u, v) if and only if xv=yu. Show that R isan equivalencerelation.

Solution Clearly, (X, ¥) R (X, y), v (X, y) € A, since xy = yx. This shows that R is
reflexive. Further, (X, y) R (u, V) = xv = yu = uy = vx and hence (u, v) R (x, y). This
shows that R is symmetric. Similarly, (X, y) R (u, v) and (u, v) R (a, b) = xv =yu and

b a
w=va= xwi-ywl= XV = YU = xb = yaand hence (x,y) R (&, b). Thus, R
u u

istransitive. Thus, R isan equivalencerelation.

Example 43 Let X ={1, 2, 3,4,5,6, 7, 8, 9}. Let R be arelation in X given
by R, ={(x,y) : x—yisdivishle by 3} and R, be another relation on X given by
R,={(x¥):{x,y} c{1,4,7}} or {x,y} c{2,5,8} or {x,y} {3, 6, 9}}. Show that
R, =R,
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Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is
that difference between any two elements of these setsis a multiple of 3. Therefore,
(X y) e Ry, =x-yisamultipleof 3 = {x,y} c {1, 4,7} or {X,y} {25, 8}
or{x,y} c{3,6,9} = (x,y) € R,.Hence, R, c R,. Similarly, {x, y} € R, = {Xx, y}
c{lL, 4 7 or{xyt c{258 o {x,y} {3 6 9} = x-yisdvisble by
3= {x ¥} € R. Thisshowsthat R, c R,. Hence, R, = R,.

Exampled4 Letf: X — Y beafunction. Define arelation R in X given by
R ={(a, b): f(a) = f(b)}. Examineif R is an equivalence relation.

Solution For every a€ X, (a, a) € R, sincef(a) = f(a), showing that R is reflexive.
Similarly, (a, b) e R = f(a) = f(b) = f(b) =f(a) = (b, @) € R. Therefore, R is
symmetric. Further, (a, b) € Rand (b, c) e R= f(a) =f(b) and f(b) = f(c) = f(a)
=f(c) = (a ¢) € R, which impliesthat R is transitive. Hence, R is an equivalence
relation.

Example 45 Determine which of the following binary operations on the set N are
associative and which are commutative.

a+b
(@ a*b=1v abe N (b)a*b:(—;)va,bem

Solution

(@) Clearly, by definition a * b = b = a = 1, yva, b € N. Also
(axb)ysc=(@A=*c)=landa=*(b*xc)=a=* (1) =1, v a b, ce N. Hence
R isboth associative and commutative.

a+b b+a _ _
(b) a*b= IR = b * g, shows that * is commutative. Further,
a+b
(a*b)*cz( > j*c.
atby,
L2 _a+b+2c
- 2 4
b+c
But a*(b*c)za*( 2)
b+c
_a+ 2 2a+b+c a+b+2c.
= S 2 # ingeneral.

Hence, * is not associative.
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Example 46 Find the number of all one-onefunctionsfromset A ={1, 2, 3} toitself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three
symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itsalf is
same as total number of permutations on three symbols 1, 2, 3whichis3! = 6.

Example47 Let A={1, 2, 3}. Then show that the number of relations containing (1, 2)
and (2, 3) which are reflexive and transitive but not symmetric isfour.

Solution The smallest relation R, containing (1, 2) and (2, 3) which is reflexive and
transitive but not symmetricis{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} . Now, if weadd
thepair (2, 1) to R, to get R,, then the relation R, will be reflexive, transitive but not
symmetric. Similarly, we can obtain R, and R, by adding (3, 2) and (3, 1) respectively,
to R, to get the desired relations. However, we can not add any two pairsout of (2, 1),
(3,2) and (3, 1) to R, at atime, as by doing so, we will be forced to add the remaining
third pair in order to maintain transitivity and in the process, the relation will become
symmetric also which isnot required. Thus, the total number of desired relationsisfour.

Example 48 Show that the number of equivalenceredlationintheset {1, 2, 3} containing
(1,2) and (2, 1) istwo.

Solution The smallest equivalence relation R, containing (1, 2) and (2, 1) is{(1, 1),
(2,2),(3,3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),
(1,3) and (3, 1). If we add any one, say (2, 3) to R,, then for symmetry we must add
(3, 2) d'so and now for transitivity weareforced to add (1, 3) and (3, 1). Thus, the only
equivaence relation bigger than R isthe universal relation. This shows that the total
number of equivalence relations containing (1, 2) and (2, 1) istwo.

Example 49 Show that the number of binary operationson {1, 2} having 1 asidentity
and having 2 asthe inverse of 2 is exactly one.

Solution A binary operation = on{1, 2} isafunctionfrom{1, 2} x{1, 2} to{1, 2},i.e,
afunction from {(1, 1), (1, 2), (2, 1), (2, 2)} — {1, 2}. Since 1 isthe identity for the
desired binary operation =, * (1, 1) =1, * (1, 2) = 2, * (2, 1) = 2 and the only choice
leftisfor thepair (2, 2). Since2istheinverseof 2,i.e., * (2, 2) must beequa to 1. Thus,
the number of desired binary operationisonly one.

Example 50 Consider the identity function | : N — N defined as | (X) =x v xe N.
Show that although | isonto but | + 1 : N — N defined as

(I, +1) =1, + 1, (X) =x+x=2xisnot onto.
Solution Clearly 1 is onto. But I + | is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with
(I, +1) () =2x=3.



RELATIONS AND FUNCTIONS 29
Example 51 Consider a function f : {0,%}—>R given by f(x) = sin x and

g: {o,g}_)R given by g(x) = cos x. Show that f and g are one-one, but f + g is not
one-one.

Solution Since for any two distinct elements x, and X, in [oﬂ , Sin X, # sin x, and
Cos X, # CoS X, both f and g must be one-one. But (f + g) (0) =sin0+cos0=1and

(f+09) (gj = sing + cosg =1. Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1
1. Letf:R — R bedefined asf(x) = 10x + 7. Find the functiong : R — R such
thatgof=fog=1.
2. Letf:W — W bedefinedasf(n)=n-1,if nisoddandf(n)=n+1,ifnis
even. Show that f is invertible. Find the inverse of f. Here, W is the set of all
whole numbers.

3. Iff: R — R isdefined by f(x) = x2 — 3x + 2, find f (f (x)).

X
4. Show that thefunction f: R — {xe R :—1<x< 1} defined by f(X)=—1+|X|,

X € R isone oneand onto function.

5. Show that the functionf : R — R given by f(x) = x® isinjective.

6. Give examples of two functionsf: N - Z andg:Z — Z suchthat gofis
injectivebut gisnotinjective.
(Hint : Consider f(x) = x and g(x) = |x]).

7. Giveexamplesof twofunctionsf: N — Nandg: N — N suchthat gofisonto
but f is not onto.

x—=1if x>1

(Hint : Consider f(x) =x + 1 and g(X)={ 1 if xo1

8. Given anon empty set X, consider P(X) which is the set of all subsets of X.
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11.

12.

13.

14.

15.

16.

17.

MATHEMATICS

Definetherelation R in P(X) asfollows:
For subsets A, B in P(X), ARB if and only if A c B. ISR an equivalencerelation
on P(X)? Justify your answer.
Given anon-empty set X, consider the binary operation  : P(X) x P(X) — P(X)
givenby AxB=AnB VA, B inP(X), where P(X) is the power set of X.
Show that X istheidentity element for thisoperation and X istheonly invertible
element in P(X) with respect to the operation .
Find the number of all onto functionsfromtheset {1, 2, 3, ..., n} toitself.
LetS={a,b,c} and T ={1, 2, 3}. Find F* of thefollowing functions F from S
to T, if it exists.

() F={(a3).(b,2),(c. )} () F={(a 2, (b 1), (c. 1}
Consider the binary operations* : R xR - Rando: R x R — R defined as
ax*b=Ja—blandaob=a, Va, be R. Show that * is commutative but not

associative, o isassociative but not commutative. Further, show that v a,b, ce R,
a=x(boc)=(a*b)o(a=Db).[Ifitisso, wesay that the operation * distributes
over the operation o]. Does o distribute over *? Justify your answer.

Given a non-empty set X, let = : P(X) x P(X) —» P(X) be defined as
A*B=(A-B)uU (B-A), vA, Be P(X). Show that the empty set ¢ is the
identity for the operation * and al the elements A of P(X) are invertible with
Al=A. Hint: (A-d)u (d0—-A)=Aand (A-A)U (A-A)=AxA=0¢).
Define abinary operation = onthe set {0, 1, 2, 3, 4, 5} as

a+b, ifa+tb<6

axb= _
a+b-6 ifa+b>6

Show that zero isthe identity for this operation and each element a of the setis
invertible with 6 —a being theinverse of a.

LeeA={-1,0,1,2},B={-4,-2,0,2} andf, g:A — B befunctions defined

by f(X) = x2—x, x € A and 9(X)=2

1
X—E‘—L x e A. Are f and g equa?

Justify your answer. (Hint: One may note that two functionsf: A — B and
g:A —>Bsuchthat f(a) =g(a) vae A, are called equa functions).

LetA={1,2, 3}. Then number of relationscontaining (1, 2) and (1, 3) which are
reflexive and symmetric but not transitiveis

(A) 1 (B) 2 € 3 (D) 4
LetA={1, 2, 3}. Then number of equivalencerelations containing (1, 2) is
(A) 1 (B) 2 € 3 (D) 4
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Let f: R - R bethe Signum Function defined as

1 x>0
f(X)=410, x=0
-1 x<0
and g : R — R bethe Greatest Integer Function given by g(x) =[], where[x] is
greatest integer less than or equal to x. Then, does fog and gof coincidein (0, 1]?
Number of binary operations on the set { a, b} are
(A) 10 (B) 16 (©) 20 (D) 8

Summary

In this chapter, we studied different types of relations and equivalence relation,
composition of functions, invertible functionsand binary operations. The main features
of this chapter are asfollows:

L 2R 2 2R 2R 2

*

*

Empty relation istherelation Rin X givenby R=¢ < X x X.

Universal relation istherelation Rin X givenby R =X x X.

Reflexive relation R in X isarelation with (a, a) e R vae X.
Symmetric relation R in X isardation satisfying (a, b) e Rimplies(b, a) € R.
Transitive relation R in X is arelation satisfying (a, b) e Rand (b, c) € R
impliesthat (a, c) € R.

Equivalencerelation R in X isarelation which is reflexive, symmetric and
transitive.

Equivalence class[a] containingae X for an equivalencerelationRin X is
the subset of X containing all elementsb related to a.

A function f : X — Y isone-one (or injective) if

fOQ) =1() = X, =X, V X, X, € X.

A functionf: X — Y isonto (or surjective) if givenany y € Y, 3 xe X such
that f(x) = y.

A functionf: X — Y is one-one and onto (or bijective), if f is both one-one
and onto.

The composition of functionsf: A — B and g : B — C is the function
gof : A — Cgiven by gof (x) = g(f(X)) v xe A.

A function f: X — Y isinvertibleif 3 g: Y — X such that gof = I, and
fog=1,.

A functionf: X — Y isinvertibleif and only if f is one-one and onto.



32 MATHEMATICS

€ Givenafiniteset X, afunctionf: X — X isone-one (respectively onto) if and
only if fisonto (respectively one-one). Thisisthe characteristic property of a
finite set. Thisisnot true for infinite set

@ A binary operation * on aset A isafunction * from A x A to A.

¢ Andementee X istheidentity element for binary operation : : X x X — X,
ifa*e=a=exaVvVae X.

¢ Anédement ae X isinvertible for binary operation * : X x X — X, if

thereexistsb € X such that a = b =e=b * awhere, eistheidentity for the
binary operation . The element b is called inverse of a and is denoted by a.

€ Anoperation * on X is commutativeif a*b=b=*a ya, binX.
4 Anoperation = on X isassociativeif (a*=b) *c=a=* (b*c)ya, b, cinX.

Historical Note

The concept of function has evolved over along period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power x" of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “ Methodus tangentium inversa, seu de
functionibus” writtenin 1673 used theword ‘ function’ to mean aquantity varying
from point to point on acurve such asthe coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
quantities that depend on avariable. He was the first to use the phrase ‘function
of X'. John Bernoulli (1667-1748) used the notation ¢x for thefirst timein 1718to
indicate afunction of x. But the general adoption of symbolslikef, F, ¢, v ... to
represent functionswas made by Leonhard Euler (1707-1783) in 1734 inthefirst
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “Theorie des functions analytiques’ in
1793, where hediscussed about analytic function and used the notion f (x), F(x),
d(x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
devel oped by Georg Cantor (1845-1918). The set theoretic definition of function
knownto us presently issimply an abstraction of the definition given by Dirichlet
in arigorous manner.

— % —
L4



Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

+ Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN «

2.1 Introduction

In Chapter 1, we have studied that theinverse of afunction  jisisibe bl itk
f, denoted by f %, existsif fisone-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domainsand ranges and hencetheir
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inversesand
observetheir behaviour through graphical representations.
Besides, someelementary propertieswill also be discussed.

Theinversetrigonometric functions play animportant AryaBhatta
role in calculus for they serve to define many integrals. (476-550A.D)
The concepts of inversetrigonometric functionsisalso used in science and engineering.

2.2 Basic Concepts
In Class X1, we have studied trigonometric functions, which are defined as follows:
sinefunction,i.e, sine: R - [-1, 1]
cosinefunction, i.e,, cos: R — [-1, 1]
T
tangent function, i.e, tan: R —{ x: x=(2n+ 1) > ne Z} >R

cotangent function, i.e, cot: R—{ x:x=nn,ne Z} - R

T
secant function, i.e., sec: R—-{ x: x=(2n+1) 5. ne Z} >R-(-1,1

cosecant function, i.e., cosec: R—{ x:x=nm, ne Z} > R-(-1,1)
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We have also learnt in Chapter 1 that if f: X—Y such that f(X) = yisone-one and
onto, then we can define aunique function g : Y —X such that g(y) = x, wherex e X
andy =f(x), y € Y. Here, the domain of g = range of f and the range of g = domain
of f. The function g is called the inverse of f and is denoted by f~. Further, g isaso
one-one and onto and inverse of gisf. Thus, g=*= (f )= f. We also have

(fFof)()=171(f(x)=1f7(y) =x
and fof)(=F("y) =t =y
Since the domain of sine function is the set of all real numbers and range is the

closed interval [-1, 1]. If werestrict its domain to{_—zTE : ﬂ , then it becomes one-one

and onto with range [— 1, 1]. Actually, sine function restricted to any of the intervals

ﬂ,__”: I I, F, S—R} etc., is one-one and its range is [-1, 1]. We can,
2 2 2 2 2 2
therefore, define the inverse of sine function in each of these intervals. We denote the

inverse of sine function by sin™ (arc sine function). Thus, sin™* is a function whose

domainis[— 1, 1] and range could be any of the intervals [_—Z’n _—n} : [_n E} or

2"l 22

B%ﬂ and so on. Corresponding to each such interval, we get a branch of the

function sin*. The branch with range [gﬂ is called the principal value branch,
whereas other intervals as range give different branches of sint. When we refer

to the function sin, we take it as the function whose domain is [-1, 1] and range is
- T . . - T

{7,5}.Wewnte snt:[-1,1] - {75}

From the definition of the inverse functions, it follows that sin (sin x) = x

T T
if —1<x<landsin®(sinx)=xif —ESXSE. In other words, if y = sin? x, then
sny=x.
Remarks

(i) Weknow from Chapter 1, that if y = f (x) isaninvertiblefunction, then x =1 (y).
Thus, the graph of sin™* function can be obtained from the graph of original
function by interchanging x and y axes, i.e,, if (a, b) isapoint on the graph of
sinefunction, then (b, a) becomesthe corresponding point on the graph of inverse
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of sinefunction. Thus, the graph of the function y = sin™* x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sinx and
y=sintxareasgiveninFig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sin x represent the principal value branch.

(if) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function asamirror image(i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y =sin* x as given in the same axes (Fig 2.1 (iii)).

Y
_n O LY 3 g 3n
2n -T Or® © 2 5t
-1 2 T
Y/
y=sinx
Fig2.1(i)
Y X
A Sn
2
2 +
2 T
T
T
o 3]
2
X<5710°,
“1-7 -T2

St
s s
v J
Y Y’
y=sin"'x y=sinxandy=sin" x
Fig 2.1 (i) Fig 2.1 (iii)

Like sine function, the cosine function isafunction whose domain is the set of all

real numbers and range isthe set [-1, 1]. If we restrict the domain of cosine function
to [0, «r], then it becomes one-one and onto with range[—1, 1]. Actualy, cosinefunction
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restricted to any of theintervals[—m, 0], [O,x], [®, 2n] etc., is bijective with range as
[-1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos™ (arc cosine function).

Thus, cos? is a function whose domain is [-1, 1] and range Y
could be any of the intervals [-x, 0], [0, @], [, 27 etc. N
Corresponding to each such interval, we get a branch of the 5%
function cos™. The branch with range[0, ] iscalled the principal 2n >
value branch of the function cos™. We write 3n
cos? 1 [-1, 1] — [0, 7. < -
The graph of the function given by y = cos? x can be drawn %
in the same way as discussed about the graph of y = sint x. The B 1
graphsof y=cosxandy = cos*xaregiveninFig 2.2 (i) and (ii). X< 10 i >X

1 —3n
Sn T St 2
ST,/ -n 2 T -

X /—Zﬁ—QV% 01 N 3n 2n s
2 - 2 / -
v
Y’ Y’
y=cosx y=cos'x
Fig2.2(i) Fig2.2 (ii)

Let us now discuss cosec™x and secx as follows:

1
Since, cosec X = Snx’ the domain of the cosec functionistheset {x: xe R and

Xx#nm ne Z} andtherangeistheset {y:ye R,y>1ory< -1} i.e, the set
R — (-1, 1). It meansthat y = cosec x assumes all real valuesexcept—-1<y<1landis
not defined for integral multiple of w. If we restrict the domain of cosec function to

T T

{_E’E}{O} , thenitisonetooneand onto withitsrangeastheset R —(— 1, 1). Actudly,
_ _ _ -3t —-=n -T T

cosec function restricted to any of the intervals {717}{—“} : {75} - {0},

T 3%
[—,—}—{n} etc., is bijective and itsrange is the set of all real numbers R — (-1, 1).
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Thus cosec can be defined as afunction whosedomainisR — (-1, 1) and range could
o T 3n

be any of the intervals { > 2} {G { 2} {-, {2 2} {n} etc. The

function corresponding to therange [7 —} {0} iscaled the principal value branch

of cosec™. We thus have principal branch as

cosec? : R—(-1, 1) - [_— —} {0

The graphs of y = cosec x and y = cosec™* x are given in Fig 2.3 (i), (ii).

N &o—o—o—0o——o0—0—o0—o—> X
(0] 1 2
4+
O
--------- @ = = = = = ===
v
Y’
y=cosec 'x
y = cosec x

Fig2.3(i) Fig 2.3 (ii)

1 o
Also, sincesecx = osx’ thedomainof y=secxisthesetR —{x:x=(2n+ 1) o

ne Z} and rangeisthe set R — (=1, 1). It means that sec (secant function) assumes

al real values except —1 <y < 1 and is not defined for odd multiples of g If we

T
restrict thedomain of secant functionto [0, ] —{ 5 }, thenitisone-one and onto with
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its range as the set R — (-1, 1). Actually, secant function restricted to any of the

intervals[—m, 0] —{ _—Zn}, [0, ] — g} [, 2n] —{ 37“} etc., ishijective and itsrange
iISR—{-1, 1} . Thus sec™ can be defined as afunction whose domainisR— (-1, 1) and

- 3
range could be any of theintervals [, 0] —{ 7“}, [0, 7] —{g}, [, 21] —{ 7“} etc.

Corresponding to each of theseintervals, we get different branches of the function sec™.

The branch with range [0, wt] — { g} is called the principal value branch of the

function sec?. We thus have

sec® 1 R - (-11) - [0,7] ~{ 3}
The graphs of the functionsy = sec x and y = sec* x are given in Fig 2.4 (i), (ii).

Y

4

(0]
1

2

[ B

21

N|:5
wfa
N|§'

¢
A4
s

v
y=secx
Fig 2.4 (i)

Finally, we now discuss tan and cot™

Fig 2.4 (ii)

We know that the domain of the tan function (tangent function) is the set

T
{x:xe Rand x# (2n +1) 5. ne Z} and therangeis R. It means that tan function

T
isnot defined for odd multiples of 5 If werestrict the domain of tangent function to
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(__Zn g j , then it is one-one and onto with itsrange as R. Actually, tangent function

: . -3t —=« -T T n 3n .
restricted to any of the intervals (7?) ( > ’2)’ (2, > j etc., isbijective
and its range is R. Thus tan™* can be defined as a function whose domain is R and

. S I B O h
range could be any of theintervals 5 5 2223 and soon. These
- T
intervalsgivedifferent branches of thefunction tan™. The branch with range (7 S j
is called the principal value branch of the function tan™.

We thus have
tant: R — (_—REJ
2 2
The graphs of the function y =tan x and y = tan*x are given in Fig 2.5 (i), (ii).

y=tan'x
y=tanx

Fig 2.5 (i) Fig 2.5 (ii)

We know that domain of the cot function (cotangent function) is the set
{x:xe Randx#nm, ne Z} and rangeisR. It means that cotangent function is not
defined for integral multiples of . If we restrict the domain of cotangent function to
(0, ™), then it ishijective with and itsrange asR. In fact, cotangent function restricted
to any of theintervals (-, 0), (0, &), (n, 2r) etc., isbijective and itsrangeisR. Thus
cot~* can be defined as a function whose domain is the R and range as any of the
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intervals (-, 0), (O, m), (m, 2r) etc. These intervals give different branches of the
function cot™. The function with range (0, i) is called the principal value branch of
the function cot™. We thus have

cot?: R — (0, m)

The graphs of y = cot x and y = cot*x are given in Fig 2.6 (i), (ii).

y=cotx
Fig2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

st [,1] o -2
: - 2'2]
cost : -1, 1] - [O, 7]
cosec?t : R-(-11) - —E,E —{0}
L 2 2]
sect 1 R-(-L1) - [0, 7] —{g}
tan™t : R - (_—n,E)
2 2
cot™ ; R - (0, m
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1
1. sin’x should not be confused with (sinx)™*. In fact (sn X)*= —— and

similarly for other trigonometric functions. Snx

2. Whenever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

3. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:

1
Example 1 Find the principal value of sin (ﬁj .

1 1
Solution Letsin? | —= [=y. Then, siny= —.
(ﬁj Y =2

)

N a
N a

We know that the range of the principal value branch of sint is (—

1 1
S n(%) = ﬁ . Therefore, principal value of sin? (ﬁj is %

Example 2 Find the principal value of cot™ (_—1J

NE

-1
Solution Let cot? (Ej =y. Then,

mty:%z_cm(%) = cot(n—%j = cot(z—;j

We know that the range of principal value branch of cot™ is (0, ®) and

cot 2n)_ 1 Hence, principal value of cot™ (;1} is 2n
3 - \/é . 1 p p \/é 3
| EXERCISE 2.1
Find the principal values of thefollowing:
1 3
1. sin? 5 2. cost | 5 3. cosec? (2)

4. tan? (—/3) 5. cos? (-%) 6. tan™ (1)



42 MATHEMATICS

- (%) 8. cot* (+/3) 9. cos™ (_%j

10. cosec™ (—/2)
Find thevaluesof thefollowing:

—1, 1 _1 f 1 _1 1 l f 1 l
11. tan*(1) + cos 5 +sin > 12. cos +2sin

13. If sintx =Yy, then

(A) O<ysm (B) ~5<y<~
== 2772
) 0 D) —=<y<—
(C) 0<y<m (D) —5<¥<5
14. tant +3-sec(-2) isequal to
i T 2n
(A) m (B) ~3 © 3 (D) 3

2.3 Propertiesof InverseTrigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. Some results may not bevalid for all values of thedomains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

Let usrecall that if y=sinx, thenx=sinyandif x=siny, theny = sin™x. Thisis
equivalent to

. . . . T T
sn(sintx)=x,xe [-1,1] andsin? (sSnx) =X, X e [_E’ E}

Sameistruefor other five inverse trigonometric functions as well. We now prove

some properties of inverse trigonometric functions.

1
1. (i) sn? N cosec?x,x21lorx<-1

1
(i) cosl;zseclx,leorxs—l
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1
(iii) tan™ M cot* x,x >0
To prove the first result, we put cosec x =y, i.e., X = COSec y

1
Therefore < siny
o1
Hence sint N y

or sint % = cosect x
Similarly, we can prove the other parts.
2. (i) snt(x)= —dntx, xe [-1, 1]
(i) tant () =—tan'x, x € R
(i) cosect (x) = —cosect x, |x| 21
Letsint(—x) =y, i.e,—x=sinysothat x=—-sny,i.e, x=sn(-y).
Hence sntx=—-y=—-sn?(-x)
Therefore  sin? () = —sin?x
Similarly, we can prove the other parts.
3. (i) cos*(—x) =m —cos'x, x e [-1, 1]
(i) sec? (x) =m —sec’x, x| 21
(iif) cot® (x) =m —cot?x, x € R
Let cos® (—x) =yi.e, —Xx=cosy sothat x=—cosy = cos (t — )
Therefore costX=m—y =7 —cos?t (—X)
Hence cost (X) = —cos? x
Similarly, we can prove the other parts.

T
4. () sin?tx + cos?t x = 5 XE [-1,1]

Y
(i) tan™x + cot*x = S X€ R

T
(iif) cosec™x + sectx = o |x] 21
- - Tc
Letsin'x=y. Thenx=siny = cos E_y

18 T . 4
Therefore cos?t x = E_y = E_Sm X
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T
Hence sintx+ costx= 5
Similarly, we can prove the other parts.
ty

5. (i) tan?x + tan?y = tan™ X Xy <1
(i) tanx —tanty =tan? =Y xy>—1
1+xy
(iii) 2tan-x = tan 2X2 x| <1
1-xX

Lettantx=06andtan'y=¢. Thenx=tan 0,y =tan ¢
tan0+tan¢g  x+y

tan(6+¢) = =
Now (0+4) 1-tan6tand 1-xy
o Xty
Thisgives 0+ ¢ =tan -y
1 1 1 X+y
Hence tan? x + tan? y = tan Ty

Inthe aboveresult, if wereplacey by —y, we get the second result and by replacing
y by x, we get the third result.

6. (i) 2tan? x = sin: 1?’;2 x| <1

2
(i) 2tan” x = cos* =X x>0
1+x?
iii) 2tantx = tant —2X_ _1<x<1
1 2
—X

Let tan? x =y, then x = tany. Now
2% _ 2tany
12 9 1+tan’y
=simt (sin 2y) = 2y = 2tan x

sim?
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| , 1o X 1 —1‘ta”2 y
Also cos 1o Cos™ 1 ian? y

= cos? (cos 2y) = 2y = 2tant X

(iii) Canbeworked out similarly.
We now consider some examples.

Example 3 Show that

1
(i) sint (2x~/1— XZ) =2sintx, ——=<X<

1
(i) sin? (2xy1-x2) =2 cos?x, ﬁgxs1

Solution
(i) Letx=sn®6.Thensin™x=0.Wehave

sin? (2x1-x2) =sin? (2sin6+/1-sin?0
= sin?(2sinB cosh) = sin*(sin20) = 20
=2sntx

N
Sl

(i) Takex = cos 0, then proceeding as above, we get, Sn™ (2x« /1— x? ) =2costx

E le 4 Show that tan 1t 2o a3
xample oW an 5 11 4
Solution By property 5 (i), we have
1 2
1 2 21 13
L.H.S = tan* =+tant— =tan‘1ﬁ=tan ’1E = tan'==RH.S
2 11 1_})(3 20
2 11

COS X
1-sinx

Example 5 Express tan‘l[ ) , —g<x<g in the simplest form.

Solution We write
X
2 2
cos? X +sin? X 2sin X cos®
2 2 2 2

tanl( COSX

cos? X_gn2 X
= tan?
1—sinxj

45
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I X . X X . X
cos=+sSn= || cos=—sin=
e )
- X . X)a
cos- —sin=
o303
cos> +sin> 1+tan
= tan_l # :tan_l 2
X . X X
cos--sn—- 1-tan>
L 2 2 2
= tan| tan| D+ 2| |24 X
a4 2)] a2
Alternatively,
e . [ m—2X
COSX sn(z—xj sm( 2 j
tan‘l(1 : jztan‘1 —|=tan™ — S
—sinx 1—cos(n—xj 1—cos(n_2 X

. (TE— ZXJ (n— ZXJ
2sin Cos
A 4 4

tan™*| cot n—ZXH :tan‘l{tan(g—n_zx

tan™

- 1 : .
Example 6 Write cot 1[?] |x]>1inthe simplest form.
X" -1

Solution Let x = sec 6, then \/x? —1= +/sec?9—1=tano
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Therefore, cot™

= cot* (cot 8) = 6 = sec x, which is the simplest form.

1
VX2 -1

3
Example 7 Prove that tan™ x + tan™ 2x = tan? 3X_X2 | x| < 1
1-x2 1-3x° )’ J3

Solution Let x = tan 6. Then 6 = tan™* x. We have

RHS - tan (3x—x3]_tan_1(3tan6—tan3ej
. . ) ™ 2 -

1-3x 1-3tan?0

=tan™ (tan30) = 30 = 3tan*x = tan x + 2 tan™* x

2x
=tan? x + tan 12 - L.H.S. (Why?)

Example 8 Find the value of cos (sec® x + cosec™ X), [x| =1

Solution We have cos (sec™ x + cosec™ x) = cos (gjz 0

| EXERCISE 2.2|
Provethefollowing:
11
i x = st (3x— 4x0) xe| —=. 1
1. 3sin?tx=sin? (3x —4x3), 6{ > 2}

2. 3cost x =cos? (4x¥— 3x), Xe E 1}

2 a7 a1
A ttan T —=tan 1=
ST 24 2
1 1 31
4 2tant=+tant==tant—
2 7 17
Writethefollowing functionsin the simplest form:
Vi+x2 -1 a1
5. tantX2T2 T2 x20 6. tan x> 1
tan ” X 1 X

_ 1- cosx X—Sin X
7. tant ,/ X< T 8. tanflM , X<T
1+ cosx COSX+SINnX
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3a’x-x° -a
o A < X< —
10- ten (a3—3ax2j’a>o’ NE 3

Find the values of each of thefollowing:
.41
11. tan‘{2cos(23| n™" Eﬂ 12. cot (tana + cot™a)

1] . 4 2% 4 y2
13. tanE sn 7 +C0S 2 |, |X|<l,y>0andxy<1

1+x 1+y

.41 _
14. If sin (sm 1§+COS 1X)=1,thenfind the value of x

4 x-1 4 X+1 = )
15. If tan——=+tan""——==— then find the value of x
X—2 X+2 4

Find the values of each of the expressions in Exercises 16 to 18.
16. Sin‘l(sinﬁj 17. tan‘l(tan3—nj
3 4
. 13 3
tan| sin™"=+cot =
o i
-1 Tm).
19. cos (cos€j|sequal to
A ﬁ B 5_7'C C E D E
") 5 ®) 5 © 3 (D) %
. T .1 1 .
20. sin| =—sin""(-=) | isequal to
(3 (z)j o

(D) 1

AP

e B) = c
(A) 5 (B) 3 ©
21. tan*/3-cot(—/3) isequal to

(A) = ® -5  (©0 (D) 23
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Miscellaneous Examples

i .1 3n
Example 9 Find the value of Sin (smg)

. . _q,. . 3m, 3m
Solution We know that sin"*(sinx) = x. Therefore, sin (smg)=€
3n T T L o .
But gsé[—?ﬂ , Which isthe principal branch of sin™ x
However in Y = sin(r—5 =sin2® and Ee{—ﬁ 5}
57 57 75 5 2'2
. . 3m . . 21 21
sin}(sin=")=sin}(sin=—) ==
Therefore ( 5) ( 5) z

Example 10 Show that SirFlE— Sin&i: Cos’lﬁ
5 17 85

Solution Let sin’1§=x and sin’liz y
5 17

Therefore sinx=§ and siny:E
5 17

Now cosx=+1-sn’x = /1—2%=g (Why?)
. 64 15
cosy=y1-sin’y= [1-—— ==
and y y 289 17

We have COS (Xx—y) =cosX cosy + sinxsiny
4 15 3 8 &4
= =X—+=X-—7—=—
5 17 5 17 85

84
Theref X— =cosl(—)
erefore y o

Hence sin*1§—sin’13= cos’l%
5 17 85
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Example 11 Show that a2, cost? S,
13 5 16
Solution Let sinflgzx, cos’lﬂ: 2 tan’lﬁ: z
13 5 16
Then sinx:g, cosyzil, tanz=§
13 5 16
Theref cosx—E sin _3 tanx—E and tan _3
erefore 13 y=-—, 5 y 7
12,3
tanx+tany 5 4 63
tan(x+y)=—— L =———5 =——
We have ( y) 1—tanxtany 1_Ex§ 16
Hence tan(x+y)=—-tanz
i.e, tan (x +y) =tan (-2) ortan (x + y) = tan (n — 2
Therefore X+y=—z o X+y=m—-2
Since X,y and z are positive, x + y = —z (Why?)
Hence X+y+z=7 or Sin'ngrCOS'lﬂthan'lg—n
yrz=m 13 5 16

Example 12 Simplify tan‘{

acosx—bsnx| . a
—— |, if —tanx>-1

Solution We have,

tan‘l{

bcosx+asinx b
acosx—bsinx a tanx
acosx-bsnx | il boosx | _ 01| b
bcosx+asinx bcosx+asinx
e — 1+—tanx
bcosx

= tan‘lg —tan™* (tanx) = tan‘lg—x
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T
Example 13 Solve tan™ 2x + tan™ 3x = 2
T
Solution We have tan™ 2x + tan™ 3x = 2
af 2xX+3X
or tan | X ¢
1-2xx3x 4
— 5x T
i tan ! = —
€ (1— GXZJ 4
Theref > —tant -1
eretore -6 4
or 6x*+5x—1=0i.e,(6x—1) (x+1)=0
1
which gives X = s orx=-1

Since x = — 1 does not satisfy the equation, asthe L.H.S. of the equation becomes

1
negative, XZE isthe only solution of the given equation.

Miscellaneous Exercise on Chapter 2

Find the value of thefollowing:

1 cos™t (cosﬁj 2 tan‘l(tanﬁj
6 6
Prove that
3. Zsin‘1§=tan‘1% 4. sin‘12+sin‘1§=tan‘12
5 7 17 5 36
L4 412 .33 L1243 . .56
5 cost—+cost==cost= 6. cost—=+sntZ=dnt=
5 13 65 13 5 65
7. tan‘lgzsin‘liJrcos‘1§
16 13 5

1 1 1
8. tan‘ll+ tan 1= +tan =4+ tan ==L
5 7 3 8 4
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Prove that

1 1-
9. tm‘lﬁzacos‘l(ﬁ) ,xe [0,1]

10 oot J1+8nx++/1-sinx X Xe(o
' Jl+sinx—+1-sinx | 2°
ll tan_l M —E_lcos_lx —
' Vi+x+41-x ) 4 2 ’
97[: 9 . ,11 9 . ,12\/5
12, X _Zgptz-Zgnts
8 4 3 4 3

Solvethefollowing equations:

13. 2tan? (cos x) = tan! (2 cosec x) 14.

NI

)

NG

1 < x<1 [Hint: Put x = cos 26]

tan‘ll_—xzétan‘1 X, (x> 0)

1+ X

15. sin(tan?Xx), |[x| < lisequa to
A) = B) © — ©
() V1-x? ( 1-x? 1+ %2 1+ %
16. sint(l-x)—2sin*x= g,thenxisequal to
A) O l B) 1 l C o0 D l
(A) 0,5 (B) 15 ©) D) 3
L x AX—y
tan| = |—tan™t i
17. (yj X+y isequal to
A 2 ®E o o=
2 3 4 4
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Summary

# Thedomainsand ranges (principal value branches) of inverse trigonometric

functionsaregiveninthefollowing table:

Functions Domain Range
(Principal Value Branches)
= sn? [—_’t E}
y=sintx [1, 1] s
y = cos™ L 1] [0, 7]
y = cosect x R-(-11) [__“E} —{0}
2 2
T
y =sectx R-(-1,1) [O’R]_{E}
= tan (_E E)
y = tanrt x R >
y = cot* x R (0, )

1
@ sinx should not be confused with (sinx). In fact (sin x)* = —— and

similarly for other trigonometric functions.

snx

4 The value of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric

functions.

For suitable values of domain, we have

¢ y=gnlx=x=sny

*

*

sin(sin? x) = x

1
sin? ;z cosect x

1
cost ; = secx

1
tan™ X cot™ x

X=sny = y=s8n'x
sint (sinx) = x

cos?(—x) = — costx

cot? () = — cot* x

sect! (X) = —sectx



MATHEMATICS

¢ sint(x) = —sintx ¢ tan!(—x) = —tantx
T
¢ tantx +cot?x = P & cosec? () = — cosec? x
: T T
2 S|rr1x+coslx=§ 2 coser:lx+sec*1x=§
‘ 1 1, 1 X+y ‘ 1 1 2X
- + - = - 2 = -
tanx + tany = tan 7 taix = tant T3
X-y
¢ tanlx —tanly = tan? 1
+ Xy
2X 1-x°

= cos*
1+ x° 1+ %2

¢ 2tantx=sn?

Historical Note

The study of trigonometry was first started in India The ancient Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara |
(600A.D.) and Bhaskarall (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the I ndian approach became known, it wasimmediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskaral (about 600A.D.) gaveformulaeto find the values of sinefunctions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara ll.

Thesymbolssin? x, cos? x, etc., for arc sin x, arc cosx, etc., were suggested
by the astronomer Sir John F.W. Hersehel (1813) The name of Thales
(about 600 B.C.) isinvariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing theratios:

E—D—t 'saltitud
S s—an(suns itude)

Thalesis also said to have calculated the distance of a ship at sea through
the proportionality of sidesof similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

—_— % —
L4



Chapter 3

MATRICES

% The essence of Mathematics lies in its freedom. — CANTOR <

3.1 Introduction

The knowledge of matricesisnecessary in various branches of mathematics. Matrices
are one of the most powerful tools in mathematics. This mathematical tool simplifies
our work to a great extent when compared with other straight forward methods. The
evolution of concept of matrices is the result of an attempt to obtain compact and
simple methods of solving system of linear equations. Matrices are not only used asa
representation of the coefficientsin system of linear equations, but utility of matrices
far exceedsthat use. Matrix notation and operations are used in €l ectronic spreadsheet
programs for personal computer, which in turn is used in different areas of business
and sciencelike budgeting, sales projection, cost estimation, analysing theresults of an
experiment etc. Also, many physical operations such as magnification, rotation and
reflection through a plane can be represented mathematically by matrices. Matrices
area so used in cryptography. Thismathematical tool isnot only used in certain branches
of sciences, but alsoin genetics, economics, sociology, modern psychology and industrial
management.

In this chapter, we shall find it interesting to become acquainted with the
fundamentals of matrix and matrix algebra.

3.2 Matrix

Suppose we wish to express the information that Radha has 15 notebooks. We may
expressit as [15] with the understanding that the number inside [ ] is the number of
notebooks that Radha has. Now, if we have to express that Radha has 15 notebooks
and 6 pens. We may express it as [15 6] with the understanding that first number
inside[ ] isthe number of notebookswhilethe other oneisthe number of pens possessed
by Radha. Let us now suppose that we wish to express the information of possession
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of notebooks and pens by Radha and her two friends Fauzia and Simran which
isasfollows:

Radha has 15 notebooks and 6 pens,
Fauzia has 10 notebooks and 2 pens,
Simran has 13 notebooks and 5 pens.
Now this could be arranged in the tabular form asfollows:
Notebooks Pens
Radha 15 6
Fauzia 10 2
Simran 13 5

and this can be expressed as

15 6 < First row
10 2 < Second row
13 5 < Third row
) T
First Second
Column Column
or
Radha Fauzia Simran
Notebooks 15 10 13
Pens 6 2 5
which can be expressed as.
15 10 13 | <« Firstrow
6 2 5| <« Second row
T 0 T
First Second Third
Column Column Column

In the first arrangement the entries in the first column represent the number of
note books possessed by Radha, Fauziaand Simran, respectively and the entriesin the
second column represent the number of pens possessed by Radha, Fauziaand Simran,
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respectively. Similarly, in the second arrangement, the entriesin thefirst row represent
the number of notebooks possessed by Radha, Fauzia and Simran, respectively. The
entries in the second row represent the number of pens possessed by Radha, Fauzia
and Simran, respectively. An arrangement or display of the above kind is called a
matrix. Formally, we define matrix as:

Definition 1 A matrix is an ordered rectangular array of numbers or functions. The
numbers or functions are called the elements or the entries of the matrix.

We denote matrices by capital |etters. Thefollowing are some examples of matrices:

. 1
_2 5 2+| 3 —E " , 3
A=l 0 5| B=[35 -1 2| c-= X
5 COSX sinx+2 tanx
3 6 J3 5 >

In the above examples, the horizontal lines of elements are said to constitute, rows
of the matrix and the vertical lines of elements are said to constitute, columns of the
matrix. Thus A has 3 rows and 2 columns, B has 3 rows and 3 columns while C has 2
rows and 3 columns.

3.2.1 Order of a matrix

A matrix having mrowsand n columnsiscalled amatrix of order mx nor smply mxn
matrix (read as an mby n matrix). So referring to the above examples of matrices, we
haveA as 3 x 2 matrix, B as3 x 3 matrix and C as2 x 3 matrix. We observethat A has
3 x 2 =6¢elements, B and C have 9 and 6 elements, respectively.

In general, an mx n matrix has the following rectangular array:

ay ap a3 ayj oo Ay,
ay ax Qs eee ‘:12/ e
C:ln ‘:1,'2 Qi o C:lij C.Zm
a, Uy e @, d,,

or A=[a”.]mxn, Ii<ml<j<n i,je N

Thus the i"™ row consists of the elements a , a, a,,..., a_, while the j™ column
consists of the eIements a, a,, a3!.,...,.aml., . .

In general a,, is an element lying in the i row and j* column. We can also call
it as the (i, )™ element of A. The number of elements in an m x n matrix will be
equal to mn.
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In this chapter

1. Weshall follow the notation, namely A =[a] . toindicatethat A isamatrix
of order mx n.

2. We shal consider only those matrices whose elements are real numbers or
functionstaking real values.

We can also represent any point (X, y) in aplane by amatrix (column or row) as

X
[y} (or [%, y]). For example point P(0, 1) as a matrix representation may be given as

P:[ﬂ or [01].

Observe that in this way we can also express the vertices of a closed rectilinear
figureintheform of amatrix. For example, consider aquadrilateral ABCD with vertices
A(1,0),B(3,2),C(1,3),D (-1, 2.

Now, quadrilateral ABCD in the matrix form, can be represented as

A B CD A1 0
13 1-1 B3 2

X = or Y =
02 3 2, cl1 3
Dl-1 2

Thus, matrices can be used as representation of vertices of geometrical figuresin
aplane.

Now, let us consider some examples.

Example 1 Consider thefollowinginformation regarding the number of men and women
workers in three factories|, |1 and 111

Men workers Women workers
I 30 25
[ 25 31
Il 27 26

Represent the aboveinformation in theform of a3 x 2 matrix. What doesthe entry
in the third row and second column represent?



60 MATHEMATICS

Solution The information is represented in the form of a3 x 2 matrix asfollows:
30 25
A=[25 31
27 26

The entry in the third row and second column represents the number of women
workersin factory I11.

Example 2 If amatrix has 8 elements, what are the possible orders it can have?

Solution We know that if amatrix isof order m x n, it has mn elements. Thus, to find
all possible orders of amatrix with 8 elements, wewill find al ordered pairs of natural

numbers, whose product is 8.
Thus, all possible ordered pairsare (1, 8), (8, 1), (4, 2), (2, 4)

Hence, possibleordersare 1 x 8,8x1,4x 2,2 x 4

Example 3 Construct a 3 x 2 matrix whose elements are given by a; =%|i -3j.

a; &
Solution Ingeneral a3 x 2 matrix isgivenby A=|a,, a,, |-
83 83
1. ... _
Now ai;=§|'—31|,|=1,2,3and j=1,2
1 1 5
Therefore a,=—]1-3x1|=1 a,=—11-3x2|==
2 2 2
1 1 1
=—|2-3x1l|== ==]2-3x2|=2
8y =712-3x1|=2 2y =7[2-3x2]
1 1 3
==—|3-3x1|=0 ==|3-3x2|==
831 2| x1| a3 2| x2| >

Hence the required matrix isgiven by A =

o NI
Nlw N N ot
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3.3 Typesof Matrices
In this section, we shall discuss different types of matrices.
(i) Column matrix
A matrix is said to be a column matrix if it has only one column.

0
V3

For example, A =| -1 | isacolumn matrix of order 4 x 1.
1/2

Ingeneral, A=[a] ., isacolumnmatrix of order mx 1.

(i) Row matrix
A matrix is said to be arow matrix if it has only one row.

For example, B:[—% J5 2 3} is arow matrix.
1x4

Ingeneral, B =[b],, ,isarow matrix of order 1 x n.
(i) Square matrix
A matrix in which the number of rows are equal to the number of columns, is

said to be a square matrix. Thusan m x n matrix is said to be a square matrix if
m = n and is known as a square matrix of order ‘n’.

-1 0

N2 1is asquare matrix of order 3.
3 -1

For example A =

ADNlW W

In general, A = [a”.] e 1S @square matrix of order m.

If A =[a] isasquare matrix of order n, then dements (entries) a,,, a,,, .., a,

1 -3 1
are said to constitute the diagonal, of the matrix A. Thus, if A={2 4 -1|.
3 5 6

Then the elements of the diagonal of A are 1, 4, 6.
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(iv)

v)

(Vi)

MATHEMATICS

Diagonal matrix
A square matrix B = [b,] . is said to be a diagonal matrix if all its non

diagonal elements are zero, that isamatrix B = [bij] 1S Said to be adiagonal
matrix if bij =0, wheni #]j.
10 -11 0 O
For example, A =[4], B:[O 2] C=| 0 2 0}, arediagona matrices
0O 0 3

of order 1, 2, 3, respectively.
Scalar matrix
A diagona matrix issaid to beascalar matrixif itsdiagonal elementsare equal,
that is, a square matrix B = [bij] 1 xn, Issaid to be a scalar matrix if
b, =0, wheni #]
bij =k, wheni =j, for some constant k.
For example

3 0
-1 0
[ 0 J, C=0 0
0 3
are scalar matrices of order 1, 2 and 3, respectively.
Identity matrix
A square matrix in which elementsin the diagonal areall 1 and rest are al zero
is called an identity matrix. In other words, the square matrix A =[a] , isan
1if i=]
0 if i=#j
We denote the identity matrix of order n by | . When order is clear from the
context, we simply writeit as|.
100

010
01

A=[3, B

0
J3
0

identity matrix, if &; :{

10
For example[1], [ } : areidentity matrices of order 1, 2 and 3,

01
respectively.
Observethat ascalar matrix isan identity matrix whenk = 1. But every identity
matrix is clearly a scalar matrix.
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(vii) Zero matrix

A matrix is said to be zero matrix or null matrix if al its elements are zero.

0 0/’|0 0O
zero matrix by O. Its order will be clear from the context.

0 0] ([O0O
For example, [0], : , [0, Q] are all zero matrices. We denote

3.3.1 Equality of matrices
Definition 2 Two matricesA = [a,] and B = [b] are said to be equal if
(i) they are of the same order

(ii) each element of A isequal to the corresponding element of B, that is a, = bij for
aliandj.
For I 23and23are almatricesbt32and23are
oreampe 1o 1| o 1| FEM "o 1" 0 1
not equal matrices. Symbolically, if two matricesA and B are equal, wewrite A = B.

x y|l [-15 O
If|z a|=|2 6| thenx==15y=0,z=2,a=.,6,b=3,c=2
b c 3 2

X+3 z+4 2y-7 0 6 3y-2
Example 4 If -6 a-1 0 |=|-6 -3 2c+2

b-3 -21 O 2b+4 -21 O
Find thevaluesof a, b, ¢, x, yand z

Solution As the given matrices are equal, therefore, their corresponding elements
must be equal. Comparing the corresponding elements, we get
X+ 3=0, Z+4=6, 2y—7=3y-2

a-1=-3 0=2c+2 b-3=2b+4,
Simplifying, we get
a=—-2,b=-7,c=-1,x=-3,y=-5,z=2

Example 5 Find the values of a, b, ¢, and d from the following equation:

2a+b a-2b B 4 —
5c—d 4c+3d| |11 24
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Solution By equality of two matrices, equating the corresponding elements, we get
2atb=4 5c—d=1
a-2b=-3 4c+3d=24
Solving these equations, we get
a=1,b=2c=3andd=4

EXERCISE 3.1
2 5 19 _7
1. Inthematrix A=| 35 -2 g 12 |, write:
3 1 5 17
(i) Theorder of the matrix, (i) The number of elements,

(iii) Write the elements a,, a,,, a,,, &,,, &,..
2. If amatrix has 24 elements, what are the possible ordersit can have? What, if it
has 13 elements?

3. If amatrix has 18 elements, what are the possible ordersit can have? What, if it
has 5 elements?

4. Construct a2 x 2 matrix, A = [a”.], whose elements are given by:

, (i+j)? . [ (i+2j)?
() a="— @) a=7 (i) & ==
5. Construct a3 x 4 matrix, whose elements are given by:
() & =513+l ) &=2-]
6. Findthevauesof x, y and zfrom the following equations:
X+y+z 9
|4 3 y z| | x+y 2 6 2| .
Oy 571 5] @57 w|7|s g|@ | **2 |5|°
a4 y+2 7

7. Find the value of a, b, c and d from the equation:

a-b 2a+c B -1 5
2a-b 3c+d| |0 13
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8. A=[a],., isasquare matrix, if
(A) m<n (B) m>n (C) m=n (D) None of these
9. Which of the given values of x and y make the following pair of matrices equal
3x+7 5 0 y-2
[ y+1 2—3x} ’[8 4 }

(A) X=?, y=17 (B) Not possibletofind
-2 -1 -2
© y=7 x== (D) x== y=-+
10. Thenumber of all possible matrices of order 3 x 3with each entry Oor 1is:
(A) 27 (B) 18 (C) & (D) 512

3.4 Operationson Matrices

In this section, we shall introduce certain operations on matrices, namely, addition of
matrices, multiplication of amatrix by ascalar, difference and multiplication of matrices.

3.4.1 Addition of matrices

Suppose Fatima has two factories at places A and B. Each factory produces sport
shoes for boys and girls in three different price categories labelled 1, 2 and 3. The
quantities produced by each factory are represented as matrices given below:

Factory at A Factory at B
Boys Girls Boys Girls
1| 80 60 1| 90 50
2|1 75 65 21 70 55
31 90 85 31 75 75

Suppose Fatima wants to know the total production of sport shoes in each price
category. Then thetotal production

In category 1 : for boys (80 + 90), for girls (60 + 50)
In category 2 : for boys (75 + 70), for girls (65 + 55)
In category 3: for boys (90 + 75), for girls (85 + 75)
80+90 60+ 50

This can be represented in the matrix form as | 75+ 70 65+55|.
90+75 85+ 75
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Thisnew matrix isthe sum of the above two matrices. We observe that the sum of
two matricesis amatrix obtained by adding the corresponding elements of the given
matrices. Furthermore, the two matrices have to be of the same order.

by b, B
by By by

&, Qp a3

Thus, if Az[
Q) By Ay

} isa2x 3matrix and Bz[ } isanother

+ + +
2><3matrix.Then,wedefineA+|3=[all b, a,+h, a; bm]

ay+hy a,t+bh, ajt+by,

Ingenerd, if A = [a”.] andB = [bij] are two matrices of the same order, say m x n.
Then, the sum of the two matrices A and B is defined asamatrix C = [c] . . where
c; =@, t b, foral possible values of i andj.

1], findA +B
3 0

2 J5 1
1 -1
f }andB:

Example 6 Given A ={

Since A, B are of the same order 2 x 3. Therefore, addition of A and B is defined
andisgiven by

243 1+45 1-1| [2+/3 1445 0
A+B= 1= 1
2-2 3+3 0+= 0 6 =

2 2

1. We emphasise that if A and B are not of the same order, then A + B is not

defined.ForexampIeifA:E 3},8:[1 5 ﬂ,thenA+Bisnotdefined.

2. We may observe that addition of matricesis an example of binary operation
on the set of matrices of the same order.

3.4.2 Multiplication of a matrix by a scalar

Now suppose that Fatima has doubled the production at a factory A in all categories
(refer to 3.4.1).
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Previously quantities (in standard units) produced by factory A were

Boys Girls
1] 80 60
21 75 65
31 90 85

Revised quantities produced by factory A are as given below:

Boys Girls
1{2x80 2x60
212x75 2x65
312x90 2x85

160 120

This can be represented in the matrix form as | 150 130 | . We observe that

180 170
the new matrix is obtained by multiplying each element of the previous matrix by 2.

In general, we may define multiplication of a matrix by a scalar as follows: if

A=[a] ., isamatrix and k is ascalar, then kA is another matrix which is obtained
by multiplying each element of A by the scalar k.

In other words, kA = k[a,]

men = [K@)] . thatis, (i, )" element of KA is ka,
for al possible values of i and j.

3 1 15
Forexample,if A =[5 7 -3|,then

2 0 5

3 115 9 3 45
3A=3|5 7 —3|=|3/5 21 -9
2 0 5 6 0 15

Negative of a matrix The negative of a matrix is denoted by —A. We define
—-A =(-1) A.



68 MATHEMATICS

3 1
For example, let Az[_5 X]then—Aisgivenby
3 1| |[-3 -1
~A=(-1)A=(-1 =
con-c LT

Difference of matrices If A ={[a], B = [b,] are two matrices of the same order,
say m x n, then difference A — B is defined asamatrix D = [d ], whered, =&, - b,
for al valueof i andj. In other words, D =A—B =A + (-1) B, that is sum of the matrix
A and the matrix — B.

E |7|fA—12 3andB— 3-13 then find 2A —B
xample =l 31 —_102,en|n -B.

Solution We have

. J1 23] [3 -1 3
ZA_B'Z[z 3 1}[—1 0 2}
2 4 6] [-31 -3

=[4 6 2}[1 0 —2}

2-3 4+1 6-3] [-1 5 3
1441 640 2-2| |5 6 0

3.4.3 Properties of matrix addition
The addition of matrices satisfy thefollowing properties:
(i) Commutative Law If A = [a”.], B = [bij] are matrices of the same order, say
mx n,thenA +B =B +A.
Now A+B=[a] +[b]=[a, +Db]
= [bij + a”.] (addition of numbers is commutative)
=(b] +[a)) =B +A
(i) Associative Law For any three matrices A = [a”.], B = [bij], C= [c:”.] of the
sameorder,say mxn,(A+B)+C=A+ (B +C).
Now (A+B)+C=(a] +[b)) +I[c]
[a, +b] +[c] =[(a +b) +c]
[, + (b + ¢l (Why?)
=[a] +[(b, +c)l =[a] +(b] +[c]) =A + (B +C)
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(i) Existence of additive identity Let A = [a] be an m x n matrix and
O be an m x n zero matrix, then A + O = O + A = A. In other words, O is the
additiveidentity for matrix addition.

(iv) The existence of additive inverse Let A = [a”.]mxn be any matrix, then we
have another matrix as—A = [-g] . suchthatA + (-A) = (-A) +A=0. S0
—A isthe additive inverse of A or negative of A.

3.4.4 Properties of scalar multiplication of a matrix

IfA= [a”.] andB = [bij] be two matrices of the same order, say mx n, and k and | are
scalars, then

() K(A +B) = kA +KB, (i) (k+ DA =KA +1 A

(i) k(A +B)=k(a] + b))
=kla, +b] =[k(a +b)l =[(ka)+ (kb)
=[ka] +[kb]=k[a]+k[b] = kA +kB

(i) (k+1)A=(k+1)[a]
=[k+Na]+kal+[al=k[al+I[a]l=kA+IA

8 0 2 -2
Example 8 If A={4 -2|andB=| 4 2 |, then find the matrix X, such that
3 6 -5 1
2A + 3X =5B.
Solution We have 2A + 3X = 5B
or 2A +3X —2A =5B - 2A
or 2A —2A +3X =5B - 2A (Matrix addition iscommuitative)
or O+3X=5B-2A (- 2A isthe additive inverse of 2A)
or 3X =5B-2A (Oistheadditiveidentity)
1
or X= 3 (5B -2A)
2 2 8 0 1 10 -10 -16 O
or X=%542—24—2 ==|| 20 10 |+| -8 4

51 3 6 -25 5 -6 -12
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-107
. 10-16 —10+0 . -6 -10 13;
- -] 20-8 10+4 |==|12 14 |=| 4 =
3 256 5.12 3 a1 7 3
I D -8l 7
. 3 3
. . 5 2 3 6
Example 9 Find X andY, if X+Y = and X-Y = .
09 0 -1
Solution We have(X +Y)+(X -Y) = 5 2 + 3 6 ,
0 9| |0 -1
8 8 8 8
or X+X)+(Y-Y)= = 2X=
08 08
or o 1[8 8] _[4 4
2|0 8| |0 4
Also (X+Y)—(X—Y)—{ } [ }
X —X) + (Y +Y) = 5-3 2-6 o
o X=X+ +¥)=1 5 901 =2 0 10
Yo 2 -4] [1 -2
o 2 0 10/ |0 5

Example 10 Find the values of x and y from the following equation:

N R M

Solution We have

S S A B e S

7 6
15 14
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[2X+3 10-4 }_ 7 6 2x+3 6 | [7 6
o 14+1 2y-6+2| |15 14| | 15 2y-4| |15 14

or 2X+3=7 and 2y—-4=14 (Why?)
or 2Xx=7-3 and 2y =18
4 18
or x=§ and yzz
i.e X=2 and y=09.

Example 11 Two farmers Ramkishan and Gurcharan Singh cultivates only three
varieties of rice namely Basmati, Permal and Naura. The sale (in Rupees) of these
varieties of rice by both the farmersin the month of September and October are given
by the following matrices A and B.

September Sales (in Rupees)

Basmati Permal Naura
A= |: 10,000 20,000 30,000 :| Ramkishan

50,000 30,000 10,000 _| Gurcharan Singh

October Sales (in Rupees)

Basmati Permal Naura
B- |: 5000 10,000 6000 :| Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh

(i) Find the combined sales in September and October for each farmer in each
variety.
(i) Find the decrease in sales from September to October.
(iii) If both farmers receive 2% profit on gross sales, compute the profit for each
farmer and for each variety sold in October.

Solution
(i) Combined sales in September and October for each farmer in each variety is
givenby
Basmati Permal  Naura

15,000 30,000 36,000 | Ramkishan
A+B=

70,000 40,000 20,000 _| Gurcharan Singh
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(i) Changein sales from September to October is given by

Basmati Permal Naura
A_B= |: 5000 10,000 24,000:| Ramkishan

30,000 20,000 0 Gurcharan Singh

2
i) 2%00of B= —xB=0.02xB
(iii) () 100X

Basmati Permal Naura

0.02|: 5000 10,000 6000 :| Ramkishan

20,000 10,000 10,000 _| Gurcharan Singh

Basmati Permal Naura
|: 100 200 120 :| Ramkishan

400 200 200 Gurcharan Singh

Thus, in October Ramkishan receives Rs 100, Rs 200 and Rs 120 as profit in the
sale of each variety of rice, respectively, and Grucharan Singh receives profit of Rs
400, Rs 200 and Rs 200 in the sale of each variety of rice, respectively.

3.4.5 Multiplication of matrices

Suppose Meera and Nadeem are two friends. Meera wants to buy 2 pens and 5 story
books, while Nadeem needs 8 pens and 10 story books. They both go to a shop to
enquire about the rates which are quoted as follows:

Pen — Rs 5 each, story book — Rs 50 each.

How much money does each need to spend? Clearly, Meeraneeds Rs (5% 2+ 50 x 5)
that is Rs 260, while Nadeem needs (8 x 5 + 50 x 10) Rs, that is Rs 540. In terms of
matrix representation, we can write the above information as follows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 5 5x2+5x50 | | 260
8 10 50 8x5+10x50| | 540
Suppose that they enquire about the rates from another shop, quoted as follows:

pen — Rs 4 each, story book — Rs 40 each.

Now, the money required by Meera and Nadeem to make purchases will be
respectively Rs (4 x 2 + 40 x 5) = Rs 208 and Rs (8 x 4 + 10 x 40) = Rs 432
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Again, the above information can be represented as follows:
Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 4 4x2+40x5] [208
8 10 40 8x4 +10x40| |432
Now, theinformation in both the cases can be combined and expressed in terms of
matricesasfollows:

Requirements Prices per piece (in Rupees) Money needed (in Rupees)

2 5 5 4 5x2+5x50 4x2+40x5
8 10 50 40 8x5+10x50 8x4 +10x40

260 208
~ | 540 432

The above is an example of multiplication of matrices. We observe that, for
multiplication of two matricesA and B, the number of columnsin A should be equal to
the number of rowsin B. Furthermore for getting the elements of the product matrix,
we take rows of A and columns of B, multiply them element-wise and take the sum.
Formally, we define multiplication of matricesasfollows:

The product of two matrices A and B is defined if the number of columnsof A is
equal to the number of rows of B. Let A = [a”.] be an m x n matrix and B = [b].k] be an
n % p matrix. Then the product of the matricesA and B isthe matrix C of order mx p.
To get the (i, k)" element ¢, of the matrix C, we take the i"" row of A and k™ column
of B, multiply them elementwise and take the sum of all these products. In other words,

ifA=[a], .,B=[b],., thenthei" row of Ais[a a, ... a ] and the k" column of

by
by n
Bis| - |.thenc,= a,b,+a,b,+ab,+.+ab,= 230
. ]:
bnk

The matrix C =[c,], ., isthe product of A and B.

2 7
For example, if C= L=l 2l b1 1 , then the product CD isdefined
0 34 5 _4
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2 7
1 -1 2
and is given by CDz[0 3 4} -1 1|.Thisisa2x 2 matrix in which each
5 -4

entry isthe sum of the products across some row of C with the corresponding entries
down some column of D. These four computations are

Entry in 1 -1 2 2 7 MR+ ED+R)G) ?

first row = 1=

firstcolumn |0 3 4 5 —4 ? ?

Entry in a2 [ 2 7B d)reh 24
first row -1 1=

secondcolumn |0 3 4 5 - ? ?

Entry in -1 2|2 7| |1 -2

second row =l 1=

firstcolumn [0 3 4 5 -4 0(2)+3(-1)+4(5) ?

Entry in 1 -1 2 2 7 13 )
second row -1 1=
secondcolumn [0 3 4 5 —4 17 0(7)+3(1)+4(-4)

Th CD—-13 -2
WSE=117 13

Example 12 Find AB, if A= 69 and B = 260 )
2 3 7 9 8

Solution The matrix A has 2 columns which is equal to the number of rows of B.
Hence AB is defined. Now

AB = [6(2)+9(7) 6(6)+9(9) 6(0)+ 9(8)}

12(2)+3(7) 2(6)+3(9) 2(0)+3(8)

[12+63 36+81 O+72} B

75 117 72
| 4421 12+27 0+24]

25 39 24
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Remark If AB isdefined, then BA need not be defined. In the above example, AB is
defined but BA is not defined because B has 3 column while A has only 2 (and not 3)
rows. If A, B are, respectively mx n, k x | matrices, then both AB and BA are defined
if and only if n=kand | =m. In particular, if both A and B are square matrices of the
same order, then both AB and BA are defined.

Non-commutativity of multiplication of matrices

Now, we shall see by an example that even if AB and BA are both defined, it is not
necessary that AB = BA.

23
1 -2 3
Example 13 If Az[ 4 2 5} and B=|4 5], then find AB, BA. Show that
21

AB # BA.

Solution Since A isa2 x 3 matrix and B is 3 x 2 matrix. Hence AB and BA are both
defined and are matrices of order 2 x 2 and 3 x 3, respectively. Note that

23

AB (1 -2 3 [ 2-8+6 3-20+3 7] [0 -4
.4 2 5 ~ | -8+8+10 -12+10+5| |10 3
23 Lo 3 2-12 -4+6 6+15 10 2 21
and BA= 45[ B }: 4-20 -8+10 12+25| =|-16 2 37
-4 2 5
21 24 _—4+42 645 2 21

Clearly AB # BA

In the above example both AB and BA are of different order and so AB = BA. But
one may think that perhaps AB and BA could be the same if they were of the same
order. But it isnot so, here we give an exampleto show that even if AB and BA are of
same order they may not be same.

1 01
Example 14 If A= 0 and B= , then AB= 01 )
0 -1 10 -1 0

0 -1
and BA :L 0] Clearly AB # BA.

Thusmatrix multiplication isnot commutative.
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This does not mean that AB # BA for every pair of matrices A, B for
which AB and BA, are defined. For instance,

i A=t % B2 O tenmaBopa=|> ?
Tlo 2/ |0 4 MENAB=BA=T, g

Observethat multiplication of diagonal matrices of same order will be commutative.

Zero matrix as the product of two non zero matrices

We know that, for real numbersa, bif ab =0, then either a=0o0r b =0. Thisneed
not be true for matrices, we will observe this through an example.

) . 0 -1 35
Example 15 Find AB, if A = and B= )
0 00

Solution We have AB=|° 1|3 3{_10 O
ution wWe nave —0200—00.

Thus, if the product of two matricesisazero matrix, it isnot necessary that one of
the matricesis a zero matrix.

3.4.6 Properties of multiplication of matrices

The multiplication of matrices possessesthefollowing properties, which we state without
proof.

1. The associative law For any three matrices A, B and C. We have
(AB) C =A (BC), whenever both sides of the equality are defined.
2. Thedistributive law For three matricesA, B and C.
(i) A(B+C)=AB +AC
(i) (A+B) C=AC + BC, whenever both sides of equality are defined.

3. The existence of multiplicative identity For every square matrix A, there
exist an identity matrix of same order such that |1A = Al = A.

Now, we shall verify these properties by examples.

1 1 -1 13
E I16|fA—2038—02andC—123_4 find
xample = , B= o 0 2 1" in
3 -1 2 -1 4

A(BC), (AB)C and show that (AB)C = A(BC).
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1 1 -1](13 1+0+1 3+2-4 21
Solution Wehave AB={2 0 3||0 2|=[2+0-36+0+12|=|-1 18
3 -1 2||-14] [3+0-2 9-2+8 115

217, 4 [2+2 4v0 6-2 -84l
(AB) (C)=|-1 18{ }: ~1+36 -2+0 -3-36 4+18

2 0-2 1
115 1+30 2+0 3-30 —-4+15

4 4 4 -7
_|3% -2 -39 22
31 2 -27 11

13 1+6 2+0 3-6 -4+3
1 2 34
Now BC = 02{ }— 0+4 0+0 0-4 0+2

2 0-2 1|
-14 1+8 —2+0 -3-8 4+4
(7 2 -3 -1
_|4 0 -4 2
7 -2 -11 8

1 1 -1][7 2 -3 -1
2 0 3|40 4 2
3-1 2]|7-2 -11 8

Therefore A(BC)

[ 7+4-7 2+0+2 -3-4+11 -1+2-8
=114+0+21 4+0-6 -6+0-33 -2+0+24
|21-4+14 6+0-4 -9+4-22 -3-2+16

4 4 4 7
=% 2 -39 22| (cjeqly, (AB)C=A (BC)
31 2 27 11
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0 6 7 011 2
Example 17 1f A=|-6 0 8(,B=|1 0 2|,C=|-2
7 -8 0 120 3
Caculate AC, BC and (A + B)C. Also, verify that (A + B)C=AC + BC
0O 7 8
Solution Now, A+B=|-5 0 10
8 -6 0

0 7 87[2] [0-14+247 [10
S (A+B)C=|-5 0 10| |-2 |=|-10+0+30 |=| 20
'8 -6 0]|3] |16+12+0 | |28

[0 6 7][2] 0-12+21 9
Further AC=|-6 0 8||-2|=[-12+0+24 |=|12
| 7 -8 0| 3] | 14+16+0 30

01 1|[2] [0-2+3 1
1 0 2||-2|=/2+0+6|=| 8

and BC= -
|1 2 0] 3] [2-4+0] |-2
9 1 10
So AC+BC=|12|+| 8 |=|20
130] |2 28
Clearly, (A+B)C=AC+BC
1 2 3
Example181f A=|3 -2 1|, then show that A*—23A -401=0
4 2 1
1 2 3|1 2 3| |19 4 8
Solution We have A>=AA=(3 -2 1|3 -2 1|=|1 12 8
4 2 1{|4 2 1| |14 6 15
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1 2 3||19 4 8 63 46 69
So A*=AA*=13 -2 1|1 12 8|=|69 -6 23
4 2 1|14 6 15 92 46 63

Now
(63 46 69] 1 2 3 1 00
A3—_23A -401=|69 -6 23|-2313 -2 1(-40/0 1 O
92 46 63| 4 2 1 0 01

(63 46 69] [-23 -46 -69]| [-40 O 0
=|69 6 23|+|69 46 -23|+| 0O 40 O
92 46 63| |-92 -46 -23 0 0 -40

[63-23-40 46-46+0 69-69+0
=|69-69+0 —6+46-40 23-23+0
192-92+0 46-46+0 63-23-40

I
o o o
o o o
o o o
I
O

Example 19 Inalegidative assembly election, apolitical group hired apublicrelations
firm to promote its candidate in three ways: telephone, house calls, and letters. The
cost per contact (in paise) isgivenin matrix A as

Cost per contact

40 Telephone
A= 100 Housecall
50 Letter

The number of contacts of each type made in two cities X and Y is given by

Telephone Housecdl Letter
_{1000 500 5ooorx

3000 1000 10,000|—Y
citiesX and .

. Find the total amount spent by the group inthetwo
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Solution We have

_ { 40,000 + 50,000 + 250,000 } - X

120,000 +100,000 +500,000 | > Y

720,000

So the total amount spent by the group in the two cities is 340,000 paise and
720,000 paise, i.e., Rs 3400 and Rs 7200, respectively.

_ 340,000 | > X
—->Y

| EXERCISE 3.2|

. LetA_24B_1 3C_—25
' 132" |-2 5" |3 4

Find each of thefollowing:

(i) A+B (i) A-B (i) 3A-C
(iv) AB (v) BA
2. Computethefollowing:
[a b] [ab o [a®+b?* p*+c?| [2ab  2bc
0) + (i) n
_—b a b a a?+c® a?+b? —2ac —2ab

-1 4 6] [12 7 6 -

i) [8 5 16|+ 8 0 5| (iv)
28 5/ |3 24 | sin®x  cos” X

cos? X sinzx} {sinzx coszx}
+

cos’ X sin®x

3. Computetheindicated products.

1
~[a blfa -b o 12l 3 4 1271 2 3
0 b a||lb a 0 3[ ] () 2 3|2 31
[ - 21
wlaaslos s 2zt 0
) ) P
|4 5 6|3 0 5 -11
_ 2 -3
.1 3-13
(vi) }1 0
-1 0 2
- 3 1
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11.

12.
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1 2 -3 3-1 2 4 1 2
If A={5 0 2(,B={4 2 5|andC=|0 3 2|, then compute
1 -1 1 2 0 3 1 -2 3
(A+B) and (B — C). Also, verify that A + (B —C) = (A + B) - C.
245 23,
3 3 5 5
1 2 4 1 2 4
If A== — —|and B=|= = —|, th A —5B.
3 3 3 5 5 &5 , then compute 3A —5
T, 2 762
L3 3] L5 5 5]
o cos® snO| . [sin® -cosO
Simplify cosB| . +sino _
—-sin® coso | cosO  sino
Find X andY, if
, 70 '3 0
(i) X+Y-= and X-Y =
2 5 0 3

2 2 -2
(i) 2X +3Y:{ 3} and 3X+2Y:[ }
4 0 -1 5

Find X,if Y = 32 d2X +Y = 1o

e E T el I
1 3 y O 5 6

. o _

Find xandy, if {O X:|+|:l 2} [1 8}

Sol t ati dt, i X +3 =3
r tl 1 1 O 2 1 6
Vellea:]u ionfo X, Y, Zan if 2 y

i x| 2y 2|20 find the values of x and
3 y1—5,|n e values of x and y.

Given 3{)( y}

4
:[ X 6 }r[ x+Y},findthevaluesofx,y,zandW-
Z W w 3

-1 2 Z+W
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cosx —-sinx O

13. If F(x)=|sinx cosx 0|, show that F(x) F(y) = F(x + ).
0 0 1
14. Show that
. [5 ~1|[2 1] [2 1][5 -1
0] #
6 7|3 4] |3 4|6 7
1 2 3|[-1 1 0] [-12 1 Ol][1 2 3
@i |0 1 0] 0 -1 1j#| 0-1 1|0 1 O
11 0j]|2 3 4 2 3 4{|1 10
2 0 1
15. FindA?2-5A+6l,if A={2 1 3
1-1 0
1 0 2
16. If A=|0 2 1|, provethat A®*—6A%?+7A+21=0
12 0 3
3 -2 1 0]
17. If A= and I= , find k so that A2 = kA — 2|
4 2 01
0 -tanz
18. If A= 2 and | istheidentity matrix of order 2, show that
tan > 0
L 2
cosa —sina
I +A=(l —A){ . }
sina.  cosa
19. A trust fund has Rs 30,000 that must beinvested in two different types of bonds.

Thefirst bond pays 5% interest per year, and the second bond pays 7% interest
per year. Using matrix multiplication, determine how to divide Rs 30,000 anong
the two types of bonds. If the trust fund must obtain an annual total interest of:

(8) Rs1800 (b) Rs2000
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20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen
physics books, 10 dozen economics books. Their selling pricesare Rs 80, Rs 60
and Rs 40 each respectively. Find the total amount the bookshop will receive
from selling all the books using matrix algebra.

Assume X, Y, Z, W and P are matrices of order 2xn,3x k, 2x p,nx 3and p x k,
respectively. Choose the correct answer in Exercises 21 and 22.

21. Therestriction onn, k and p so that PY + WY will be defined are:

(A) k=3, p=n (B) kisarbitrary, p=2
(C) pisarbitrary, k=3 (D) k=2,p=3
22. 1f n=p, then the order of the matrix 7X —5Z is:
(A) px2 (B) 2xn (C) nx3 (D) pxn

3.5. Transpose of a Matrix

In this section, we shall learn about transpose of amatrix and special types of matrices
such as symmetric and skew symmetric matrices.

Definition 3 If A =[a] bean mx nmatrix, then the matrix obtained by interchanging
the rows and columns of A is called the transpose of A. Transpose of the matrix A is
denoted by A” or (AT). In other words, if A = [a],., then A’ = [a],., Forexample,

3 5 3 V3 0
if A=|\3 1| , then A'= 1
51 —
0 __1 2x3
5 3x2

3.5.1 Properties of transpose of the matrices

We now state the following properties of transpose of matrices without proof. These
may be verified by taking suitable examples.

For any matrices A and B of suitable orders, we have

i) (A =A, (i) (KA) = kA’ (where k is any constant)
(i) (A+B) =A"+B’ (iv) (AB)Y =B’ A’
Example 20 If A :B ‘2/5 (ﬂ and B=[12 _; ﬂ verify that

i (A =A, (i) (A+B) =A"+PB,

(i) (kB) = kB’, where k is any constant.
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Solution
(i) We have

3 4
A= 3 V3 2:A'=\62:(A')’=3*/§ 2I_A
42 0 » 0 4 2 0

Thus (A =A

(i) We have
A = 3 \/é 2,B: 2 -1 2:|:>A+B= 5 \/é_l 4
4 2 0 1 24 5 4 4
5 .
Therefore (A+B) =|3-1 4
4 4
'3 4 2 1
Now A= |3 2],B'=|-1 2],
120 2 4
F 5
So A +B =|-3-14
4 4
Thus (A+B)Y =A"+B’
(i) We have
Bokl2 L 2] [k k2
1 2 4] |k 2k 4k
2k k (21
Then (kBY = | -k 2k |=k|-1 2|=kB’
2k 4k| |24

Thus (kB) = kB’
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-2
Example 21 1f A=| 4 |,B=[1 3 -6], verify that (AB)' = B’A".
5
Solution We have
-
A=| 4 ,B=[1 3 -6
- 5_
[—2] -2 -6 12
then AB=| 4|[1 3 —6]=|4 12 -24
| 5] 5 15 -30
1
Now A’=[245],B'=| 3
_6_
1 2 4 5
BA’=| 3|[-2 4 5]=|-6 12 15|=(AB)
-6 |12 24 -30

Clearly (ABY =B’A’

3.6 Symmetricand Skew Symmetric M atrices
Definition 4 A square matrix A = [g ] is said to be symmetric if A” = A, that is,
[a”.] = [a”] for all possible values of i and j.

J3 2 3
Forexample A=| 2 -15 -1 | isasymmetric matrix asA’ =A
3 - 1

Definition 5 A square matrix A = [a”.] is said to be skew symmetric matrix if
A’ =—A, that isali =-a, for all possible valuesof i and j. Now, if we puti =j, we
have a, = —a,. Therefore 2a, =0 or a, =0 for al i’s.

Thismeans that al the diagonal elements of a skew symmetric matrix are zero.
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0 e f
Forexample, thematrix B=| —-e 0 g | isaskew symmetric matrix as B’= B
-f -g O

Now, we are going to prove some results of symmetric and skew-symmetric
matrices.

Theorem 1 For any square matrix A with real number entries, A + A’ isasymmetric
matrix and A —A” is a skew symmetric matrix.
Proof Let B=A + A’, then

B = (A+AY
= A +(A) (as(A+B)Y =A"+DB)
= A"+A (as(A) =A)
= A+A’(asA+B=B+A)

=B
Therefore B = A +A’isasymmetric matrix
Now let C=A-A
C=A-A)Y=A =AY (Why?
= A"-A (Why?
=-(A-A)=-C
Therefore C= A —A’isaskew symmetric matrix.

Theorem 2 Any square matrix can be expressed as the sum of a symmetric and a
skew symmetric matrix.

Proof Let A be a square matrix, then we can write
1 1
A==(A+A)V+=(A-A’
> )+ ( )
From the Theorem 1, we know that (A +A’) isasymmetric matrix and (A —A’) is

: . . : 1
askew symmetric matrix. Sincefor any matrix A, (kA) = kA’, it followsthat E(A +A)

1
is symmetric matrix and 5 (A-A") is skew symmetric matrix. Thus, any square

matrix can be expressed as the sum of a symmetric and a skew symmetric matrix.
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2 -2 -4
Example 22 Expressthematrix B=|-1 3 4| asthesum of asymmetricand a
1 -2 -3
skew symmetric matrix.
Solution Here
2 -1 1
B=|-2 3 -2
-4 4 -3
L L 4 -3 -3 3
Let P=E(B+B’)=— -3 6 2/=| 3 1]
-3 2 -6 _
2
2 -3 3 ) )
2 2
_| -3 _
Now P=|— 3 1 |=P
2
=1 3
L 2 J
1 N : :
Thus P= E(B+ B’) isasymmetric matrix
o -1
. Jo -t 8] |, 2 2
Also, let Q= E(B_B’)ZE 1 0 6= E 0 3
5 -6 0 5
- 3 0
L2 J
o 123
2 3
, -1
Then Q= > 0 -3|=-Q
= 3
L 2 J
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1
Thus Q= > (B—B') isaskew symmetric matrix.
o 3 Bl g 1A
2 2 2 2|19 5 g
Now P+Q=_—23 3 1+% 0 3|=|-1 3 4|=B
3 s 1 -2 -3
— 1 -3 - -3 0
| 2 1 L2 J

Thus, B is represented as the sum of a symmetric and a skew symmetric matrix.

| EXERCISE 3.3|
1. Findthetranspose of each of the following matrices:
> - 15 6
L1 . -
013 (ii) [2 3} (i) |3 5 6
1 2 3 -1
-1 2 3 -4 1 -5
2. IfA=| 5 7 9|and B=| 1 2 0/, thenverify that
-2 11 1 3 1
(i) A+B)Y =A"+B, (i) A-B)Y=A"-PB’
3 4 121
3. IfA'=|-1 2| and Bz{ },thenverifythat
1 23
101
(i) A+B)Y=A"+PB’ (i) A-B)Y=A"-PB’
4 IfA’—__Z 3 and B=| 1 O thenfind (A + 28y
' 12 =| g o thenfind( )
5. For the matricesA and B, verify that (AB)" = B’A’, where
1 0

() A=|-4|,B=[-1 2 1] (i) A=|1|,B=[1 5 7]
3 2



o

~

10.

_ coso  Sina
If (@) A=|
—Sino.  cosa
. Sna  coso
@) If A= .
—coso  Sina

(i) Show that the matrix A =

(ii) Show that the matrix A =

1 -15
-1 21
5 1 3
[0 1-1
-1 0 1
1-10

. 15 .
For the matrix A = {6 7} , verify that

(i) (A +A’) isasymmetric matrix
(i) (A —A’)isaskew symmetric matrix
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} , then verify that A" A = |

} , then verify that A” A = |

isasymmetric matrix.

isaskew symmetric matrix.

0 a b

1 1
FindE(A+A’) andE(A—A’),whenAz -a 0 ¢

b

-c 0

Expressthefollowing matrices asthe sum of asymmetric and askew symmetric

matrix:
[3 5
O3 D
3 3 -1
@y (-2 -2 1
-4 -5 2

6
(i) |-2
2
1
iv) |4
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Choose the correct answer in the Exercises 11 and 12.
11. If A, B are symmetric matrices of same order, then AB —BA isa

(A) Skew symmetric matrix (B) Symmetric matrix
(C) Zero matrix (D) Identity matrix
12 If A:[C_OSO‘ _Sna},then A+A’=1,if thevalue of o is
sno.  cosa
A z B z
M) 5 (8) 3
3n
©) n ®) <

3.7 Elementary Operation (Transformation) of aMatrix

There are six operations (transformations) on amatrix, three of which are due to rows
and three due to columns, which are known as elementary operations or
transformations.
(i) Theinterchange of any two rows or two columns. Symbolically the interchange
of i and | rows is denoted by R <> R and interchange of i and j*" column is
denoted by C, <> C,.

1 21 -1 431
For example, applying R, <> R,t0 A=|-1 /3 1|,weget|1 2 1|.
5 6 7 5 6 7

(i) The multiplication of the elements of any row or column by a non zero
number. Symbolically, the multiplication of each element of the i row by k,
where k # 0 is denoted by R, — kR.

The corresponding column operation is denoted by C — kC,

1 2

-1 431 1 3

. 1 1 21
For example, applying C, _>7CS, toB = , we get

~NlR N e

(ili) The addition to the elements of any row or column, the corresponding
elements of any other row or column multiplied by any non zero number.

Symbolically, the addition to the elements of i*" row, the corresponding elements
of j*" row multiplied by k is denoted by R — R, + kR..
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The corresponding column operation is denoted by C, — C, + kC]..

1 2 1 2
For example, applying R, - R,— 2R , to C:[ ]We get [ } :
2 -1 0 -5
3.8 InvertibleMatrices

Definition 6 If A is asquare matrix of order m, and if there exists another square
matrix B of the same order m, such that AB = BA =1, then B is called the inverse
matrix of A and it is denoted by A~*. In that case A is said to be invertible.

(2 3 2 -3 :
For example, let A= and B = be two matrices.
12 -1 2
2 3] 2 -3
Now AB=11 2]l 2
_[4-3 -6+6 |10 _
" |2-2 -3+4| |0 1|
1 0 o :
Also BA = 0 1}:I.ThusBlsthelnverseofA,mother
wordsB = A-*and A isinverse of B, i.é.,A =B

1. A rectangular matrix does not possessinverse matrix, since for products BA
and AB to be defined and to be equal, it is necessary that matrices A and B
should be sguare matrices of the same order.

2. If Bistheinverse of A, then A isaso the inverse of B.

Theorem 3 (Uniqueness of inverse) Inverse of a square matrix, if it exists, isunique.

Let A = [a] be a square matrix of order m. If possible, let B and C be two
inverses of A. We shall show that B = C.

Since B istheinverse of A

AB=BA =1 .. (1)
Since Cisalsotheinverse of A

AC=CA =1 - (2
Thus B=BI=B(AC)=(BA)C=IC=C

Theorem 4 If A and B are invertible matrices of the same order, then (AB)* = B*A™
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From the definition of inverse of amatrix, we have
(AB) (AB)* =1

or A1 (AB) (AB)* =A™ (Premultiplying both sidesby A™)
or (A*A) B (AB)t=A" (Since A7 1 =A7

or IB (AB)t=A"1

or B (AB)*=A""

or BB (AB)! =B A

or | (AB)*=B* A

Hence (AB)* =Bt A

3.8.1 Inverse of a matrix by elementary operations

Let X, A and B be matrices of, the same order such that X = AB. In order to apply a
sequence of elementary row operations on the matrix equation X = AB, wewill apply
these row operations simultaneously on X and on the first matrix A of the product AB
on RHS.

Similarly, in order to apply a sequence of elementary column operations on the
matrix equation X =AB, wewill apply, these operations simultaneoudly on X and onthe
second matrix B of the product AB on RHS.

In view of the above discussion, we conclude that if A is a matrix such that A~
exists, then to find A= using elementary row operations, write A = |A and apply a
sequence of row operation on A = [A till we get, | = BA. The matrix B will be the
inverse of A. Similarly, if we wish to find A=t using column operations, then, write
A =Al and apply a sequence of column operations on A = Al till we get, | = AB.

Remark In case, after applying one or more elementary row (column) operations on
A =1A (A =Al),if weobtainall zerosin one or more rows of thematrix A onL.H.S,,
then A~ does not exist.

Example 23 By using elementary operations, find the inverse of the matrix

S

Solution In order to use elementary row operations we may write A = [A.

L2 O ten |2 212] 1 %A (@i R,—2R
o 2 1|7 |0 1|7 0 -5|7|-2 1|" @PVINGR, >R, =2R,)



1 0

12| —

or 0 1 =l L
L5 5]

_} g_

or 10 |5 5
01 |2 -

L5 5]

_} g_

5 5

_1=

Thus A 2 -1
L5 5]

Alternatively, in order to use

1 2]
=A
.
Applying C, — C,-2C , we get
1 0]
=A
sl

Now applying C, — —éCZ, we have

A

Finaly, applying C, — C, —2C,, we obtain

ol

Hence

gl gl

1
agaln gl

1
0

al L ain

al L ain
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. 1
A (applyingR, — — : R)

A (applyingR, - R, —2R))

elementary column operations, we write A = Al, i.e,,

10
01

H

al L ain
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Example 24 Obtain the inverse of the following matrix using elementary operations

01 2
2 3.
11

A=1
3
or
or

or

or

or

or

NIOT = N

A (applyingR, < R)

NP O NI

0
O|A (applying R, - R,—3R))
1

0
0|A (applyingR, — R,—2R))
1

0
0|A (applyingR, — R,+ 5R))
1

A i 1
(applying R,— E R3)

NIk, O O

A (applyingR, —» R +R))
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,—~>R,—-2R)

or

AN AN
1___2 ™ Q_V_Z

AN Y bl

Hence

=Al,i.e,

Alternatively, write A

-’
O s
R 3 S
~ . "
(@) @) @] — | N
Sl (32 (32 o
O O O O
N—r N—r N—r N—r
_O ~ 1 I o 1 T - 1
o 4 © o 4 | — — | — — | N | — | N
— O — o O — o O — o O | o O
o 0_ _0 — O _0 — 0_ _0 — 0_ | o — o |
< < < < <
I I I I I
1
o™ 1_ '~ (o0 J— _0 1__ 1___ _0 o 2_ O O 4
AN — — —
o (90} o < m o o™ o o™
— M — N A — N o — N A
] L — N I | 1
[
P — P — P — P —
o o o o
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1
100 213
or 010l=A|1 0 1 (C,>C,-2C)
— 1
° 0 O L
L 2
1 1
100 > 13
or 1 0|=A|-4 0 -1 (C1_>C1+5C3)
0 31 5 0 1
L 2 2
1 1 1
100 2 2 2
or 01 0/=A-4 3 -1 (C,—> C,-3C)
001 |5 31
L 2 2 2
i 11
2 2 2
Hence Al=|-4 3 -1
5> 3 1
2 2 2

10 -2
Example 25 Find P, if it exists, given P:{ 0 }

5 1
: _ 10 2| |1 O
Solution We have P=1P, i.e, = P
-5 1| |0 1
or 5|=110 P (applying R, —» 0 R)
-5 1 0 1
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1 1
1 —= T
or 5|= 10 P (applying R, - R, + 5R))
0 0 % 1

We have all zeros in the second row of the left hand side matrix of the above
equation. Therefore, P does not exist.

| EXERCISE 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises1to 17.

1 - 2 1 i 7
1. 2. 3 |13
2 3 11 2 7
P 2 3] 5'2 1] 6'2 5]
5 7] |7 4 1 3
: (3 1] 8‘4 5] 9‘3 10
5 2 |3 4 2 7
10 [ 3 -1 11_2_6 12_6_3
|4 2] 1 -2 2 1
[ 2 -3] 2 1 2 -3 3
13. B 14. . 15. 12 2 3
1 2 4 2
L . - 3 22
(1 3 -2 2 0 -1
6. |[-3 0 -5 17.15 1 0
2 5 0 01 3

18. Matrices A and B will beinverse of each other only if
(A) AB=BA (B) AB=BA=0
(C) AB=0,BA =1 (D) AB=BA =1



98 MATHEMATICS

Miscellaneous Examples

cosO sSnod

Example26 If A=| .
—-sin® coso

} , then prove that A" :[ cosno smne} ,ne N.

—-sinn® cosnd

Solution We shall prove theresult by using principle of mathematical induction.

We have P(n): If A= cqse sind ,then A" = cgsne sinnd ,ne N
—-sin® coso —-sinn® cosnd

—sin® cosO -sin® coso

mn:Az[

Therefore, theresult istruefor n = 1.
Let the result be true for n = k. So

cos6 Sine]soAlz[COSG sine}

1 coskd sinkd
cqse sno then Ak:{ }
—-sin® coso

H@:A:[

—-sink® coskoO

Now, we prove that the result holds for n =k +1

Now Ak+1

AAk_{cose sine}[coske sinke}

—-sin® cosO || —sinkd cosko

[ cosOcoskd —sinfsink®  cosBsinkod + sinBcoskd
—sin0coskO + cosOsinkd —sin0sinkO + cosO coskO

__cos(9+ke) sin(9+ke)}_[cos(k+1)e sin(k+1)e}

|—sin(0+k0) cos(0+k6) | |-sin(k+1)0 cos(k+1)0

Therefore, theresultistruefor n=k + 1. Thusby principle of mathematica induction,

have A" cosn® sinno
we have =l .
—-sinn® cosno

} , holdsfor all natural numbers.

Example 27 If A and B are symmetric matrices of the same order, then show that AB
issymmetricif and only if A and B commute, that iSAB = BA.

Solution Since A and B are both symmetric matrices, therefore A” = A and B’ = B.
Let AB be symmetric, then (AB)’ =AB
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But (AB) =B’A’= BA (Why?)
Therefore BA =AB
Conversely, if AB = BA, then we shall show that AB is symmetric.
Now (AB) =B’A’
=B A (as A and B are symmetric)
=AB

Hence AB is symmetric.

2 -1 5 2
Example 28 Let A:[3 ]B:[ }

2 5
,C= . Find a matrix D such that
4 7 4

3 8
CD-AB=0.

Solution Since A, B, C are al square matrices of order 2, and CD — AB is well
defined, D must be a square matrix of order 2.

Let Dz[a Z}:ﬁquD-AB:ng%
C
2 5][a b] [2 -1][5 2_O
o '3 8]|c d| |3 4]|7 4]
[2a+5c 2b+5d| [3 0] [0 O
o '3a+8c 3b+8d| |43 22| |0 O
o [2a+5c—-3 2b+5d | [0 O
|3a+8c-43 3b+8d-22| [0 O

By equality of matrices, we get

2a+5c-3=0 . (1)

3a+8c-43=0 - (2

2b+5d =0 - (3

and 3b+8d-22=0 . (4)

Solving (1) and (2), we get a =-191, c = 77. Solving (3) and (4), we get b = — 110,
d=44.

Therefore D= [a b}:[_lgl _110}
c d 77 44
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Miscellaneous Exercise on Chapter 3

01
Let A :[0 0} , show that (al + bA)"=a"l + na"~1bA, where | isthe identity

matrix of order 2and n e N.

—1 1 1 3!’]71 3!’]71 3!’]71
If A=|1 1 1|,provethat A"=[3"t 3" 31| neN.
_1 1 1 3!’]71 3!’]71 3!’]71

1+2n -4n
n 1-2n

3
If A= X 1]thenprovethatA”:[

} , Wherenisany positive

integer.
If A and B are symmetric matrices, prove that AB — BA is a skew symmetric
matrix.

Show that the matrix B’AB is symmetric or skew symmetric according asA is
symmetric or skew symmetric.

0 2y z
Find the values of x, y, zif thematrix A=|x y —z| satisfy the equation
X -y z
A'A =1.
1 2 0[|0
For what valuesof x: [1 2 1]|2 0 1||2|=0?
1 0 2

1
If A:[i 2]showthatA2—5A+7l =0.

1 0 2
Findx if [x -5 -1]|0 2 1
2 0 3

P~ X
I
O



10.

11.

12.
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A manufacturer produces three products x, y, z which he sells in two markets.
Annual salesareindicated below:

M ar k et Products
[ 10,000 2,000 18,000
[ 6,000 20,000 8,000

(@) Ifunitsalepricesof x,yand zareRs2.50, Rs 1.50 and Rs 1.00, respectively,
find the total revenue in each market with the help of matrix algebra.

(b) If theunit costs of the above three commaodities are Rs2.00, Rs 1.00 and 50
pai se respectively. Find the gross profit.

Find the matrix X so that X L2 3 = - 8 -9
4 5 6 2 4 6

If A and B are square matrices of the same order such that AB = BA, then prove
by induction that AB" = B"A. Further, prove that (AB)"=A"B" for all ne N.

Choose the correct answer in the following questions:

13.

14.

15.

L IR R N JNE 2R 2

a p
If A= issuch that A2 =1, then
Yy -«

(A) 1+o02+By=0 (B) 1-02+By=0

(©) 1-02-Py=0 (D) 1+02-By=0

If the matrix A is both symmetric and skew symmetric, then

(A) Aisadiagonal matrix (B) A isazeromatrix

(C) A isasquare matrix (D) None of these

If A issguare matrix such that A2=A, then (I + A)3—7A isequal to

(A) A B) 1-A ©) | (D) 3A
Summary

A matrix is an ordered rectangular array of numbers or functions.
A matrix having m rows and n columnsiis called a matrix of order m x n.

[a,],., isacolumn matrix.

[a”.]1xn iS arow matrix.

Anmx nmatrix is asquare matrix if m=n.

A= [a”.]mxm is adiagonal matrix if a, = 0, when'i #j.
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A =[a], ., isascaa matrix if a; = 0, wheni #j, a, =k, (kis some
constant), when i = j.

A =[a],,,is anidentity matrix, if a, = 1, wheni =j, a, = 0, wheni #].
A zero matrix has all its elements as zero.

A =[a]=[b] =Bif (i) A and B are of same order, (ii) a, = b, for all
possible valuesof i andj.

KA = Ka],., = k@),.,

—-A=(-DA

A-B=A+(-1)B

A+B=B+A

(A+B)+C=A+ (B +C), where A, B and C are of same order.

k(A + B) = kA + kB, where A and B are of same order, k is constant.
(k+1)A =KA + A, wherek and | are constant.

IfA=[a]

n
Juxna@ndB=[b thenAB=C=[c,] ., Where G, = izzlqi by

dnsp?
(i) A(BC)=(AB)C, (ii) A(B+C)=AB+AC, (iii) (A+B)C=AC+BC
IfA=[a],.,thenA”orAT=[a]

(i) (AY =A, (i) (KA)Y =KA’, (iii) (A+B)=A"+B’, (iv) (AB) =B’A’

A isasymmetric matrix if A" = A.

A isaskew symmetric matrix if A = —A.

Any square matrix can be represented as the sum of a symmetric and a
skew symmetric matrix.

Elementary operations of a matrix are asfollows:

() R« R or C e C].

(i) RR > kR or C — kC

(i) R > R+kRor C — C +kC

If A and B are two square matrices such that AB = BA = I, then B is the
inverse matrix of A and is denoted by A~ and A istheinverse of B.
Inverse of a square matrix, if it exists, isunique.

—_— % —
L4



Chapter 4

( DETERMINANTS )

% All Mathematical truths are relative and conditional. — C.P. STEINMETZ <

4.1 Introduction

In the previous chapter, we have studied about matrices 1
and algebra of matrices. We have also learnt that a system
of algebraic eguations can be expressed in the form of
matrices. This means, a system of linear equationslike

ax+by=c,
ax+hby=c,

can be represented as [al bl} [X} =[Cl} Now, this | -
a bly] [& .

system of equations has a unique solution or not, is
determined by the number a, b, —a, b,. (Recall that if

P.S. Laplace
(1749-1827)

%i% or,a b,—a,b, # 0, then the system of linear

eqzuations has a unique solution). The number a, b, —a, b,

which determines uniqueness of solution is associated with the matrix A = [

a bl}
a b,
and is called the determinant of A or det A. Determinants have wide applications in
Engineering, Science, Economics, Social Science, etc.

Inthischapter, we shall study determinants up to order three only with real entries.
Also, wewill study various properties of determinants, minors, cofactorsand applications
of determinantsin finding the areaof atriangle, adjoint and inverse of asquare matrix,
consistency and inconsistency of system of linear equations and solution of linear
equationsin two or three variables using inverse of a matrix.

4.2 Deter minant

To every square matrix A = [a ] of order n, we can associate a number (real or
complex) called determinant of the square matrix A, where a, = (i, j)" element of A.
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This may be thought of as a function which associates each square matrix with a
unique number (real or complex). If M is the set of square matrices, K is the set of
numbers (real or complex) and f : M — K is defined by f (A) = k, whereA € M and
ke K, thenf(A)iscalled the determinant of A. It isalso denoted by |A | or det A or A.

a b a b
IfA= [c d} , then determinant of A iswrittenas|A| = c d‘ =det (A)
Remarks

(i) For matrix A, |A|isread as determinant of A and not modulus of A.
(i) Only sguare matrices have determinants.

421 Determinant of a matrix of order one
Let A =[a] bethe matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

Let A= [aﬂ 812} be amatrix of order 2 x 2,
Ay Ay
then the determinant of A is defined as:
all‘ P alz

det (A) =|A|=A= =a,a, - a3,

.,
e’

24

21 Ay

E le 1 Evaluate .
xamp a 4 2‘

N -2 -an=4a+a=8

Solution We have 4 2‘

X x+1
Example 2 Evaluate
x-1 X

Solution We have

X X+1

.1 =X -(x+1)(x-1) =x-(¥-1D=x-x+1=1

4.2.3 Determinant of a matrix of order 3 x 3

Determinant of amatrix of order three can be determined by expressing it in terms of
second order determinants. This is known as expansion of a determinant along
arow (or a column). There are six ways of expanding a determinant of order
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3 corresponding to each of three rows (R, R, and R,) and three columns (C, C, and
C,) giving the same value as shown below.

Consider the determinant of square matrix A = [a,],

a; ap A3
e, |A =18 ap axn

83 83 Ag
Expansion along first Row (R))

Multiply first element a,, of R, by (=1)®* b [(=1)*m o' sfxeinay] gnd with the
second order determinant obtained by deleting the elements of first row (R,) and first
column (C) of |A|asa, liesinR and C,,

Ay A3
83 8g
Multiply 2nd element a , of R, by (—1)**2 [(-L)xm ofsffixesina,;] gand the second

order determinant obtained by deleting elements of first row (R,) and 2nd column (C,)
of [A]asa,liesinR, and C,

e, ) ta,

8y ay
831 Gg3

Multiply third element a , of R by (-1)** 3 [(=1)3m ' ffixesinaq] and the second
order determinant obtained by deleting elements of first row (R,) and third column (C,)
of [A]asa,liesinR, and C,,

ie, (<)*2a,

8y ay
83 agp

e, 1) 2a,

Now the expansion of determinant of A, that is, | A | written as sum of al three
terms obtained in steps 1, 2 and 3 above isgiven by

ay ax 142 & axp
detA=|A|= (1) ay o o |* D" &, . B
B X
_1 1+3 21 2
+ (D a & A
or |A| =a, (a'zz A — 8y a'23) -, (a21 Qg — 8y a23)

ta, (a21 a, — &, azz)
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a4, &, —a; a8, —a,a, a4, ta,a,a,+ta,a, a,
85 8y 8y . (D

|e== Note |We shall apply all four steps together.

Expansion along second row (R,)

&1 Qp g3
|[A|=1]821 82 8y
83 83 g3
Expanding along R,, we get

A|= (1)?*1a, &, &3 ()2 2a, &; ap
) 3 83 g
8, ap
+ (_1)2 +3
%s 8 A

s-ay (a12 Ay _a32a13) tay (an G — a31a13)
—ay (an G -y alz)
|A|:_a21a12 Aty aa,ta,a, a; -, a8, - a,; a,
ta,ay a,

=, 8,8, -a;,8,8,-38,38, &, ta,a,a, ta,a, q,
8,5 8y 8y .. (2
Expansion along first Column (C,)

&, S a3
|Al=]3n a» ax
83 83 dg
By expanding along C , we get

8y Ay

32 3

8, a3

_ (_1)l+l
|A|= 8 % A

+ay (-p**t

ap 93
8y Ay

=an(a22a33—a23a32)—a21(a12a33—a13a32)+a31 (alzaza_alaazz)

+ 8 (D3
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|A|:a11a22a33_a11a23a32_a21a12a33+a21a13a32+a31a12a23
— 8y 8, 8,

A, 8,8, A, 8,8, 8,8, a8, 3,838, +3a,a, 3,
—a, a31. 8y . Lo (3)
Clearly, values of |[A]in (1), (2) and (3) are equal. It is |eft as an exercise to the
reader to verify that the values of |A| by expanding along R,, C,and C, are equal to the
value of |A | obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same value.
Remarks

(i) Foreasier caculations, we shall expand the determinant along that row or column
which contains maximum number of zeros.

(i) Whileexpanding, instead of multiplying by (—1)'*!, we can multiply by +1 or -1
according as (i +j) is even or odd.

2 2 11
(iii) LetAz[4 0} ande[2 0} . Then, it iseasy to verify that A = 2B. Also

IA|=0-8=-8and|B|=0-2=-2.

Observe that, |A| = 4(-2) = 2%|B| or |A| = 2"|B|, where n = 2 is the order of
square matrices A and B.

In general, if A = kB where A and B are square matrices of order n, then | A| = k"
|B |, wheren=1,2,3
12 4

Example 3 Evaluate the determinant A=|-1 3 0],
4 10

Solution Notethat in the third column, two entries are zero. So expanding along third
column (C,), we get

a3/ J1 2 12
A= 4 -0

4 1| |4 1| |1 3
= 4(-1-12)-0+0 =-52

0 sina —Ccosa

Example 4 Evaluaste A= |-sina. 0 snp
cosa  —sinf 0
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Solution Expanding along R, we get

0 sinB —sina sinB
—-sinf O CoSs . 0

=0-sina (0—-sinB cosa) —cosa (shoasin B —0)
=sinasinfcosa—cosasinasinB=0

—sin a 0
cosa —sinf

A=0

—CoSs a

X 3 2
Example 5 Find values of x for which = .
1 4 1
. 3 X 3 2
Solution We have =
1 4 1
i.e 3—-x*=3-8
i.e x*=8
Hence x= +242
|[EXERCISE 4.1|
Evaluate the determinants in Exercises 1 and 2.
2 4
-5 41
_|cos® -sin® I =x+1 x-1
0 sin® cos0 (i) Xx+1 Xx+1
1 2
3. If A= 4 2]thenshowtha1:|2A|=4|A|
1 0 1
4. If A=|0 1 2| thenshowthat |3A|=27]|A|
10 0 4
5. Evauate the determinants
3 -1 =2 3 -4 5
|0 0 -1 @ |1 1 -2

3 5 0 2 3 1
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0 1 2 2 -1 =2
(i) |1 0 3 (iv) |10 2 -1
-2 3 0 3 5 0
11 =2
6. IfA=|2 1 3| find|A|
5 4 -9
7. Findvaluesof x, if
2x 4 .12 3 x 3
0 ‘ X (i) ‘4 5‘: 2X 5‘
8. If X 2:‘6 2‘,thenxisequalto
18 x| |18 6
(A) 6 (B) £6 (© -6 (D) O

4.3 Propertiesof Deter minants

In the previous section, we have learnt how to expand the determinants. In thissection,
wewill study some propertiesof determinantswhich simplifiesitsevaluation by obtaining
maximum number of zeros in a row or a column. These properties are true for
determinants of any order. However, we shall restrict ourselves upto determinants of
order 3only.

Property 1 The value of the determinant remains unchanged if its rows and columns
are interchanged.

a & g
Verification Let A= (b b, by
G & G
Expanding along first row, we get
ia ‘ b, ‘ L
G Cl C
=a (bz C; — (b Cl) ta (bl C,— b2 Cl)
By interchanging the rows and coI umns of A, we get the determinant
a b g
A=la bog

a b g
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Expanding A, along first column, we get
Alzal (bz -G b3) -& (bl G- b3 Cl) ta, (bl ¢, - b2 Cl)
Hence A=A,

Remark It follows from above property that if A is a square matrix, then
det (A) = det (A’), where A" = transpose of A.

If R = ithrow and C, = ith column, then for interchange of row and
columns, we will symbolicaly write C <> R

Let us verify the above property by example.

2 3 5
Example 6 Verify Property 1fora=|6 0 4
1 5 -7
Solution Expanding the determinant along first row, we have
0 4 6 4 6 0
=2 (-3 +5
A= ‘5 —7‘ ( )‘1 717 5‘

=2(0-20)+3(-42-4) +5(30-0)
=—-40-138+150=-28
By interchanging rows and columns, we get

2 6 1
A, =|=3 0 5| (Expanding aongfirst column)
5 4 -7
_,|0 5_(_3)6 1+5‘61
4 7 4 7 05

2(0-20)+3(-42—-4)+5(30-0)
=—40-138+ 150=-28

Clearly A=A,
Hence, Property 1 is verified.
Property 2 If any two rows (or columns) of a determinant are interchanged, then sign
of determinant changes.

a & &
Verification Let A= |b b, by
G & G
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Expanding aong first row, we get
A= al(bz Cs_bs Cz) _a'z(bl Cs_bs Cl) + aS(bl Cz_bz Cl)

Interchanging first and third rows, the new determinant obtained is given by

G & G
A=(B b b
a & &
Expanding along third row, we get

Alzal(CZ bs_bz Cs) _a'Z(Cl bs_Cs bl) + as(bz ¢ _bl Cz)

=—[a1(b203—b302)—a2(b103—b301) +a3(b102_b201)]

Clearly A, =-A
Similarly, we can verify the result by interchanging any two columns.

columns by C <> C.

We can denote the interchange of rows by R <> R and interchange of

2 3 5
Example 7 Verify Property 2forA=|6 0 4],
1 5 -7
2 3 5
SolutionA=1{6 0 4| =—28 (See Example 6)
1 5 -7

Interchanging rows R, and R, i.e,, R, <> R,, we have

2 3 5
Al =1 5 7
6 0 4

Expanding the determinant A, along first row, we have

5 7 1 -7 15
0 4 6 4 6 0
2(20-0)+3(4+42)+5(0-30)
=40+ 138-150= 28

A =2 - (=3 +5

1
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Clearly A =—-A
Hence, Property 2 is verified.

Property 31f any two rows (or columns) of adeterminant areidentical (all corresponding
elements are same), then value of determinant is zero.

Proof If we interchange the identical rows (or columns) of the determinant A, then A
does not change. However, by Property 2, it followsthat A has changed its sign

Therefore A=—A

or A=0

Let us verify the above property by an example.
32 3

Example 8 EvaluateA = |2 2 3
323

Solution Expanding along first row, we get
A=3(6-6)—-2(6-9) +3(4-6)
=0-2(3)+3(-2)=6-6=0
Here R, and R, are identical.

Property 4 If each element of arow (or acolumn) of adeterminant ismultiplied by a
constant k, then its value gets multiplied by k.

a b ¢
Verification LetA= |3 b, C
& b g

and A, be the determinant obtained by multiplying the elements of the first row by k.
Then

ka, kb kg
A= b, ¢
& b G

Expanding aong first row, we get
A1=ka1(b2 Cs_bs Cz)_kbl(a203_cza3) + kcl(a'z b3_b2a3)
=k[a1 (bzcs_bs CZ)_bl (a'z C3_C2a3) +C (a'z bs_bz a3)]
=k A
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ka, kb k¢ a b
Hence a b cl=k|a b

BN Y

Remarks
(i) By thisproperty, we can take out any common factor from any one row or any
one column of agiven determinant.

(if) If corresponding elements of any two rows (or columns) of a determinant are
proportional (in the sameratio), then itsvalueis zero. For example

& 4a, &
A=|b B b | =0(rowsR and R, are proportional)
ka, ka, ka,
102 18 36
Example 9 Evaluate | 1 3 4
17 3 6

102 18 36| |6(17) 6(3) 6(6) [17 3 6
Solution Notethat | 1 3 4|=| 1 3 4 |=6|1 3 4|=0
17 3 6| |17 3 6 17 3 6

(Using Properties 3 and 4)

Property 51f someor al elements of arow or column of a determinant are expressed
as sum of two (or more) terms, then the determinant can be expressed as sum of two
(or more) determinants.

& +th Ht+h, Aty & & &l (A Ay Ag
For example, by b, b, |=|b b byj+ib b, b
G G G G G G G G G

a+A a+Ah, a5+Ag
Verification LH.S. =| b b, b,
G G G
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Expanding the determinants along the first row, we get
A:(a1+ ;”1) (bz C,—6C bg _(a2+ ;”2) (bl C3_b3 Cl)

+ (a3 + ;”Q (bl C,— b2 Cl)

:al(bz C;— G, bs)_a'z(bl Cs_bs Cl) + a3(b1 Cz_bz Cl)
+ ?”1 (bz C;,—G bs) - ?”2 (bl C,— b3 Cl) + ?”3 (bl C,— b2 Cl)

(by rearranging terms)
8 @, a| |[A Ay A4
= b byj+ih b, b =RHS

G & G G & G
Similarly, we may verify Property 5 for other rows or columns.

a b c
Example 10 Show that [a+2xX b+2y c¢c+2z/=0
X y z
a b c a b c a b c
Solution We have|a+2x b+2y c+2z| =|a b c|+|2x 2y 2z
X y z Xy z X y z
(by Property 5)
=0+0=0 (Using Property 3 and Property 4)

Property 6 If, to each element of any row or column of adeterminant, the equimultiples
of corresponding elementsof other row (or column) are added, then value of determinant
remainsthe same, i.e., the value of determinant remain sameif we apply the operation
R —>Ri+kRjorCi—>Ci+ij.

Verification
8 3 & a +ke @ +ke, a;+ke
Let A=|b b byjand A =| b b, by |,
C G G o o G

where A, is obtained by the operation R, = R, + kR, .

Here, we have multiplied the elements of the third row (R,) by a constant k and
added them to the corresponding elements of the first row (R)).

Symbolicaly, we write this operation asR, — R, + kR..
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Now, again

& 8 & ke ke, ke
A =|b b b+ b b b | (Using Property 5)
G G G G & G

=A+0 (since R, and R, are proportional)
Hence A=A,
Remarks

(i) If A, isthe determinant obtained by applying R — kR or C. — kC, to the
determinant A, then A, = KA.

(if) If morethan one operation like R — R, + kR isdonein one step, care should be
taken to see that arow that is affected in one operation should not be used in
another operation. A similar remark appliesto column operations.

a a+b a+b+c
Example 11 Prove that [2a 3a+2b 4a+3b+2c|=a’.
3a 6a+3b 10a+6b+3c

Solution Applying operations R, — R, — 2R, and R, — R, — 3R, to the given
determinant A, we have

a a+b a+b+c
A=|0 a 2a+b
0 3a 7a+3b
Now applying R, = R, — 3R,, we get
a a+b a+b+c
A=10 a 2a+b
0 O a
Expanding along C,, weobtain
a 2a+b
Azao +0+0

za(@-0=a(a@=a
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Example 12 Without expanding, prove that

X+Y y+2Z Z+X
A=| z X y |=0

1 1 1

Solution Applying R, - R, + R, to A, we get
X+Y+2Z X+y+Z X+y+2Z
A= z X y

1 1 1

Since the elements of R, and R, are proportional, A = 0.
Example 13 Evaluate

1 a bc
A=|1 b ca
1 c ab
Solution Applying R, - R, - R, and R, — R, - R,, we get
1 a bc
A=10 b—a c(a-b)
0 c—-a b(a-c0)

Taking factors (b —a) and (c —a) common from R, and R,, respectively, we get

1 a bc
A=(b-a((c-a|0 1 -c
0 1 -b

=(b—-a) (c—a) [(—b + )] (Expanding along first column)
=(a-b)y(b—-c)(c—-a)

b+c a a
Example 14 Provethat | b c+a b |=4abc
c c a+b
b+c a a

SolutionLet A=| b c+a b
c c a+b
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Applying R, — R —R,—R,t0A, we get

0 2 -2b

A=|b c+a b

c ¢ a+b
Expanding along R, we obtain
c+a b c+a
c ¢c

A=0

+ (—2b) ‘

—(—ZC)‘b b
c a+b c a+b
=2c(@ab+b>-bc)—2b(bc—-c?—ac)
=2abc+2ch?-2Dbc*-2bc+ 2bc?+ 2abc
=4 abc
X X 1+x
Example 151f x, y, zare differentand A=|y y* 1+ y’[=0, then
z 7 1+7
show that 1 + xyz=0
Solution We have

X X 1+
A=ly y? 1+y®
z 22 1+7
X X2 x x> X
=y ¥* I+ly ¥ ¥’| (Using Property 5)
Vi z 2 7
1 x X 1 x x°
= (D% y yi+xyzll y VP (Using C,<>C, and then C, <> C))
1 z 72 1 z 7
1 x X
=1y y|U+xyz)

1 z 7
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1 X NG

= (1+xyz)[0 y-x Yy -X° (Using R,»R-R and R, > R-R))
0 z-x Z*-%
Taking out common factor (y —x) from R, and (z—x) from R, we get

1 x x

A= (I+xyz) (yX) (z=)|0 1 y+X
0 1 z+x

=(1+xy2) (y—X) (z—X) (z-Y) (on expanding along C))
SinceA=0and x, y, zare dl different,i.e, x—y#0,y—z#0, z—x# 0, we get
1+xyz=0
Example 16 Show that

1+a 1 1 111

1 1+b 1 =abc(1+—+6+—j=abc+bc+ca+ab
a c

1 1 1+c

Solution Taking out factors a,b,c common from R, R, and R,, we get
l +1 l
a

1

L.H.S. = abc 5

ol ok,

|

| =
+

=

Olkr T|k

Applying R — R, + R,+ R, we have

A= abc
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= abc(1+1+£+lj
a b c

—+1
c

Now applying C,— C,-C,C,— C,—C, we get
100

Olk, Tlk P

1 1
C

A= abc(1+1+£+ij 10
a b

C

01

Ol Tl

1

= abc(1+ 1, % + —j[l(l— 0]

a C

1 1 1
= abc(1+E+E+Ej =abc+bc+ca+ab=RH.S.

| == Note| Alternately try by applying C, — C, —C, and C, - C, — C,, then apply
C,—>C,-aC,

EXERCISE 4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove
that:

a x+a a-b b-c c-a

1. |y b y+b[=0 2. |b-c c-a a-b=0
Z C z+cC c-a a-b b-c
2 7 65 1 bc a(b+c)

3. |3 8 75/=0 4. L ca b(c+a)=0
5 9 86 1 ab c(a+b)
b+c qg+r y+z a p x

5 |c+a r+p z+x(=2b q vy
a+b p+q x+y cr z
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0 a -b -a® ab ac
6. |[-Fa 0 —c|=0 2 |ba -b* bc|=4a’b’c®
b ¢ 0 ca ¢ -

By using properties of determinants, in Exercises 8 to 14, show that:

1 a a
8. () 1 b b’|=(a-b)(b-c)(c-a)
1 ¢ c?
1 1 1
(i) [a b c|=(a-b)(b-c)(c-a)(a+b+c)
a® b ¢
X X yz
0. IV ¥ 2=(x=y) (y-2) (2=X) (y +yz+ 2
z 22 xy

X+4 2X 2X
10. () | 2 x+4  2x |=(5x+4)(4-x)’
2X 2X X+

ytk y y
)|y y+tk vy =k? (3y+ k)
y y ytk
a-b-c 2a 2a
1. ()| 2o b-c-a 2b =(a+b+c)3
2c 2c c—a-b
X+ Yy+2z X y

(ii) z Y+ Z+2X y [=2(x+y+ z)3
z X Z+X+2y



12.

13.

14.
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1 x X
x> 1 X =( - x3‘)2
X X2 1
1+a®-b? 2ab -2b
20 1-a*+b®  2a |=(l+a’+ b2)3
2b -2a 1-a%-b?
a’+1 ab ac
ab b’+1 bec |=1+a?+b?+c?
ca cb 2+

Choose the correct answer in Exercises 15 and 16.

15.

16.

Let A be asguare matrix of order 3 x 3, then |kA | is equal to

(A) KIA| (B) K*|A] ©) KJA] (D) 3k]A]
Which of thefollowing is correct

(A) Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is anumber associated to a square matrix.

(D) None of these

4.4 Areaof aTriangle
In earlier classes, we have studied that the area of a triangle whose vertices are

121

L . 1
(X, ¥y, (X, y,) and (X, y,), is given by the expression E[xl(yz—ys) + X, (YY) +

X, (Y,~Y,)]. Now this expression can be written in the form of a determinant as

1X1 y, 1
== 1
A 2’% Y,

Xy 1

Remarks
(i) Since area is a positive quantity, we always take the absolute value of the

determinantin (1).

- (D
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(i) If areais given, use both positive and negative values of the determinant for
calculation.
(i) Theareaof thetriangle formed by three collinear pointsis zero.

Example 17 Find the area of the triangle whose verticesare (3, 8), (— 4, 2) and (5, 1).
Solution The area of triangleis given by

3 81
-4 2 1

511

N | =

A=

= %[3(2—1)—8(—4—5)+1(—4—10)]
1 61
== (3+72-14) = >

Example 18 Find the equation of thelinejoining A(1, 3) and B (0, 0) using determinants
and find kif D(k, O) is a point such that area of triangle ABD is 3sq units.

Solution Let P(x, y) beany point on AB. Then, areaof triangle ABPiszero (Why?). So

10 0
-1 3 =0
2
Xy
. 1
Thisgives E(y—3x) =0ory=3x,

which isthe equation of required line AB.
Also, since the area of the triangle ABD is 3 sg. units, we have

L 1 3
> 0 0 J=+3
k O
This gives, _—gkzis, e, k=F 2
|[EXERCISE 4.3|
1. Find areaof thetrianglewith vertices at the point given in each of thefollowing :
(i) (1,0),(6,0), (4,3 (i) (2,7),(1,1),(10,8)

(i) (-2,-3),(3,2), (-1,-8)
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2. Show that points
A(@a b+c),B (b c+ a),C(c a+ b)arecoallinear.
3. Find values of kif areaof triangle is4 sq. units and vertices are
(i) (k0),(4,0),(0,2 (i) (-2,0),(0,4),(0.K
4. (i) Findequation of linejoining (1, 2) and (3, 6) using determinants.
(i) Find equation of linejoining (3, 1) and (9, 3) using determinants.
5. If areaof triangleis 35 sg unitswith vertices (2, —6), (5, 4) and (k, 4). Thenkis
(A) 12 (B) -2 (C) —12,-2 (D) 12,2
4.5 Minorsand Cofactors
In this section, we will learn to write the expansion of a determinant in compact form
using minors and cofactors.

Definition 1 Minor of an element a, of a determinant is the determinant obtained by
deleting itsith row and jth columnin which element &, lies. Minor of an element a, is
denoted by M, .

Remark Minor of an element of a determinant of order n(n > 2) is a determinant of
order n—1.

Example 19 Find the minor of element 6 in the determinant A =

~ & P
© 01N
© o W

Solution Since 6 liesin the second row and third column, itsminor M. is given by
12 : : :
M, = ‘7 g = 8 —14 = —6 (obtained by deleting R, and C, in A).
Definition 2 Cofactor of an element &, , denoted by A is defined by
A, = (1)1 M, where M, is minor of a,.

_2‘

Example 20 Find minors and cofactors of al the elements of the determinant ‘ 4 3

Solution Minor of the element &, isM,
Herea K = 1. So M = Minor of a =3
M _,= Minor of the element a , = 4
M,, = Minor of the element a, = -2
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M., = Minor of the elementa,, = 1
Now, cofactor of a; isA,. So

A, =Dt M, =(-1)*(3) =3
A,=(D)"2 M,=(-1)>4)=-4
A, =12t M, = (-1 (-2) =2
A,=(-1)2"2 M,=(-1)*1=1

Example 21 Find minors and cofactors of the elements a , a,, in the determinant

&, & Y3
A= |8y 8p By
83 83 Gg3
Solution By definition of minors and cofactors, we have

_ ~ B2 Ay
Minor of a,, = M, = Ay By 2 % %

Cofactor of &, =A,, = (-1)** M, =a,, a,—-a,a,

a, a3

Minor of a,, = M,, = gy Ay 2% sy

Cofactor of G = A21 = (D= M21 = (-1 (a12 - a,ay) = -a,a,t a,a,;,
Remark Expanding the determinant A, in Example 21, along R , we have

5 8 8y
DT Ay ey ay

3
— (_1)1+1 _1)1+2
A=EDTa Sy g3 DT, 83 g3 13

11

=a, A +a,A +a,A, where A, is cofactor of a,
= sum of product of elements of R, with their corresponding cofactors
Similarly, A can be calculated by other fiveways of expansionthatisalongR,, R,
C,C,and C.
Hence A = sum of the product of elements of any row (or column) with their
corresponding cofactors.

If elements of arow (or column) are multiplied with cofactors of any
other row (or column), then their sum is zero. For example,
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A= a]_'lA21 + a12'6\22 + a13'6\23

a, & a; 4y a; &,
= —1)+t ar —1)1+2 + —1)1+3
2 ) 8 g 2, ) 83 8g3 2, 1) 3 Ay
1 @y 8y
= |8 &, &3 =0(since R, and R, areidentical)
8y 8 ag

Similarly, we can try for other rows and columns.

Example 22 Find minors and cofactors of the elements of the determinant

2 3 5
6 0 4|andverifythata, A, +a,A +a,A =0
1 5 7

0 4
Solution We have M, = ‘ 5 _7‘ =0-20=-20; A = (-1)**(-20) = -20

6 4

M,=| _4=-42-4=-46; A, =(-1)"?(-46) = 46
6 0

M,=|, 5| =30-0=30; A, = (-1)*3(30) = 30
35

M, =|g 4=21-25=-4 A, = (1) (-4) =4
2 5

M,=|, _, =-14-5=-19, A,, = (-1)*?(-19) = -19
2 -3

M,=|; g|=10+3=13; A,, = (-1)2?(13) = -13
-3 5

M, =|o 4 =-12-0=-12 A, = (-1 (-12) = 12
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2 5
M, = ‘ s 4‘ -8-30=-22 A, = (-1)%?(-22) = 22
2 -
and My=lg o =0+18=18; A, = (-1)*3(18) = 18

Now a,=2,a,=-3,a,=5 A, =-12,A,,=22,A,=18
& all ASl + a12 A32 + alS A33
=2(-12)+(-3) (22 +5(18) =-24-66+90=0

|EXERCISE 4.4
Write Minors and Cofactors of the elements of following determinants:
L 2 —4‘ (i) a c
0 3 b d
100 1 0 4
2. (|0 10 (i) |3 5 -1
0 01 01 2
5 3 8
3. Using Cofactors of elements of second row, evaluateA = |2 0 1|,
1 2 3
1 x yz
4. Using Cofactors of elements of third column, evaluateA= |1 Yy 2
1 z xy
8, &y &3
5. IfA=1ay &, axs andA;isCofactorsof a, then value of A is given by
83 83 g3

(A) a“11A31+ a12 A32 + a“13 A33 (B) a11A11+ a12 A21 + a“13 ASl
(C) a'Zl A11+ a'22 A12 + a'23 A13 (D) a11A11+ aZl A21 + a?l ASl
4.6 Adjoint and Inverseof aMatrix

In the previous chapter, we have studied inverse of a matrix. In this section, we shall
discuss the condition for existence of inverse of amatrix.

Tofind inverse of amatrix A, i.e., A™ we shall first define adjoint of a matrix.
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4.6.1 Adjoint of a matrix

Definition 3 The adjoint of asquare matrix A = [a,] . , is defined as the transpose of
thematrix [A ] |, . whereA, isthe cofactor of the element a,. Adjoint of the matrix A
is denoted by adj A.

&1 8 A3
Let A=lay ap ay
83 83 g
All A12 A13 All A21 A31
Then adjA=Transposeof |A, A,, Ax|=|A, A, A,
A31 A32 A33 A13 A23 A33
: : 2 3
Example 23 Findadj A for A = 14
Solution We have A, =4,A,=-1 A, =-3,A,=2
Hence adj A= Aa Aﬂ =[4 _3}
A=A, Ayl |1 2
Remark For a square matrix of order 2, given by
A= R a12}
Sl Ay

Theadj A can also be obtained by interchanging a,, and a,, and by changing signs

ofa,anda,,i.e,
adj A= “‘@ = |:a22 aj

Change sign Interchange
We state the following theorem without proof.
Theorem 1 If A be any given square matrix of order n, then
A(adj A) = (adj A) A = |A]I,

where | istheidentity matrix of order n
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Verification
, dp a3 An Ax Ay
Let A=|3; 3» a3 thenadj A=|An Axp Ay
A 8p Ay A Ay Ag

Since sum of product of elements of a row (or a column) with corresponding
cofactorsis equa to |A | and otherwise zero, we have

Al 0 0 100
A(adjA)=| 0 |A] 0|=|A] |0 1 O|=|AI
0 0 |A 001

Similarly, we can show (adj A) A = |A| |
Hence A (adj A) = (adj A) A = |A] |

Definition 4 A square matrix A is said to be singular if |A| =0.

1 2
For example, the determinant of matrix A = [ 4 8} iszero

HenceA isasingular matrix.

Definition 5A square matrix A is said to be non-singular if |A| = 0

112 |A|—12—46—20
Let A—34.en_3____¢_

HenceA isanonsingular matrix
We state the following theorems without proof.

Theorem 2 If A and B are nonsingular matrices of the same order, then AB and BA
are also nonsingular matrices of the same order.

Theorem 3 The determinant of the product of matrices is equal to product of their
respective determinants, that is, |AB| = |A| |B|, where A and B are square matrices of
the same order

Al 0 0
Remark We know that (adj A) A= |A] 1=| 0 |A] 0

0 0 |A|
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Writing determinants of matrices on both sides, we have

Al 0 0
|(adjA)A| = |0 |A] O
0 0 |A
10
ie adj A)[ 1Al = |Af0 1 (Why?)
00 1
e |(adj A)[ Al =|AF (1)
ie (adj A)| = |A ]

In generdl, if A is a square matrix of order n, then |adj (A)|=|A "~

Theorem 4 A square matrix A isinvertibleif and only if A isnonsingular matrix.
Proof Let A beinvertible matrix of order n and | be the identity matrix of order n.
Then, there exists a square matrix B of order n such that AB = BA =1

Now AB=1. So|AB| = |I| or |A] |B] =1 (since|l|=1|AB|=|A|B|)
Thisgives |A|# 0. Hence A is nonsingular.

Conversely, let A be nonsingular. Then |A| =0

Now A (adj A) = (adj A) A = |A] (Theorem 1)
1 . 1 .
or A —adJAj=(—adeJA=|
[IAI |A]
1 .
or AB=BA=I,WhereB=madJA
. : 1 .
Thus Aisinvertibleand A = madJA
13 3
Example 24 1f A=|1 4 3|, then verify that A adj A = |A]|I. Also find A%
13 4

Solution We have |A| =1(16-9) -3 (4-3) +3(3-4)=1#0
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NowA =7 A,=-1A ., =-1A, =-3A,=1A_=0A, =3 A,=0,
A, =1
7 -3 -3
Therefore ajA=|-1 1 0
-1 0 1
1 3 3][ 7 -3 -3
Now A@jA)=|14 3||-1 1 O
1 3 4]|-1 0 1
[7-3-3 -3+3+0 -3+0+3
=|7-4-3 -3+4+0 -3+0+3
| 7-3-4 -3+3+0 -3+0+4
100 100
=10 1 0|=() |01 0|=|A.I
|0 01 0 01
7 -3 -3 7 -3 -3
Also |A|’1=iade = 1 -1 1 0ol=(-1 1 O
A !

2 3 1 -2
Example 25 If A = L ~ }and B:[_l 3 } then verify that (AB)™* = B*A™.
uti h _ 2 3|1 2| |-1 5
Solution We have AB = 1 —all-1 375 -14

Since, |AB| =—11+0, (AB)* exists and is given by

1. 1[-14 -5 1{14 5}
1= —adj(AB)=—— =
(AB) = [ag  (AB) 11{ 5 _} 15 1

Further, |A| =—11#0and |B| = 1+ 0. Therefore, A~ and B both exist and are given by

1[-4 3] . [3 2
A—l: _— ,B =
11| -1 2 11
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21| -4 - - -
Therefore B’lA’lz—i 3 3 :_i 14 :i 145
11/1 1(|-1 2 11| -5 - 11/ 5 1

Hence (AB)* =B*A*

2 3
12
wherel is2 x 2 identity matrix and O is2 x 2 zero matrix. Using this equation, find A=.

Solution We have A=A .A= [i 3 [2 3} :[7 12}

Example 26 Show that the matrix A = } satisfies the equation A2— 4A + 1= 0,

2|1 2] |4 7
) {7 12} [8 12} [1 o} {o o}
Hence A°—-4A+1= - + = =0
4 7 4 8 01 00
Now A2—4A +1=0
Therefore AA—-4A =—|
or A AADHY-4AAT==1A1 (Post multiplying by A~ because |A| # 0)
or AAAL -4l =—A1
or Al —4l = — A1
4 0] |2 3 2 -3
o N N R
a2 |2 -
Hence A :[—1 2}
|EXERCISE 4.5
Find adjoint of each of the matricesin Exercises 1 and 2.
1 -1 2]
[1 2} > 12 3 s
3 4 -2 0 1]
Verify A (adj A) = (adj A) A =]A| | in Exercises 3 and 4
1 -1 2]
5 [_24 _36} . |3 0 -2
1 0 3]
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Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

11.

12.

13.

14.

15.

16.

17.

18.

- _ 1 2 3
A I I R
- - 0 05
10 0 2 1 3 1 -1 2
330 914 -10 10. |10 2 -3
52 -1 -7 2 1 13 -2 4
1 0 0

0 cosa  sina

|0 sna -cosa

LetA = 37 dB = ° 8 Verify that (AB)* =Bt A

et—25an—79.er|ytat()- :
3 1

IfA= [_1 2]show that A2 —5A + 71 = O. Hence find A=

3 2
For the matrix A = [1 J , find the numbersa and b such that A2+ aA + bl = O.

1 1 1
ForthematrixA={1 2 -3
2 -1 3
Show that A*6A2+ 5A + 111 = O. Hence, find A=
2 -1 1
IfA=|-1 2 -1
1 -1 2
Verify that A3 — 6A% + 9A — 41 = O and hence find A=
Let A be anonsingular square matrix of order 3 x 3. Then |adj A | isequa to
(A) A (B) IAP ©) I1AP (D) 3|A|
If Alisan invertible matrix of order 2, then det (A) isequal to

1
(A) () B) gy ©1 (D) 0
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4.7 Applicationsof Determinantsand M atrices

In thissection, we shall discuss application of determinants and matricesfor solving the
system of linear equationsin two or three variablesand for checking the consistency of
the system of linear equations.

Consistent system A system of equationsis said to be consistent if its solution (one
Or more) exists.

Inconsistent system A system of equations is said to be inconsistent if its solution
does not exist.

|@=—Note|In this chapter, we restrict ourselves to the system of linear equations
having unique solutionsonly.

4.7.1 Solution of system of linear equations using inverse of a matrix
L et usexpressthe system of linear equations as matrix equations and solve them using
inverse of the coefficient matrix.

Consider the system of equations
ax+by+cz=d
a,x+by+c,z=d,
ax+by+c,z=d,

a b ¢ X d;
Let A=|a b, ¢ |, X=y|andB=|d,
8 by o z d,

Then, the system of equations can be written as, AX =B, i.e,,
a b ocf|x dy
a b ||yl =4
a by G|z ds
If A isanonsingular matrix, then itsinverse exists. Now

AX =B
or A1 (AX)=A1lB (premultiplying by A™)
or (ATA) X =A1B (by associative property)
or IX=A1B
or X=A1B

Thismatrix equation provides unique solution for the given system of equationsas
inverse of amatrix isunique. This method of solving system of equationsisknown as
Matrix Method.
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If A isasingular matrix, then |A| = 0.
In this case, we calculate (adj A) B.

If (adj A) B # O, (O being zero matrix), then solution does not exist and the
system of equationsis called inconsistent.

If (adj A) B = O, then system may be either consistent or inconsistent according
asthe system have either infinitely many solutions or no solution.

Example 27 Solve the system of equations
2x+5y=1
X+2y=7
Solution The system of equations can be written in the form AX = B, where

o} e

Now, |A| =—11= 0, Hence, A is nonsingular matrix and so has a unique solution.

Note that A= —i{ > }
11/-3 2
Therefore X=AB=-— i[ 2 _5}[1}
11/-3 2 || 7
_ X 1/-33| | 3
Sl
Hence x=3,y=-1
Example 28 Solve the following system of equations by matrix method.
3X—-2y+3z=8
2xX+y—z=1
Ax -3y +2z=4
Solution The system of equations can be written in the form AX = B, where
3 -2 3 X 8
A=l2 1 -1, ,X=|y|andB=|1
4 -3 2 z 4

We see that
|A| =3(2-3)+2(4+4)+3(-6-4)=-17%0
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Hence, A isnonsingular and so itsinverse exists. Now

A11 =-1, A12 =-8, A13 =-10
A21 =5, Azz = -6, A23 =
A31 =-1 A32 =9, A33 =
L -1 -5 -1
Therefore Al = 7 -8 -6 9
-10 1 7
1 -1 -5 -1||8
X=A"B=-—| -8 -6 9|1
o 17
-10 1 7 4
X =17 1
i.e y|=- YR I P
17
Z -51 3
Hence x=1ly=2andz=3.

Example 29 The sum of three numbersis 6. If we multiply third number by 3 and add
second number toit, we get 11. By adding first and third numbers, we get double of the
second number. Represent it algebraically and find the numbers using matrix method.

Solution Let first, second and third numbers be denoted by X, y and z, respectively.
Then, according to given conditions, we have
X+y+z=6
y+3z=1
X+z=2y orx—2y+z=0
This system can be written asA X = B, where

111 X 6
A= |0 1 3| X=|y|ladB=|11
1 21 z 0
Here |A| =1(1+6) — (0 —3)+(0—1) = 9= 0. Now we find adj A
A, =1(1+6)=7, A,=-(0-3) =3 A,=-1
A,=—(1+2=-3,  A,=0, Ay=-(-2-1)=3

A,=(B-1)=2 A,=-(3-0=-3, A, =(1-0)=1
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Hence

Thus

Since

or

Thus

1. x+2y=2
2X+3y=3
4. xX+y+z=1

2X+3y+2z=2
ax+ay+2az=4

7. X+2y=4
x+3y=5
10. 5x+2y=3
X+2y=5

7 3 2
ajA=|3 0 -3
-1 3 1
7 83 2
A= ag(A)=< 3 0 -3
A 13 1
X=A1B
7 3 276
x=33 0o =3|u
%1 3 10
X 42-33+0] 9 1
y|_ 1|18+ 0+0|_1|18(_|2
z 9 -6+33+0] 9 |27 3

x=1y=2,2z=3

EXERCISE 4.6
Examine the consistency of the system of equationsin Exercises 1 to 6.
2. 2x-y=5 3. Xx+3y=5
Xx+y=4 2x+6y=8
5 3xy-2z=2 6. 5x—y+4z=5
2y—z=-1 2Xx+3y+52=2
3x-5=3 S5X—2y+6z=-1
Solve system of linear equations, using matrix method, in Exercises 7 to 14.
8. 2x—-y=-2 9. 4x-3y=3
3X+4y=3 3x-5y=7
11. 2x+y+z=1 12. x—-y+z=4
x—2y—z=g 2x+y—-3z=0
3y—-5z=9 X+y+z=2

13. 2x+3y+3z=5
X—2y+z=-4

3X-y—-2z=3

14, Xx—-y+2z=7

3X+4y—-52=-5
2X—-y+3z=12
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16.
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2 3 5
If A=|3 2 —4| find A Using A solve the system of equations
1 1 -2
2X—-3y+5z=11
3X+2y—-4z= -5
X+y—-2z= -3

The cost of 4 kg onion, 3 kg wheat and 2 kg riceisRs60. The cost of 2 kg onion,
4 kg wheat and 6 kg riceis Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg
riceisRs 70. Find cost of each item per kg by matrix method.

Miscellaneous Examples

Example 30 If a, b, ¢ are positive and unequal, show that value of the determinant

ab c
A=|b c¢ ajisnegative.
c awb

Solution Applying C, — C, + C, + C, to the given determinant, we get

a+b+c b c 1 boc
A=la+b+c c a =(a+b+c) |1l c a
a+b+c a b 1l ab
1 b C
=(@a+b+c) |0 c-b a-c|(AppyingR,—»R-R,andR,»>R~R)
0 a-b b-c

=(@+b+c)[(c—b)(b-c)-(a-c)(a—b)] (ExpandingaongC)
(@+ b+ c)(—a*—b*~c®+ab+ bc + ca)

-1
> (a+ b+ c) (2a2+ 27+ 2¢2 — 2ab — 2bc — 2ca)

= @+ b+ g [@-by+ (- 0f+ (c—a]

which is negative (sincea+ b+ c>0and (a—b)? + (b—c)’+ (c—a)>> 0)
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Example 31 1f a, b, ¢, arein A.B, find value of

2y+4 5y+7 8y+a
3y+5 6y+8 9y+b
dy+6 7y+9 10y+c

Solution Applying R, — R, + R,— 2R, to the given determinant, we obtain

0 0 0

3y+5 6y+8 9y+b | _ (Since2b = a + ¢)
4y+6 7y+9 10y+c

Example 32 Show that

(y+z)  xy x
A=| w  (x2) vz [=2xyz(x+y+2)?
Xz yz o (x+y)

Solution Applying R, = xR, R, = yR,,R, = ZR, to A and dividing by xyz, we get

x(y+z) Xy X'z
1 2
A=—| W y(x+2)  yz
XyzZ 2
xz* yZ' z(x+y)

Taking common factors x, y, zfrom C, C, and C,, respectively, we get

(y+z)) X X

A= Xyz yz (X+ Z)Z yz
Xyz , , 2
z z (x+y)

ApplyingC, - C~-C, C,—» C~C ,we have

(y+ z)2 x> —(y+ z)2 X —(y+ z)2
2 2_y2 0

A=| Yy (x+2)
z 0 (x+y) -2
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Taking common factor (x +y + 2) from C, and C,, we have
(y+z) x—(y+2) x—(y+2)

A=(x+y+22| ¥ (x+2)-y 0
z 0 (x+y)-12

ApplyingR, - R - (R, + R, we have

2yz -2z -2y
A=(X+y+2? |y X-y+z 0
z 0 X+Yy-2

Applying C, - (C, + % C)and C, —)[CS—F%CI)  we get

2yz O 0

A=(X+y+2? |y X+z y7
2 ZZ

z — X+
y

Finally expanding along R , we have
A=(x+y+2P 2y [(x+2) (x+y) -y =(x+y+2?°(2y2) (¥ +xy+x9)
=(x+y+2°(2xy2)
1 1 2|20 1
Example33Useproduct |0 2 3| | 9 2 -3|tosolvethesystemof equations
3 2 4 6 1 -2
X—y+2z=1
2y—-3z=1
X-2y+4z=2
1 -1 2||-2 0 1
Solution Consider theproduct |0 2 -3|| 9 2 -3
3 -2 4 6 1 -2
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[—2— 9412 0-2+2 1+3-4 100
=| 0+18-18 0+4-3 0-6+6/=|0 1 O
| —6-18+24 0-4+4 3+6-8 0 01
1 1 2] [=20 1
Hence 0 2 3 =/9 2 3
13 2 4 6 1 -2
Now, given system of equations can be written, in matrix form, asfollows
1 -1 2][x] 1
0 2 3l|yl=]|1
3 2 4||z 2

'x] 1 -1 27"
or y|l=10 2 -3
0
5
3

1 2 0 1
11=19 2 3
z 3 -2 4| |2 6 1 2

6+1-4
Hence x=0,y=5andz=3
Example 34 Prove that
a+bx c+dx p+0ox acop
A= |lax+b ox+d px+q|=1-x*)b d q
u v w u v

Solution Applying R, = R, —x R, to A, we get

a(l-x) c(1-x%) p@-x3)
A=| ax+b cx+d px+q

u v w
a c p

= 1-x*)|ax+b cx+d px+q
u v w
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Applying R, - R, —x R, we get
acop
A=(@1-x)b d q

u v

Miscellaneous Exercises on Chapter 4

X sn6 coso
1. Provethat the determinant|—sin® —x 1 | isindependent of 6.
coso 1 X
a a bc 1 a &
2. Without expanding thedeterminant, provethatlb b* cal = 1 b* b’|.
c ¢ ab 1 ¢ C

coso CosP}  cosa SN —sina
3. Evaluate | —sinp cosp 0

sing cosp  sina sinff  cosa
4. If a, band c are real numbers, and

b+c c+a a+b
A=|C+a a+b b+c|=0,

a+b b+c c+a
Show that eithera+b+c=0ora=b=c.

X+a X X
5. Solvetheequation| x x+a x [=0,a=0
X X  X+a
a bc ac+c’

6. Provethat [@°+ab b’ ac | = 4a2ec?
ab b+bc ¢
3 411 1 2 =2
7 IfAt=|-15 6 -5|andB=|-1 3 0 |, find(AB)"
5 2 2 0 2 1
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1 21

8. LetA=|-2 3 1|.Veify that
1 1 5

(i) [adj A]™ = adj (A™) (i) (A" =A
X y  X+Y

9. Evaluate| y X+y X
X+y X y
1 x y

10. Evaluate|l x+y vy

1 Xx x+vy

Using properties of determinantsin Exercises 11 to 15, prove that:

11.

12.

13.

14.

16.

o o B+y
B* v+of =(B-v) (y—0) (@ —=P) (x+B+7)
Yy v oa+p

X 1+ px
y° 1+ py’| = (1+pxy2) (x—=Y) (y—2 (z—X), where p is any scalar.
z Z 1+pZ

3a -—-atb -—-atgc
-b+a 3b -b+cl =3(a+b+c)(ab+ bc + ca)
—Cc+a -—-c+b 3c

1 1+p 1+ p+q sino.  cosa cos(a+3)
2 3+2p 4+3p+20| =1 15 |sinp cosp cos(B+8)[=0
3 6+3p 10+6p+3q siny cosy cos(y+8)

Solve the system of equations
2 3 10
—+—+— =
X y z

4
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£_§+§ =1
X Yy z

6. 9.2 _,
X 'y z
Choose the correct answer in Exercise 17 to 19.

17. If a, b, c, arein A.P, then the determinant

X+2 X+3 X+23
X+3 x+4 x+2b is
X+4 X+5 x+2C

(A)O (B) 1 (©) x (D) 2x
x 0 0
18. If x,y, zarenonzero real numbers, thentheinverseof matrix A=|0 y 0]is
0 0 z
x* 0 0 x* 0 0
(A)| 0 y' O (B) xyz| 0 y* 0
o z* o o0 z*
x 0 0 100
1 1
(© —|0 vy O (D) —|0 1 0
00 z Y20 01
1 sno 1
19. LeeA=|-sin® 1 sSnO| where0<0<2r Then
-1 -sn6 1
(A) Det(A)=0 (B) Det(A) € (2, )

(C) Det(A) e (2,4) (D) Det(A) € [2, 4]
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Summary

¢ Determinant of amatrix A =[a,],,, isgiven by |a, | =a,

¢ Determinant of amatrix A=[&111 aﬂ} isgiven by
ay 8y
|A|— % Q|
Ay Ayl a, &y —a, &y
a b ¢
¢ Determinantof amatrix A=|a, b, c, |isgivenby (expandingalongR)
a; by ¢
a b ¢
b, ca‘ 3, Cz‘ 3, bz‘
Al= = - +
||a2b2czalb3%blas%qasb3

For any square matrix A, the |A| satisfy following properties.

¢ |A’|=|A|, where A’ = transpose of A.

¢ If we interchange any two rows (or columns), then sign of determinant
changes.

4 If any two rowsor any two columns areidentical or proportional, then value
of determinant is zero.

¢ If wemultiply each element of arow or acolumn of adeterminant by constant
k, then value of determinant is multiplied by k.

4 Multiplying a determinant by k means multiply elements of only one row
(or one column) by k.

* 1f A=[g]5.q then|k. Al=K°|A|

¢ If elements of arow or acolumn in a determinant can be expressed as sum
of two or more elements, then the given determinant can be expressed as
sum of two or more determinants.

¢ If toeach element of arow or acolumn of adeterminant the equimultiples of
corresponding elements of other rows or columns are added, then value of
determinant remains same.
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Areaof atriangle with vertices (x, y,), (X,, ¥,) and (x,, Y,) is given by

x %1
A= 2 X Y, 1
X Yy 1

Minor of an element g, of the determinant of matrix A is the determinant
obtained by deleting i row and j* column and denoted by M, .

Cofactor of a, of given by A, = (- 1)) M,
Value of determinant of amatrix A isobtained by sum of product of elements
of arow (or a column) with corresponding cofactors. For example,

Al= 8, Ay + 8, A, +a, A
If elements of one row (or column) are multiplied with cofactors of elements

of any other row (or column), then their sumis zero. For example, a,, A,, + @,
A22 + a13 A23 =0

a; &, a3 AL Ay Ay

If A=|8y 8, | then adjA=|A, A, Ay |,whereA, is
aSl 332 333 A13 A23 A33

cofactor of a,

A (adj A) = (adj A) A= |A]| |, where A is square matrix of order n.
A sguare matrix A is said to be singular or non-singular according as
|A|=0or |A]|=0.
If AB = BA =1, where B is square matrix, then B is called inverse of A.
Also A* =B or B* =A and hence (A%)* =A.
A square matrix A hasinverseif and only if A isnon-singular.
_L
Al

If ax+by+cz=d

ax+b,y+c,z=d,

ax+by+c,z=d,
then these equations can be written asA X = B, where

a b ¢ X d,
A=la, b, ¢ |,X=|y|andB=|d,

& by o 4 dy

A = (adj A)
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¢ Unique solution of equation AX = B isgiven by X = A~ B, where |A| = 0.

@ A system of equation is consistent or inconsistent according as its solution
exists or not.

¢ For asguare matrix A in matrix equationAX = B
(i) |A|]=0, thereexists unique solution
(i) [A]=0and (adj A) B # 0, then there exists no solution
(i) |A|=0and (adj A) B =0, then system may or may not be consistent.

Historical Note

The Chinese method of representing the coefficients of the unknowns of
several linear equations by using rods on a cal culating board naturally led to the
discovery of smplemethod of elimination. The arrangement of rodswas precisely
that of the numbersin adeterminant. The Chinese, therefore, early devel oped the
idea of subtracting columns and rows as in simplification of a determinant
‘Mikami, China, pp 30, 93.

Seki Kowa, the greatest of the Japanese Mathematicians of seventeenth
century in hiswork ‘Kai Fukudai no Ho’ in 1683 showed that he had the idea of
determinants and of their expansion. But he used thisdevice only in eliminating a
quantity from two equations and not directly in the solution of aset of simultaneous
linear equations. ‘T. Hayashi, “The Fakudoi and Determinants in Japanese
Mathematics,” in the proc. of the Tokyo Math. Soc., V.

Vendermonde wasthefirst to recognise determinants asindependent functions.
He may be called the formal founder. Laplace (1772), gave general method of
expanding adeterminant in terms of itscomplementary minors. In 1773 Lagrange
treated determinants of the second and third orders and used them for purpose
other than the solution of equations. In 1801, Gauss used determinants in his
theory of numbers.

The next great contributor was Jacques - Philippe - Marie Binet, (1812) who
stated the theorem relating to the product of two matrices of m-columns and n-
rows, which for the special case of m= n reduces to the multiplication theorem.

Also on the same day, Cauchy (1812) presented one on the same subject. He
used theword ‘ determinant’ inits present sense. He gavethe proof of multiplication
theorem more satisfactory than Binet's.

The greatest contributor to the theory was Carl Gustav Jacob Jacobi, after
this the word determinant received its final acceptance.



Chapter 5

CONTINUITY AND
DIFFERENTIABILITY

«» The whole of science is nothing more than a refinement
of everyday thinking.” — ALBERT EINSTEIN <

5.1 Introduction

This chapter is essentially a continuation of our study of
differentiation of functions in Class XI. We had learnt to
differentiate certain functionslike polynomial functionsand
trigonometric functions. In this chapter, we introduce the
very important concepts of continuity, differentiability and
relations between them. We will also learn differentiation
of inversetrigonometric functions. Further, weintroduce a
new class of functions called exponential and logarithmic
functions. These functions lead to powerful techniques of
differentiation. Weillustrate certain geometrically obvious
conditionsthrough differential calculus. Inthe process, we
will learn some fundamental theoremsin thisarea. P TT
Sir I'ssac Newton

5.2 Continuity (1642-1727)
We start the section with two informal examples to get afeel of continuity. Consider
thefunction

1if x<0

f(x) =1, N
2,if x>0
Thisfunctionisof course defined at every y=fx)

point of thereal line. Graph of thisfunctionis (0,2)
giveninthe Fig 5.1. One can deduce from the
graph that the value of the function at nearby —¢(0,1)
points on x-axis remain close to each other _ . X
except at x = 0. At the points near and to the X'« J0 -
leftof O,i.e, at pointslike—0.1,—0.01,—0.001, Y’

thevalue of thefunctionis 1. At the points near
andtotheright of 0,i.e., at pointslike0.1, 0.01, Fig5.1



148 MATHEMATICS

0.001, thevalue of thefunctionis 2. Using the language of |eft and right hand limits, we
may say that the left (respectively right) hand limit of f at 0 is 1 (respectively 2). In
particular the left and right hand limits do not coincide. We al so observethat the value
of thefunction at x = 0 concideswith the left hand limit. Note that when wetry to draw
the graph, we cannot draw it in onestroke, i.e., without lifting pen from the plane of the
paper, we can not draw the graph of thisfunction. In fact, we need to lift the pen when
we cometo 0 from left. Thisisoneinstance of function being not continuousat x = 0.
Now, consider the function defined as

F(x) = 1if x#20
~|2,if x=0

Thisfunction is also defined at every point. Left and the right hand limitsat x =0
are both equal to 1. But the value of the
function at x = 0 equals 2 which does not
coincide with the common value of the left
and right hand limits. Again, we note that we
cannot draw the graph of the function without
lifting the pen. Thisisyet another instance of < >
afunction being not continuous at x = 0. I

Naively, we may say that a function is X'< lo
continuous at afixed point if we can draw the Y’

Fig5.2

graph of thefunction around that point without
lifting the pen from the plane of the paper.

Mathematically, it may be phrased precisely asfollows:

Definition 1 Suppose fisareal function on a subset of the real numbersand let ¢ be
apoint in the domain of f. Then f is continuous at c if

limf ()= (0)

Moreelaborately, if theleft hand limit, right hand limit and the val ue of thefunction
at x = c exist and equal to each other, then f is said to be continuous at x = ¢. Recall that
if the right hand and left hand limits at x = ¢ coincide, then we say that the common
valueisthelimit of thefunction at x = c. Hence we may also rephrase the definition of
continuity as follows:. a function is continuous at x = c if the function is defined at
x = ¢ and if the value of the function at x = ¢ equals the limit of the function at
x = c¢. If fisnot continuous at ¢, we say f is discontinuous at ¢ and c is called a point
of discontinuity of f.
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Example 1 Check the continuity of the function f given by f(x) = 2x + 3at x = 1.

Solution First note that the function is defined at the given point x = 1 and itsvalueisb.
Then find the limit of the function at x = 1. Clearly

limf (x)=lim(2x+3) =2(1)+3=5
Xx—1 X—>1

Thus lem f(x)=5= (1)
Hence, f is continuous at x = 1.

Example 2 Examine whether the function f given by f(X) = x2 is continuous at x = 0.

Solution First note that the function is defined at the given point x = 0 and itsvalueisO.
Then find the limit of the function at x = 0. Clearly

limf(x)=limx*=0?=0
X—0 X—>0

Thus !(lm) f(x)=0= f(0)
Hence, f is continuous at x = 0.
Example 3 Discuss the continuity of the function f given by f(x) = | x| at x = 0.
Solution By definition
-x,if x<0
) = X, if x>0
Clearly the function is defined at 0 and f(0) = 0. Left hand limit of fat Ois

limf(x)=lim(=x)=0
Xx—0" X—>0"
Similarly, theright hand limitof fat Ois

lim f(x)=limx=0

Xx—0" x—0"

Thus, theleft hand limit, right hand limit and the val ue of the function coincide at
X = 0. Hence, f is continuous at x = 0.

Example 4 Show that the function f given by

X +3, if x20
09 =1y, if x=0

is not continuous at x = 0.
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Solution The function is defined at x =0 and itsvalue at x = 0is 1. When x # 0, the
functionisgiven by apolynomial. Hence,

limf(x) = lim(x®+3)=0°+3=3
x—=>0 x—0

Sincethelimit of f at X =0 doesnot coincidewith f(0), thefunctionisnot continuous
at x = 0. It may be noted that x = 0 isthe only point of discontinuity for this function.

Example 5 Check the points where the constant function f(x) = k is continuous.
Solution Thefunction isdefined at all real numbers and by definition, itsvalue at any
real number equals k. Let ¢ be any real number. Then

limf(x) = limk=k

X—>C X—>C

Sincef(c) =k = lim f(x) for any real number c, the function f is continuous at

X—>C

every real number.

Example 6 Prove that the identity function on real numbers given by f(x) = x is
continuous at every real number.

Solution The function is clearly defined at every point and f(c) = ¢ for every real
number c. Also,

limf(x) = limx=c
X—=>C X—>C
Thus, !(Im f(x) = ¢ = f(c) and hence the function is continuous at every real number.
Having defined continuity of afunction at a given point, now we make a natural

extension of thisdefinition to discuss continuity of afunction.

Definition 2 A real function f is said to be continuousif it is continuous at every point
in the domain of f.

This definition requires a bit of elaboration. Suppose f is afunction defined on a
closed interval [a, b], then for f to be continuous, it needs to be continuous at every
point in[a, b] including the end points a and b. Continuity of f at a means

lim f(x)=f(a)
X—a

and continuity of f at b means
Iirpﬁ f(X) = f(b)

Observe that lim f(x) and Iirg f (x) do not make sense. As a consequence

X—a

of this definition, if f is defined only at one point, it is continuous there, i.e., if the
domain of f is a singleton, f is a continuous function.
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Example 7 Isthe function defined by f(X) = | x |, a continuous function?

Solution We may rewrite f as

-X,if x<0
FO9 = X, if x=0

By Example 3, we know that f is continuous at x = 0.
Let ¢ be area number such that ¢ < 0. Then f(c) = —c. Also

limf() = lim(=x=-c  (Why?)
Since !(erg f(x)= f(c), f iscontinuous at all negative real numbers.
Now, let ¢ be area number such that ¢ > 0. Then f(c) = c. Also
W00 = Jmx=c (Why?)
Since Lerlf(x) = f(c), f is continuous at all positive real numbers. Hence, f

iscontinuousat al points.
Example 8 Discuss the continuity of the function f given by f(xX) = x® + x> — 1.

Solution Clearly fisdefined at every real number canditsvalueat cisc®+ ¢2—1. We
also know that

limf(x) = lim(C+x*-1)=c®+c?-1
X—>C X—>C
Thus lim f (x) = f(c), and hencef iscontinuous at every real number. Thismeans
X—>C

fisacontinuous function.
. . . . 1
Example 9 Discuss the continuity of the function f defined by f (x) = ;L x# 0.

Solution Fix any non zero real number ¢, we have

Iimf(x):limlz1

X—>C X—=>C X C

1
Also, sinceforc=0, f(C) =E,wehave lim f (x) = f (c) and hence, fiscontinuous
X—>C

at every point in the domain of f. Thusf isa continuous function.
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Wetakethisopportunity to explain the concept of infinity. Thiswedo by analysing

1
thefunction f (x) = X near x = 0. To carry out thisanalysiswe follow the usual trick of

finding the value of the function at real numbers closeto 0. Essentially wearetrying to
find the right hand limit of f at 0. We tabulate thisin the following (Table 5.1).

Table5.1

x | 1| 03 | 02| 01=10"| 001=102| 0.001=10° 10
fox)| 1]3333.] 5 10 100=1C° | 1000=10°| 10n

We observe that as x gets closer to 0 from the right, the value of f(x) shoots up
higher. Thismay be rephrased as: the value of f (x) may be made larger than any given
number by choosing a positive real number very closeto 0. In symbols, we write

lim f(X)=+o

Xx—0"
(to be read as: the right hand limit of f (x) at 0 is plusinfinity). We wish to emphasise
that + « isNOT area number and hencetheright hand limit of f at 0 doesnot exist (as
areal number).
Similarly, the left hand limit of f at 0 may be found. The following table is self
explanatory.

Table5.2
X -1 -03 | -02| -10% - 107 -10% | — 10"
f(x) | —1 —3.333..] -5 -10 —10? - 10° - 10"
From the Table 5.2, we deduce that the Y

value of f(X) may be made smaller than any
given number by choosing a negative real
number very close to 0. In symboals,
we write

lim f(X)=—o0

X—>0" X’
(toberead as: theleft hand limit of f(X) at Ois
minusinfinity). Again, wewish to emphasise
that — o isNOT areal number and hence the
left hand limit of f at 0 doesnot exist (asareal
number). The graph of thereciprocal function
givenin Fig 5.3 isageometric representation Y’
of the above mentioned facts. Fig5.3
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Example 10 Discuss the continuity of the function f defined by

; B X+ 2,if x<1
X = x—2,if x>1

Solution The function f isdefined at all points of thereal line.
Case 11f c <1, thenf(c) = c + 2. Therefore, lim f (x)=lim f(x+2)=c+2

Thus, fiscontinuousat all real numberslessthan 1.

Case 2 If ¢ > 1, then f(c) = ¢ — 2. Therefore, Y
1,3)

Imf(x)=limXx-2)=c-2=1(c)
X—>C X—>C
Thus, fiscontinuous at all pointsx > 1.

Case 3 If ¢ = 1, then the left hand limit of f at

x=1is X

IirI] f(x)= Iir?(x+2)=1+ 2=3
Theright hand limitof fat x=11is +

limf(x)=Ilim(x-2)=1-2=-1 y
x—1" x—1"

Sincetheleft and right hand limitsof fat x =1 Fig 5.4
do not coincide, f isnot continuousat x= 1. Hence
x=1listheonly point of discontinuity of f. The graph of thefunctionisgiveninFig5.4.
Example 11 Find all the points of discontinuity of the function f defined by
X+ 2,if x<1
f(x) = 0, if x=1
X—2,if x>1

Solution Asinthe previous example wefind that f
is continuous at all real numbers x = 1. The left
handlimitof fatx=1is

Iinl] f(x)= Iinl](x+2):1+2:3
Theright hand limitof fat x=11is
Iirg f(x)= Iirg(x—2)=1—2=—1

1,3)

Since, theleft and right hand limitsof fatx =1
do not coincide, fisnot continuousat x= 1. Hence v
x = 1 isthe only point of discontinuity of f. The _
graph of the function isgiveninthe Fig 5.5. Fig 5.5
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Example 12 Discuss the continuity of the function defined by

~ X+2,if x<0
f) = —Xx+2,if x>0

Solution Observe that the function isdefined at all real numbers except at 0. Domain
of definition of thisfunctionis

D,uD,where D, ={xe R:x<0} and
D,={xe R:x>0}

Case 1 If ce D, then limf(x)=lim (x + 2)
X—>C X—>C

=c+2=f(c) and hencefiscontinuousin D,.

Case 2 If ce D,, then limf (x)=lim (- x+ 2)
X—C X—C

=—c+2=f(c) and hence f is continuous in D,
Sincefiscontinuousat all pointsinthe domain of f,
we deduce that f is continuous. Graph of this A
function isgiven in the Fig 5.6. Note that to graph Fig5.6
thisfunction we need to lift the pen from the plane

of the paper, but we need to do that only for those points where the function is not
defined.

Example 13 Discuss the continuity of the function f given by

X, if x=0 »
09 = X2, if x<0 (_’):

Solution Clearly the function is defined at

every real number. Graph of the function is “L1)

giveninFig5.7. By inspection, it seems prudent ’

to partition the domain of definition of f into X<

three digoint subsets of thereal line.

Let D,={xe R:x<0}, D,={0} and
D,={xe R:x>0}

Case 1 Atany pointinD,, we have f(x) = x* and it is easy to see that it is continuous
there (see Example 2).

Case 2 Atany pointin D, we have f(x) = x and it is easy to see that it is continuous
there (see Example 6).
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Case 3 Now we analyse the function at x = 0. The value of the function at 0 isf(0) = 0.
Theleft hand limit of fatOis

lim f(x)=limx*=0?=0

X—0" X—0"

Theright hand limitof fat Ois
limf(X)=limx=0

x—0" x—0"

Thus lim f (x) =0= f(0) and hence f is continuous at 0. This means that f is
x—0

continuous at every point in itsdomain and hence, f isa continuous function.
Example 14 Show that every polynomial function is continuous.
Solution Recall that a function p is a polynomial function if it is defined by
p(x) =a,+a x+...+a x"for some natural number n,a #0and a € R. Clearly this
function is defined for every real number. For afixed real number c, we have

lim p(x) = p(c)

X—C

By definition, p is continuous at ¢. Since ¢ isany real number, p is continuous at

every real number and hence p is a continuous function.

Example 15 Find all the pointsof discontinuity of the greatest integer function defined
by f(X) = [X], where [X] denotes the greatest integer less than or equal to x.

Solution First observe that f is defined for al real numbers. Graph of the function is
givenin Fig 5.8. From the graph it looks like that f is discontinuous at every integral
point. Below we explore, if thisistrue.

Y

/

0,3 T *—0
02T *—o

0,1) + e—o
-3,0) 1,0) 2,0) (4,0)

a0 (20 —:1,0 0
4,0) (-2,0) (-1,0) 0.-1) 30 G0

—o +(0,-2)

X'¢

—o0 T 0,-3)

N
Yl
Fig5.8
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Case 1 Let c bearea number which isnot equal to any integer. It is evident from the
graph that for al real numbers close to ¢ the value of the function isequal to [c]; i.e.,

lim f (x) =lim[x] =[c].Alsof(c) = [c] and hencethefunctioniscontinuousat all real

numbers not equal to integers.
Case 2 Let ¢ be an integer. Then we can find a sufficiently small real number
r>0suchthat [c—r] =c—1whereas[c+r] =cC.
This, intermsof limits mean that
limf(x)=c-1, limf(x)=c
X—>C X—C
Since these limits cannot be equal to each other for any c, the function is
discontinuous at every integral point.
5.2.1 Algebra of continuous functions

In the previous class, after having understood the concept of limits, we learnt some
algebraof limits. Analogously, now wewill study somealgebraof continuousfunctions.
Since continuity of afunction at apointisentirely dictated by thelimit of the function at
that point, it is reasonable to expect results analogous to the case of limits.

Theorem 1 Suppose f and g be two real functions continuous at a real number c.
Then

(1) f+giscontinuousat x=c.
(2) f—giscontinuousat x = c.
(3) f.giscontinuousat x =c.

4 (i) is continuous at x = ¢, (provided g(c) # 0).
g

Proof We are investigating continuity of (f + g) at x = c. Clearly it is defined at
x = ¢. We have

lim(f +g)(x)

Lim[f(x)+g(x)] (by definition of f+ g)

Lim f(x)+ !(Im g(x)  (by thetheorem on limits)
f(c) + g(c) (asf and g are continuous)
(f+9) (¢ (by definition of f + g)
Hence, f + g is continuous at x = c.

Proofs for the remaining parts are similar and left as an exercise to the reader.
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Remarks

(i) Asaspecial caseof (3) above, if fisaconstant function, i.e., f(x) = A for some
real number A, then the function (A . g) defined by (A . @) (X) = A . g(X) isalso
continuous. In particular if A =—1, the continuity of fimplies continuity of —f.

(i) Asaspecial case of (4) above, if f isthe constant function f(x) = A, then the

function % defined by %(x) :ﬁ is also continuous wherever g(x) # 0. In

particular, the continuity of g impliescontinuity of % .

The above theorem can be exploited to generate many continuousfunctions. They
alsoaidindeciding if certain functions are continuous or not. The following examples
illustratethis:

Example 16 Prove that every rational function is continuous.

Solution Recall that every rational function f is given by
f09=2%, 090
a(x)
where p and g are polynomial functions. The domain of fisall real numbers except
pointsat which giszero. Since polynomial functionsare continuous (Example 14), fis
continuous by (4) of Theorem 1.

Example 17 Discuss the continuity of sine function.

Solution To see this we use the following facts
limsinx=0

x—0

We have not proved it, but isintuitively clear from the graph of sin x near 0.

Now, observe that f(x) = sin X is defined for every real number. Let ¢ be areal
number. Put x = ¢ + h. If x - ¢ we know that h — 0. Therefore
limf(x) = limsinx
X—C

X—C

limsin(c+ h)

h—0

= lim[sinccosh+ coscsinh]
h—0

= lim[sinccosh] + lim[coscsinh]
h—0 h—0

=sinc+0=sinc=f(c)
Thus lim f(x) =f(c) and hence f is a continuous function.
X—C
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Remark A similar proof may be given for the continuity of cosine function.

Example 18 Prove that the function defined by f (x) = tan x is a continuous function.

Solution The function f(X) =tan x = % . Thisisdefined for all real numbers such

. T . . .
that cos x # 0, i.e.,, X # (2n +1)§ . We have just proved that both sine and cosine
functions are continuous. Thus tan x being a quotient of two continuous functionsis
continuous wherever it isdefined.

An interesting fact is the behaviour of continuous functions with respect to
composition of functions. Recall that if f and g are two real functions, then

(fog) (¥ =f(g(x)
is defined whenever the range of g is a subset of domain of f. The following theorem
(stated without proof) captures the continuity of composite functions.

Theorem 2 Suppose f and g are real valued functions such that (f o g) is defined at c.
If giscontinuous at ¢ and if f is continuous at g (c), then (f o g) is continuous at c.

Thefollowing examplesillustrate thistheorem.
Example 19 Show that the function defined by f (x) = sin (x?) isacontinuous function.

Solution Observe that the function is defined for every real number. The function
f may be thought of as a composition g o h of the two functions g and h, where
g (X) =sin xand h(x) = x2. Since both g and h are continuous functions, by Theorem 2,
it can be deduced that f is a continuous function.

Example 20 Show that the function f defined by
f() =1—x+[x]l,
where x isany real number, is acontinuous function.
Solution Defineg by g(x) =1 —x+ |x|and h by h(x) = |x| for al rea x. Then
(hog) (¥) =h(g(x)
=h(-x+[x)
=[1=x+ [x[|=f()

In Example 7, we have seen that h is a continuous function. Hence g being a sum
of apolynomial function and the modulus function is continuous. But then f being a
composite of two continuous functionsis continuous.
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|EXERCISE 5.1

Provethat the function f (X) = 5x —3iscontinuousat x =0, at x=—3and at x = 5.
Examine the continuity of the functionf(x) =2x—-1atx= 3.
Examinethefollowing functionsfor continuity.

1
(8 f(9=x-5 0 109= ¢

_x*-25
© 19 =—7%

Prove that the function f(X) = x" is continuous at x = n, where n is a positive
integer.
Isthe function f defined by
X, if x<1
f)=1. .
5 if x>1
continuous at X = 0? At x = 1? At x = 2?

(d) f()=Ix-5]|

Find all points of discontinuity of f, wheref isdefined by

6.

8.

10.

12.

13.

oxs 3 if x<2 [x]+3, if x<-3
+ 1 _ .
f(x)= _ 7. f(x)=4 -2%, if —3<x<3
2x-3, if x>2 .
6x+2, if x>3
X it w0 X it x<o0
f(X)=1 x 9. f(x)=4|x|
0, if x=0 -1 if x=0
x+1, if x>1 x2-3 if x<2
f(><)={2 . 11. f(x)=
X“+1if x<1 X2 +1, if x>2

10 1
f(x):{x 1 if x<1

X2, if x>1

Isthe function defined by
F(x) = X+ 5, ?f x<1
x-5, if x>1
acontinuousfunction?
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Discuss the continuity of the function f, where f is defined by

3 if0<x<1 2x%, if x<0
14. f(X)=<4, if 1<x<3 15, f(x)=<0, if 0<x<1
5, if 3<x<10 4x, if x>1
-2, if x<-1
16. f(x)=42x%, if —1<x<1
2, if x>1

17. Find the relationship between a and b so that the function f defined by
F(x) = ax+1, ?f x<3
bx+3, if x>3
iscontinuous at x = 3.
18. For what value of A isthe function defined by

2 . <
F(x) = A (X5 —2X), .|f x<0
4x+1, if x>0
continuous at x = 0? What about continuity at x = 1?

19. Show that the function defined by g (X) = x—[X] is discontinuous at all integral
points. Here [X] denotes the greatest integer less than or equal to x.

20. Isthefunction defined by f(X) = x2—sin x + 5 continuous at X = ?
21. Discussthecontinuity of thefollowing functions:
(@ f(X)=sinx+ cosx (b) f(X) =sinx—cosx
(c) f(X)=sinx.cosx
22. Discussthe continuity of the cosine, cosecant, secant and cotangent functions.
23. Findal pointsof discontinuity of f, where
sinx
f()=1 x
x+1, if x=0

, if x<0

24. Determineif f defined by

1.
x?sin=, if x=0
f(x)= X
0, if x=0

isacontinuousfunction?
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25. Examinethe continuity of f, where f is defined by
£(x) = Sin X—CosX, i.f x#0
-1, if x=0
Find thevalues of k so that thefunction f iscontinuous at theindicated point in Exercises
2610 29.

kcosx . T
o if x;tz .
26. f(x)=4T" ax=
3 if x=_
2
ko?, if x<2
f X) = ’ =
27. (¥ {& . atx=2
F(x) = kx+1, if x<=«
28. "~ |cosx, if x>n AX=m
£(x) = kx+1, if x<5
29. “l3x-5, if x>5 ~ AX=D
30. Find the values of a and b such that the function defined by
5 if x<2
f(x)=<ax+b, if 2<x<10
21 if x>10

isacontinuousfunction.
31. Show that the function defined by f (X) = cos (X?) is a continuous function.
32. Show that the function defined by f(X) = | cos x| is a continuous function.
33. Examinethat sin |x|isacontinuousfunction.
34. Find all the points of discontinuity of f defined by f(x) = |x|—|x+ 1|.

5.3. Differentiability

Recall thefollowing facts from previous class. We had defined the derivative of area
function asfollows:

Supposefisareal functionand cisapointinitsdomain. Thederivativeof fat cis
defined by

i e+ =

h—0 h
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d
provided this limit exists. Derivative of f at c is denoted by f ’(c) or &( f(X) .. The

function defined by

f,(x):Lingw

wherever the limit exists is defined to be the derivative of f. The derivative of f is

d . dy .
denoted by f’(x) or &(f(x)) or if y = f(x) by or y". The process of finding

derivative of afunction is called differentiation. We also use the phrase differentiate
f(x) with respect to x to mean find f’(x).
The following rules were established as a part of algebra of derivatives:
Q) uUzxzvw=uzVv
(2) (uv) =uv+ w (Leibnitz or product rule)

3 (Ej - u’v—2uv , wherever v = 0 (Quotient rule).

v %
Thefollowing table givesalist of derivatives of certain standard functions:
Table5.3
f(x) X" sinx COS X tan x
f’(x) == COS X —snx | sec?x

Whenever we defined derivative, we had put a caution provided the limit exists.
Now the natural questionis; what if it doesn’t? The questionisquite pertinent and sois

f(c+h)-

itsanswer. If lim f(©) does not exist, we say that fis not differentiable at c.

h—0
In other words, we say that afunction fisdifferentiable at apoint cinitsdomainif both

lim f(c+h)—f(c) and Tim f(c+h)—f(c)
h—0~ h h—0"
to bedifferentiablein aninterval [a, b] if itisdifferentiable at every point of [a, b]. As
in case of continuity, at the end pointsa and b, wetaketheright hand limit and | eft hand
limit, which are nothing but left hand derivative and right hand derivative of thefunction
at a and b respectively. Similarly, afunction is said to be differentiable in an interval
(a b) if itisdifferentiable at every point of (a, b).

arefiniteand equal. A functionissaid
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Theorem 3 If afunctionfisdifferentiable at apoint ¢, thenitisalso continuous at that
point.
Proof Sincef isdifferentiable at c, we have

im0 =TO _ ¢
X—-C

X—C

But for x # ¢, we have

(x) - f(c)

f(x) —f(c) = f c .(x-0)
Therefore Lim[f(x)— f(o)] = Lim[w.(x—c)}
or lim{f (] -lim[f ()] = Iim{—f(x))(:;(c)}.Iim[(x—c)]
=f’(c).0=0
or Llng f(x) =f(c)

Hence f is continuous at X = c.
Corollary 1 Every differentiable function is continuous.

We remark that the converse of the above statement is not true. Indeed we have
seen that the function defined by f (X) = | x| is a continuous function. Consider the left
hand limit

lim f(0+h)- f(0) :—_h

h—0~ h h

=-1
Theright hand limit

lim 2 @+M-1Q _h_,
h—0" h h

. . - . f(0+h)-f(0)
Since the above left and right hand limits at O are not equal, |hILT(1J 0

does not exist and hence f is not differentiable at 0. Thus f is not a differentiable
function.
5.3.1 Derivatives of composite functions

To study derivative of composite functions, we start with an illustrative example. Say,
we want to find the derivative of f, where

f(x) =(2x+ 1)
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Oneway isto expand (2x + 1)% using binomial theorem and find the derivative as
apolynomial function asillustrated below.

d o d .
0= [(2x+1)%]

= di (8x% +12x% + 6x+1)
X

=24x% + 24X+ 6

=6 (2x + 1)2
Now, observe that f(x) =(hog) (X
where g(x) =2x+ 1and h(x) = x3. Put t = g(x) = 2x + 1. Then f(x) = h(t) = t%. Thus
df dh dt
o - B@x+1p=3@x+1p.2=80.2= o

The advantage with such observationisthat it simplifiesthe calculation infinding
the derivative of, say, (2x + 1)'®. We may formalise this observation in the following
theorem called the chain rule.

Theorem 4 (Chain Rule) Let f beareal valued function which is a composite of two
dt d
functionsuandv;i.e, f=vou. Supposet=u(x) and if both pv and d—: exist, we have

df dv dt
dx  dt ox
We skip the proof of thistheorem. Chain rule may be extended asfollows. Suppose
fisareal valued function which is a composite of three functionsu, vand w; i.e.,

f=(wou)ov.Ift=v(x) and s=u(t), then

df _d(wou) dt dw ds dt

dx  dt dx ds dt dx

provided all the derivativesin the statement exist. Reader isinvited to formulate chain
rule for composite of more functions.

Example 21 Find the derivative of the function given by f(x) = sin (x?).

Solution Observe that the given function is a composite of two functions. Indeed, if
t=u(x) = x?and v(t) = sin t, then
f(X) =(vou) (X) =v(ux) =v(x?) =sin x?
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Put t = u(x) = X2 Observe that % =cost and % = 2x exist. Hence, by chain rule
X

df  dv dt
— = —-—=Cost-2X
dx dt dx
It isnormal practice to expressthe final result only in terms of x. Thus
df
—— = cost - 2x = 2X COSX?
dx
Alternatively, We can also directly proceed as follows:

y=sn(x) = ﬂzi(sin X?)
dx dx

d
= C0S X2 ™ (X3 = 2x cos x?

Example 22 Find the derivative of tan (2x + 3).
Solution Let f(X) =tan (2x + 3), u(X) = 2x + 3 and v(t) = tant. Then
(vou) (X) =v(u(x)) =v(2x + 3) =tan (2x + 3) = f(X)

dv
Thusfisacomposite of two functions. Putt = u(x) = 2x+ 3. Then ry =sec’t and

% =2 exist. Hence, by chainrule

X
AN X oe? (2x+3
dx dt dx

Example 23 Differentiate sin (cos (X?)) with respect to x.

Solution Thefunction f (X) = sin (cos (x?)) isacomposition f (X) = (wo v o u) (x) of the

three functions u, v and w, where u(x) = x?, v(t) = cost and w(s) = sin s. Put

t=u(x) = x> and s = v(t) = cos t. Observe that d—vv:coss,ﬁz—sintand E: 2X
ds dt dx

exist for al real x. Hence by a generalisation of chain rule, we have

—— =(cos9) . (—sint). (2x) = —2x sin x? . cos (cos X?)
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Alternatively, we can proceed as follows:
y = sin (cos x?)

dy_d 2 = 5 9 2
Therefore o ox sin (cos X?) = cos (cos X?) X (cos x?)
= cos (cos X?) (— sin x?) d €9
dx
=—sin x2 cos (cos X?) (2X)
=—2X sin X2 cos (Cos X?)
|EXERCISE 5.2|
Differentiate the functions with respect to x in Exercises 1 to 8.
1. sin(x*+5) 2. cos (sin x) 3. sin(ax+b)
sin (ax+b) _
4. sec (tan ({/x)) 5. cos(cx+d) 6. cos X . sir? (X°)
2+/cot(x?) 8. cos(Vx)

Prove that the function f given by

f(x) =|x-1|,xe R
isnot differentiable at x = 1.

10. Provethat the greatest integer function defined by

f(x) =[x],0<x<3
isnot differentiableat x =1 and x = 2.

5.3.2 Derivatives of implicit functions

Until now we have been differentiating various functions given in the formy = f (x).
But it is not necessary that functions are always expressed in this form. For example,
consider one of the following relationships between x and y:

X-y-n=0

X+snxy—-y=0
In the first case, we can solve for y and rewrite the relationship asy = x —m. In
the second case, it does not seem that thereisan easy way to solvefor y. Nevertheless,
there is no doubt about the dependence of y on x in either of the cases. When a
relationship between x and y is expressed in a way that it is easy to solve for y and
write y = f(X), we say that y is given as an explicit function of x. In the latter case it
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isimplicit that y isafunction of x and we say that the relationship of the second type,
above, gives function implicitly. In this subsection, we learn to differentiate implicit
functions.

o dy
Example 24 Find — if x—y =m.

dx
Solution One way isto solve for y and rewrite the above as
Yy=X—T
dy
But th — =1
ut then v
Alternatively, directly differentiating the relationship w.r.t., X, we have
d dn
—(xX— - —
OIX( y) v

d
Recall that &n means to differentiate the constant function taking value &

everywhere w.r.t., x. Thus

d d
OIX() OIX(y)
whichimpliesthat
dy _ax_,
dx dx
. dy . o
Example 25 Flnd&,|fy+smy—cosx.

Solution We differentiate the relationship directly with respect to x, i.e.,

dy d, . d

—+—(dny) = —(cosX

dx dx( Y) dx( )
whichimpliesusing chainrule

dy dy .

—+C0Sy:— =—

dx y dx snx

- dy ~ sinx

Thisgives & - 1tcosy

where yz@n+1) =
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5.3.3 Derivatives of inverse trigonometric functions
We remark that inverse trigonometric functions are continuous functions, but we will
not prove this. Now we use chain rule to find derivatives of these functions.

Example 26 Find the derivative of f given by f(X) = sin™! x assuming it exists.
Solution Lety =sin® x. Then, x=siny.
Differentiating both sides w.r.t. X, we get

1 dy
=cosy ——
dx

d 11
dx cosy cos(sintx)

whichimpliesthat

Observethat thisis defined only for cosy # 0, i.e., sim?t x # —gg e, x==-1,1,

i.e,xe (-1,1).
To makethisresult abit more attractive, we carry out the following manipul ation.
Recall that for x e (—1, 1), sin (sint X) = x and hence

coy=1-(sny)2=1-(sin(sinx))2=1-x?

Also, sincey e (—g%) cosy is positive and hence cosy = /1_ x2

Thus, for x e (-1, 1),
dy 1 1

dx cosy J1_x2

Example 27 Find the derivative of f given by f(x) = tan™ x assuming it exists.

Solution Lety =tan x. Then, x = tan y.
Differentiating both sides w.r.t. X, we get

1:sec2y&

whichimpliesthat

o 11 1 1
dx sec’y 1+tan’y 1+ (tan(tanx))? 1+ X
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Finding of thederivativesof other inversetrigonometric functionsisleft asexercise.
Thefollowing table givesthe derivatives of theremaininginversetrigonometric functions
(Table5.4):

Table5.4
f(x) cosx cotx sec™x cosecx
-1 -1 1 -1
f (X) \/1—X2 1+X2 X‘,XZ -1 X\/X2 -1
Domainof f* [ (-1, 1) R (=0, =1) U (1, 00) | (=0, —1) U (1, )
| EXERCI SE 5.3|
Find & inthefollowing:
dx

1. 2x+ 3y=sinx 2. 2x+ 3y=sdginy 3. ax+ by?=cosy
4, xy+y?’=tanx+y 5 X+ xy+y*=100 6. X3+ Xy +xy?+ =81

2X
7. sinfy+ cosxy=m 8. sin’x+cosly=1 9. y:sin—l( j

1+ X2
_y3 1 1
0. y:tan_{ffx_Xj, Lt

_ 2
11. y=cos‘1(1 X2J10<X<l

_ 2
12. y=sin‘1(1 XZJ,0<X<1

13. y:cos‘l( 2x2),_1< x<1

14 y=sint(21-x) - L ox< L

15 y—sec‘l( 1 j0<x<i
' J2
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5.4 Exponential and L ogarithmic Functions

Till now we have learnt some aspects of different classes of functionslike polynomial
functions, rational functions and trigonometric functions. In this section, we shall
learn about a new class of (related) Y
functionscalled exponential functionsand

logarithmic functions. It needs to be
emphasized that many statements made
inthissection are motivational and precise
proofs of these are well beyond the scope
of thistext.

The Fig 5.9 gives a sketch of
y=1,00=xy=10 =% y=1)=x
andy=f,(x) = x*. Observethat the curves
get steeper as the power of X increases.

Steeper the curve, faster is the rate of v
growth. What thismeansisthat for afixed Y
increment in the value of x(> 1), the Fig 5.9

increment in the value of y = f (X) increases as nincreases for n =1, 2, 3, 4. It is
conceivable that such a statement istrue for all positive values of n, wheref_(x) = x".
Essentially, this means that the graph of y = f_(X) leans more towards the y-axis as n
increases. For example, consider f, (x) = x' and f (x) = x*°. If x increases from 1 to
2, f, increases from 1 to 2'° whereas f _ increases from 1 to 2%, Thus, for the same
increment in x, f . grow faster than f .

Upshot of theabovediscussionisthat the growth of polynomial functionsisdependent
on the degree of the polynomial function — higher the degree, greater is the growth.
Thenext natural questionis: Isthere afunction which growsfaster than any polynomial
function. The answer isin affirmative and an example of such afunctionis

y =f(x) = 10~
Our claim isthat this function f grows faster than f_(x) = x" for any positiveinteger n.
For example, we can prove that 10* grows faster than f  (X) = x'°. For large values
of x like x = 10°, note that f | (x) = (10°)*® = 10°° whereas f(10%) = 10° = 10,

Clearly f(x) is much greater than f  (x). It is not difficult to prove that for all
x>10% f(x) >, (). But wewill not attempt to give aproof of thishere. Similarly, by
choosing large values of x, one can verify that f(X) grows faster than f_(x) for any
positiveinteger n.
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Definition 3 The exponential function with positive base b > 1 isthe function
y=f() =b
Thegraph of y = 10 isgiveninthe Fig 5.9.
It isadvised that the reader plotsthis graph for particular values of blike 2, 3 and 4.
Following are some of the salient features of the exponential functions:
(1) Domain of the exponential functionis R, the set of all real numbers.
(2) Range of the exponential function isthe set of all positive real numbers.
(3) The point (0, 1) is aways on the graph of the exponential function (thisis a
restatement of the fact that b° = 1 for any real b > 1).
(4) Exponential function is ever increasing; i.e., as we move from left to right, the
graph rises above.

(5) For very large negative values of x, the exponentia functionisvery closetoO. In
other words, in the second quadrant, the graph approaches x-axis (but never
meets it).

Exponential function with base 10 is called the common exponential function. In
the Appendix A.1.4 of Class X, it was observed that the sum of the series

isanumber between 2 and 3 and is denoted by e. Using this e asthe base we obtain an
extremely important exponential functiony = e~

This is caled natural exponential function.

It would beinteresting to know if theinverse of the exponential function existsand
has niceinterpretation. This search motivatesthe following definition.

Definition 4 Let b > 1 be areal number. Then we say logarithm of ato basebis x if
b*=a.

Logarithm of a to base b is denoted by log, a. Thuslog, a = xif b*=a. Letus
work with afew explicit examplesto get afed for this. We know 23 = 8. In terms of
logarithms, we may rewrite thisaslog, 8 = 3. Similarly, 10* = 10000 is equivalent to
saying log,, 10000 = 4. Also, 625 = 5% = 25% is equivalent to saying log, 625 = 4 or
log,, 625 =2.

On adglightly more mature note, fixing a baseb > 1, we may look at logarithm as
a function from positive real numbers to all real numbers. This function, called the
logarithmic function, is defined by

log,: R* = R
X — log x=y ifb=x
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Asbeforeif thebaseb = 10, we say it

is common logarithms and if b = e, then
we say it is natural logarithms. Often
natural logarithm is denoted by In. In this
chapter, log x denotes the logarithm
function to base g, i.e., In x will be written
assmply logx. TheFig5.10 givestheplots
of logarithm function to base 2, e and 10.

Some of the important observations

about the logarithm function to any base
b > 1 arelisted below:

(1) We cannot make a meaningful definition of logarithm of non-positive numbers

2
3
(4)

()

(6)

Two propertiesof ‘log’ functions are proved below:

D)

and hence the domain of log functionis R*.

y = log, x
y =log,x

y =log,;x

1,0

(=]

<

y

YI

Fig5.10

Therange of log function isthe set of all real numbers.
The point (1, 0) isaways on the graph of thelog function.

Thelog functionisever increasing,
i.e.,, as we move from left to right
the graph rises above.

For x very near to zero, the value
of log x can be made lesser than
any given real number. In other
words in the fourth quadrant the
graph approachesy-axis (but never
meets it).

Fig 5.11 givestheplot of y=e*and
y=Inx. Itisof interest to observe
that the two curves are the mirror

Fig5.11

images of each other reflected in theliney = x.

There is a standard change of base rule to obtain log, p in terms of log, p. Let
log, p= o, log, p=P andlog, a="y. Thismeansa* = p, b’ = p and b" = a.
Substituting the third equation in the first one, we have
(D) =b==p
Using thisin the second equation, we get
b? =p = b
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whichimplies B=oayoro= E. But then
Y

log, p
log,a

log, p =

(2) Another interesting property of the log function is its effect on products. Let
log, pa = o.. Then b* = pg. If log, p =B and log, g =, then b? = p and b" = g
But then b* = pq = bPby = bP +v

whichimpliesa. =+, i.e,
log, pg =log, p + log, g

A particularly interesting and important consequence of thisiswhen p=g. In
this case the above may be rewritten as

log, p* = log, p +log, p=2log p
An easy generalisation of this (left as an exercise!) is

log, p" =nlogp
for any positive integer n. In fact thisistrue for any real number n, but we will
not attempt to prove this. On the similar linesthe reader isinvited to verify

X
|09b; = log, x — log, y

Example 28 Isit true that x = €%* for all real x?

Solution Firgt, observethat the domain of log functionisset of al positivereal numbers.
So the above equation is not true for non-positive real numbers. Now, let y = %9 If
y >0, wemay takelogarithmwhich givesuslogy =log (€*¥) =log x. loge=log x. Thus
y = X. Hence x = €%9* is true only for positive values of x.

One of the striking properties of the natural exponential function in differential
calculusisthat it doesn’'t change during the process of differentiation. Thisis captured
in the following theorem whose proof we skip.

Theorem 5

d
(1) Thederivative of e w.r.t., xise i.e, &(ex) =€

d 1
(2) Thederivative of log x w.r.t., x is 1; i.e, —(logx)=—.
X dx X
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Example 29 Differentiate the following w.r.t. X:

(i) e~ (i) sin(logx),x>0 (iii) cos™ (&) (iv) eosx
Solution
(i) Lety=e™ Using chain rule, we have
dy , d B .
ol e ™ X)) =-—¢€
(i) Lety=sin(logx). Using chain rule, we have
dy d cos (logXx)
— = cos (logx)-— (logX) = ————
v (logx) dx( gx)
(i) Lety=cos? (&). Using chain rule, we have
ﬂ — _—1i ex): —€
dx  J1-(e)? dx 1- e
(iv) Lety=e¢e™s* Using chain rule, we have
dy _

o €. (-sinx)=—(dnx) e

| EXERCISE 54|

Differentiate the following w.r.t. x:

X

e 2 es'n’lx 3 ex3
snx ' :
4. din (tant %) 5. log (cos €) 6. e+e’ .. +e°
COSX
7. \/e&, x>0 8. log (logx),x>1 9 @, x>0

10. cos(logx +¢€), x>0

5.5. Logarithmic Differentiation

In this section, wewill learn to differentiate certain special class of functionsgivenin
theform

y =109 = [ue)]
By taking logarithm (to base €) the above may be rewritten as

logy = v(x) log [u(x)]
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Using chain rule we may differentiate thisto get

l.ﬂzv(x) i . U,(X) + \/(X) . IOg [U(X)]
y dx u(x)

whichimpliesthat

dy _ V(¥ (%)
dx_y{u(x) u'(X) +V'(X) Iog[u(x)]}

The main point to be noted in this method is that f(X) and u(x) must always be
positive as otherwisetheir logarithms are not defined. Thisprocessof differentiationis
known as logarithms differentiation and isillustrated by the following examples:

_ 2
Example 30 Differentiate ‘/w W.rt. X.
3X°+4x+5
x—3) (X*+4
Solution Let Y= w
(3x°“ +4x+5)

Taking logarithm on both sides, we have

1
logy= > [log (x—3) +log (% + 4) —log (3 + 4x + 5)]
Now, differentiating both sidesw.r.t. X, we get

1ay 1 1+2x_6x+4
y odx  2[(x-3) xX*+4 3x*+4x+5

dy Yy 1 N 2X 3 6Xx+4
dx 2| (x=3) x?+4 3x°+4x+5

1 /(x—3)(x2+4) 1 2x  6x+4
2\ 3% +4x+5 | (x-3) x*+4 3x%+4x+5

Example 31 Differentiate a w.r.t. X, where a is a positive constant.
Solution Lety = ax Then

or

logy=xloga
Differentiating both sidesw.r.t. X, we have
1dy

;& =loga
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dy |
or pvi yloga
Th a @) =al
us . =a‘loga
. d X d xloga xloga d
— = — = . I
Alternatively > (@) ™ ™) =e dx(x oga)

=el9a Joga=a*loga.
Example 32 Differentiate x3"%, x > 0 w.r.t. x.
Solution Let y = xsn*, Taking logarithm on both sides, we have

logy=sinxlogx

1 dy . d d .
—.— = sinx— (logX) + logx— (sin X
Therefore Y dx( gx) +log dx( )
EXC
or y ox = (smx);+ 0g X COSX
ﬂ = yl:ﬂ-i- cosxlogx}
or v »

inx| SINX
xs””{— + cosx log x}
X

Sinx— snx

X3 gnx+ X

-cosx log x

Example 33 Find % if y<+ X +x=ab,

Solution Given that y* + X/ + x* = aP.
Puttingu=y,v=xandw=x,wegetu+v+w=aP

Therefore %er_erd_w:O
dx dx dx
Now, u = y*. Taking logarithm on both sides, we have
logu=xlogy

Differentiating both sidesw.r.t. X, we have

- (D
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1 du d d
—-— = x—(logy) +log y—(X
™ OIX( gy) gydx()
= xl-ﬂﬂogy-l
y dx
du X dy «| x dy
= _ul=-Z2+logy |=y| =—+lo
<0 o (ydx gyJ y {ydx QY} . (2
Alsov=x
Taking logarithm on both sides, we have
logv=ylog x
Differentiating both sides w.r.t. x, we have
1 dv d dy
—.— = y—(logx) + logx—
v dx ydx( 9%)+log dx
= y-£+logx-Q
X dx
dv y dy}
— = v| =+logx—
0 dx {x g dx
y dy}
= x| = +logx—=
L( g i .. (3
Agan w = X
Taking logarithm on both sides, we have
logw = x log x.
Differentiating both sides w.r.t. x, we have
1 dw d d
—.— = Xx—(logx) +logx-—(X
w dx dx(g) J dx()
= x-1+logx-1
X
i W 1+1
i.e. X =w (1+logXx)

=X (1 +log Xx) .. (4
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From (1), (2), (3), (4), we have

x dy (y dyj
I ——=+logy |+ x| = +logx— x -
y (ydx QYJ ” g i +x(1+logx)=0
-1 ﬂ - -1
or (X.yt+x.logXx) dX——xX(1+Iogx)—y.xY —-y*logy
dy —[y“logy+y.x"™"+x*(1+logX
Therfare dy _ —[y'logy Y. . (1+log x)]
dx X. Yy "+ x'log x
| EXERCISE5.5|
Differentiate the functions given in Exercises 1 to 11 w.r.t. X.
. o - 5 (x=1) (x-2)
. COSX.COS2X . CoS N (x-3) (x-4) (x-5)
3. (log x)eosx 4. x¢—2sinx
A
5 (x+3)2.(x+4)32.(x+5* 6. x+; + X X
7. (log X)* + Xloox 8. (sinxy*+sint \/x
0. xsnx 4 (Sn X)cosx 10 N +ﬂ'
' ' X2 -1
1
11, (xcos x)* + (Xxsinx)*
. dy . o .
Find i of the functions given in Exercises 12 to 15.
12. w+y=1 13. y=%
14. (cos x)¥ = (cos y)* 15. xy=ex-y

16. Findthederivative of thefunction givenby f(x) = (1 +x) (1 +x?) (1 + x*) (1 + x8)
and hence find f'(1).

17. Differentiate (X2 —5x + 8) (3 + 7x + 9) in three ways mentioned below:
(i) by using product rule
(i) by expanding the product to obtain asingle polynomial.
(iii) by logarithmic differentiation.
Do they dl give the same answer?
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18. If u, vand w are functions of x, then show that

d _du ey Y ey W
dX(u.v.w)—dxv.w u'dx'W u.vdx
intwo ways- first by repeated application of product rule, second by logarithmic

differentiation.

5.6 Derivativesof Functionsin Parametric Forms

Sometimestherelation between two variablesisneither explicit nor implicit, but some
link of athird variable with each of thetwo variables, separately, establishesarelation
between the first two variables. In such a situation, we say that the relation between
them isexpressed viaathird variable. Thethird variable is called the parameter. More
precisely, a relation expressed between two variables x and y in the form
x=f(t), y =g(t) is said to be parametric form with t as a parameter.

In order to find derivative of function in such form, we have by chainrule.

dy _ dy ox
dt ~ dx dt
dy
dy gt ( dx j
or I % whenever o #0
dt
dy g'(t) ( j .
— = = t and _f t ’
Thus Vil Tl ey =g'(t) (t) | [provided f'(t) # O]

Example 34 Find — dy ,ifx=acos6,y=asn6.

Solution Given that
X=acosh,y=asno

Theref & ino & 0
erefore qp - —asin®, o =acos

dy

dy _ E_ acoso

Hence dx = dx —asin®
do

=—coto
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Example 35 Find gi if x=at? y=2at.
Solution Given that x = at?, y = 2at

dx dy
So a =2at and pn =2a

dy
Q_Q_Za 1

o~ X 2at t
dt

Therefore

Example 36 Find gi if x=a(0+sn0),y=a(l-coso).

_ dx dy .
Solution We have 40 - a(l + cos 6), 4o a(sin 0)
dy
dy do asin® 0
O 7 _tan—
Therefore dx ~ dX a(l+cos6) 2
do

It may be noted here that i(?/ is expressed in terms of parameter only

without directly involving themain variablesxand y.

2 2 2
Example 37 Find ;ﬂ, if x3+y%=a3.
X

Solution Let x=acos® 0, y=asin® 0. Then
2 2 2 2
x3 +y3 = (acos’0)3 + (asin®0)3
2 2
= a3(cos’0+ (sin’0) =a3

2 2 2
Hence, x = a cos®0, y = a Sin®0 is parametric equation of x3 + y3 =as3
dx _ dy .
Now — =—3acos?0sn®and = =3asin’0 cosoO

do do
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dy
dy go 3asin®cos@ \/7
== —_tanf=- 3=
Therefore dx  dX —3acos’0sind X
do

Had we proceeded in implicit way, it would have been quite tedious.

EXERCISE 5.6

If x andy are connected parametrically by the equations given in Exercises 1 to 10,

without eliminating the parameter, Find 3:(/

1. x=2at’y=at 2. Xx=acosH,y=Dbcos6
4

3. X=sdint,y=cos2t 4. x:4t,y=;

5. X=c0s®—-cos20,y=sin0—sn20

sin’t y= cos’t
Jeos2t ' Jcos2t

6. x=a(®-snB),y=a(l+cos0) 7. x=

t
8. x:a(cost+|ogtan5)y:asint 9. x=asecO,y=btano

10. x=a(cos® +6snv), y=a(sin6—0 coso)

11, If x=\/a9”’“,y=\/a°°s’lt, showthat%:—l
X X

5.7 Second Order Derivative

Let y =f(x). Then
dy .,
™ = /(x) . (D

If f(X) isdifferentiable, we may differentiate (1) again w.r.t. X. Then, theleft hand

d(d
side becomes dx (d—ij which is called the second order derivative of y w.r.t. x and

d?y

is denoted by v The second order derivative of f(x) isdenoted by f”(X). Itisaso
X
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denoted by D*y or y” ory, if y = f(x). We remark that higher order derivatives may be
defined similarly.

d?y
Example 38 Find ? if y=x3+tanx.
X
Solution Given that y = @ + tan X. Then
&y = 3x% + sec? X
dx
d? d
Therefore S 2 (3¢ +sec’x)
dx dx

=BX+ 2SeC X . SeC X tan X = 6xX + 2 sec? X tan X

d?y

Example 39 If y = A sin X + B cos X, then prove that ?+ y=0.
X

Solution We have

Q—A Bs
- cosx—B sinx
an 2 _dx( cosx—B sinx)
=—Asinx—Bcosx=-y
d’y
Hence ¥+y—0
2
Example 40 If y = 3e* + 2e*, prove that %—5%+ 6y=0.
X X

Solution Given that y = 3e* + 2e*. Then

=66+ 667 = 6 (€ + )
d?y
Therefore e = 12e> + 18> = 6 (2> + 3e¥)
d’y . dy
Hence ¥—5& + 6y = 6 (26> + 3¢¥)

— 30 (& + &) + 6 (3% + 26%) = 0
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2
Example 41 If y = sin™ x, show that (1 — x?) d_g/_ xﬂ:o.
dx dx

Solution We have y = sin'*x. Then
dy _ 1
& J@-x)

or N x?) %:l
S i(\/(1— x?) .szo

dx dx
d?y dy d
Ja-x3) =2+ 2. = (Ja-x®))=0
o ( X)dx2+dx dx(( X))
d d 2X
or -2 Y- =0

d2
Hence (1-x%) d_z_ Yo

dx
Alternatively, Given that y = sintx, we have
1 .
_ 2)\2 _
yl—ﬂ,l.e-, (1-x2)y? =1
So 1-x%). 2y, + ¥; (0-2x)=0
Hence (1-x)y,—xy,=0
| EXERCISE 5.7
Find the second order derivatives of the functions given in Exercises 1 to 10.
1. xX*+3x+2 2. x*0 3. X.Cos X
4. logx 5. X logx 6. €'sin5x
7. e%cos 3x 8. tantx 9. log(logx)
10. sin(logx) 2

11. If y=5cosx—3sinx, prove that %+ y=0
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2
12. Ify=cos'x, Find %intermsofyalone.
X
13. Ify=3cos(logx) +4sin (log x), show that Xy, + xy, +y=0
d2
14. If y = Ae™ + Be™, show that KZ_(W n)%+ mny =0

d2
15. If y = 500€™ + 600e™, show that K& 49y

16. fer(x+1)=1 showthatd—zy—(ﬂ)2
' - ax®  \dx

17. Ify = (tanm'x)? show that (x* + 1)y, + 2x (x* + 1) y, = 2

5.8 Mean Value Theorem

In this section, we will state two fundamental results in Calculus without proof. We
shall also learn the geometric interpretation of these theorems.

Theorem 6 (Rolle’'s Theorem) Let f: [a, b] — R be continuous on [a, b] and
differentiable on (a, b), such that f(a) = f(b), where a and b are some real numbers.
Then there exists some ¢ in (a, b) such that f’(c) = 0.

InFig5.12 and 5.13, graphsof afew typical differentiable functions satisfying the
hypothesis of Rolle'stheorem are given.
Y

/

Fig5.12 Fig5.13

Observe what happens to the slope of the tangent to the curve at various points
between a and b. In each of the graphs, the slope becomes zero at |east at one point.
That is precisely the claim of the Rolle's theorem as the slope of the tangent at any
point on the graph of y = f (X) is nothing but the derivative of f (X) at that point.
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Theorem 7 (Mean Value Theorem) Let f: [a, b] — R be a continuous function on
[a, b] and differentiable on (a, b). Then there exists some ¢ in (a, b) such that

f(b)-f(a)
b-a
Observethat the Mean Value Theorem (MVT) isan extension of Rolle’stheorem.

L et us now understand ageometric interpretation of the MV T. The graph of afunction
y =f(X) isgiven in the Fig 5.14. We have aready interpreted f’(c) as the slope of the

f(b)-f(a)
b-a

is the slope of the secant drawn between (a, f(a)) and (b, f(b)). The MVT states that

thereisapoint cin (a, b) such that the slope of the tangent at (c, f(c)) is same as the

slope of the secant between (a, f(a)) and (b, f(b)). In other words, thereisapoint cin
(a, b) such that the tangent at (c, f(c)) is parallel to the secant between (a, f(a)) and

(b, £(0)).

f'(c) =

tangent to the curvey = f(X) at (c, f(c)). Fromthe Fig 5.14 it isclear that

Y
(b, £ (b))
\\
N (€. f(©)
\Qn
X'< 0O 7 s b > X
YI
Fig5.14

Example 42 Verify Rolle€'s theorem for the functiony =x2+2,a=—2and b= 2.

Solution Thefunctiony = x? + 2 iscontinuousin [— 2, 2] and differentiablein (-2, 2).
Also f(- 2) = f( 2) = 6 and hence the value of f(x) at — 2 and 2 coincide. Rolle's
theorem states that thereisapoint c € (— 2, 2), where f’(c) = 0. Since f’(x) = 2x, we
getc=0. Thusatc=0,wehavef(c)=0andc=0¢e (-2, 2).

Example 43 Verify Mean Value Theorem for the function f(X) = x2intheinterval [2, 4].

Solution Thefunction f (X) = X2 iscontinuousin[2, 4] and differentiablein (2, 4) asits
derivative f’(X) = 2xis defined in (2, 4).
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Now, f(2)=4andf(4)=16. Hence
f(b)-f(a) _16—4_6
b-a  4-2

MVT statesthat thereisapoint c € (2, 4) such that f’(c) = 6. But f ’(X) = 2x which
impliesc=3. Thusatc=3 e (2, 4), we havef’(c) = 6.

| EXERCISE 5.8]

1. Veify Rolle's theorem for the function f(X) = x2+ 2x -8, x e [-4, 2].

2. Examineif Rolle'stheorem is applicableto any of thefollowing functions. Can
you say some thing about the converse of Rolle'stheorem from these example?

(i) f(x) =[x] forxe [5, 9] (i) f(x) =[x] forxe [-2, 2]
(i) fx)=x2—=1forxe [1, 2]

3. If f:[-5, 5 — R isadifferentiable function and if f’(xX) does not vanish
anywhere, then prove that f(— 5) # f(5).

4. Verify Mean Value Theorem, if f(X) = X2 — 4x — 3 in the interval [a, b], where
a=landb=4.

5. Verify Mean Value Theorem, if f(X) = xX*—5x?2 — 3x in theinterva [a, b], where
a=landb=3. Findal ce (1, 3) for which f’(c) = 0.

6. Examinetheapplicability of MeanValue Theorem for all threefunctionsgivenin
the above exercise 2.

Miscellaneous Examples

Example 44 Differentiate w.r.t. X, the following function:

(@) \/3x+2+% (i) 6% 1+ 3cos Tt x (iii) log, (logx)
2x°+4
Solution

1 1 1
() Lety= V3x+2+———= (3x+2)2 + (¢ +4) 2

\N2X° +4

Note that thisfunction is defined at all real numbers x > —% . Therefore

dy

1 114 ( 1) , = d .,
==0Bx+2)? -—(X+2)+|—=|(2x°+4) 2 -—(2x"+4
- 5 (XA (| T (2 +4) 2 (244
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1 ! 1 3
E(3x+2) 2.(3) - ( )(2x2+4) 2.4x
B 3 B 2X
- 3
23X+ 2 (2X2+4)2

2
Thisisdefined for al rea numbers X>—§.

(i) Let y=e=*+3cos*x
Thisis defined at every real number in [-1,1] - {0} . Therefore

1

dy_ sec?x
© 1- XZJ

&_

(%c x)+3[

= e (Zsecx— (%cx)) +3(

:25ecx(%cxtanx)ese°zx+3(— ! J
1-x2

_ Zseczxtanxes‘*zx+3[— 1 J
V1-x
Observe that the derivative of the given functionisvalidonly in [-1,1] - {0} as

the derivative of cos® x exists only in (— 1, 1) and the function itself is not
defined at 0.

i) Lety=log, (logx) = %

The function is defined for all real numbers x > 1. Therefore
dy 1 d

v = @&UOQ (logx))

L1 9 ogx
Iog7 Iogx dx
1
~ xlog7logx

(by change of base formula).
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Example 45 Differentiate the following w.r.t. x.

: o N 4 sinx L 2"*1j
(i) cos™*(sinx) (i) tan (1+cosx) (iii) sin [1+4X
Solution

(i) Letf(x)=cos™*(sinx). Observethat thisfunctionisdefined for al real numbers.
We may rewrite this function as

f(x) =cos™ (sin X)

ek

T

=——X
2
Thus f'(x) =—1.
(i) Let f(x) = tan- ( Snx j Observe that this function is defined for al real
1+ cosx

numbers, where cos x = — 1, i.e,, at al odd multiplies of . We may rewrite this

functionas
sinx
= tan‘l( J
f(x) 1+ cosx

J3)={)

20082 X
2

— tan! tan(zﬂz5
2 2

= tan

: 1
isnot equal to zero. Thusf’(x) = 5

X+1

(i) Letf(x)=sin? 2 . Tofind the domain of thisfunction we need to find al
1+ 4"
+

2x+l

xsuch that —1< —<1. Since the quantity in the middle is always positive,

1+4
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X+1

we need to find all x such that 2
1+4

< 1,i.e,dl xsuchthat 22**< 1+ 4 We

X =

. . 1 N .
may rewrite this as 2 < > + 2 which is true for al x. Hence the function

is defined at every real number. By putting 2* = tan 0, this function may be

rewritten as
o _2x+l:|
f(x) = sin™
) |1+ 4"
B X
:Sin_l 2 22:|
[ 1+(29)
_1_ 2tan6 :|
| 1+tan®0
=sin! [sin 20]
=20 = 2 tan"! (2)
;Z.di(zX)
1+(2¢)" dx
2

= -(2¥)log 2
1+4X( Jleg

_ 2"!log2
S 14+4

= sin

Thus f/(x) = 2

Example 46 Find f’(x) if f(X) = (sin x)s"* for all 0 < x < m.

Solution The function y = (sin x)$"* is defined for all positive real numbers. Taking
logarithms, we have

logy=log (sinx)s"™ =sinxlog (sinX)

1d_ d (sinxlog (sin x))
ydx dx g

. . 1 d,.
=cosxlog (sinx) + shx. ——-—(sinX)
sinx dx

=cosx log (sin X) + cos X
= (1 +log (sinx)) cosx
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d
Thus &y =y((1 +log (sin x)) cosx) = (1 + log (sin X)) ( sin X)S"* cos X

. . d
Example 47 For a positive constant a find &y , Where

ol 1 a
y=a !, and x:(t+¥j
Solution Observe that both y and x are defined for all real t # 0. Clearly

1
y — i(aH%) — at ti(t_,_%j.k)ga

dt ot dt
1
—a t(1—ti2)loga
a-1
- dx 1 d 1
Smilarly i a t+E o t+¥

"

dx
r #z0onlyiftz+1 Thusfort==+1,

dy t+:t|'(1 1)|
ay a -~ 1|loga
dy _dt _ )

dx dx 1P+ 1
FE

1
t+=
a tloga

a-1
aft+1]
t

Example 48 Differentiate sin? X w.r.t. e~s,

Solution Let u (X) = sin?x and v (x) = e*s*, We want to find %: dU/dX. Clearly

dv dv/dx

%—2' dg— Cos X ] — ] COS X
I Sin X cos X an dx_e (-sinx)=—(sinx) e
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du 2sinxcosx  2cosX

Thus — = —
dv  —sinxe™* goosx

Miscellaneous Exercise on Chapter 5

Differentiate w.r.t. x the function in Exercises 1 to 11.

1. (3% -9 +5)° 2. sin*x+ cos X
3. (5x)3cos 4. sint(x 4/x),0<x<1
cos X
5. ,—2<X<2
N2X+7
\/1+sinx+\/1—sinx} T
cot™ ey
6 L/l+sinx—\/1—sinx USXS,
7. (log x)'o9x, x > 1
8. cos(acosx + b sinx), for some constant a and b.
9. (Sin X —cos x) (snx-cosx) E<x<E

4 4
10. X+ x+a+ a3 forsomefixeda>0and x>0

11. sz_3+(x_3)x2 ,forx>3

12. Find &, ify=12 (1= cost), x=10 (t—sint), —~<t <X
ox 2 %2

13. Find(?—di,ify:sin—lx+sin—l 1-x%2,-1<x<1
14, If x{1+y+y+1+x=0,for,—1<x<1, provethat
dy 1

(14 %)
15. If (x—a)?+ (y—h)?=c? for some c > O, prove that

P
{1+ (dy) T
dx
d’y
dx?
is a constant independent of a and b.
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dy _ cos?(a+Y) .

If cosy = x cos (a +y), with cosa # + 1, prove that ,
dx sina

2
Ifx=a(cost+tsint)andy =a(sint—t cost), find %
X

If f(xX) = | x ], show that f ”(x) exists for all real x and find it.

Using mathematical induction prove that di(x”):nx”‘l for all positive
X

integers n.
Using thefact that sin (A + B) =sinA cosB + cosA sin B and the differentiation,
obtain the sum formulafor cosines.

Doesthereexist afunction which iscontinuous everywhere but not differentiable
at exactly two points? Justify your answer.

f(x) g(x) h(x) f'x) g(®) h(x)
Ify=| | m n |, provethat Yo m n
dx
a b ¢ a b c

2
If y = gacos’x, —1<x< 1, show that (1_ XZ)M_Xﬂ_aZy:o.
dx*  dx

Summary

A real valued functionis continuousat apoint initsdomain if thelimit of the
function at that point equalsthe value of the function at that point. A function
iscontinuousif it iscontinuous on the whole of itsdomain.

Sum, difference, product and quotient of continuous functionsare continuous.
i.e., if f and g are continuous functions, then

(f+g) (X) =f(X) £ g(x) is continuous.
(f.g) (¥X) =f(X) . g(x) is continuous.
f f(X)

(aj(x) ) (wherever g(x) # 0) is continuous.

¢ Every differentiable function is continuous, but the converseis not true.
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¢ Chainruleisruleto differentiate composites of functions. If f=vou, t = u (X)

and if both E and % exist then

g e el
dx dt dx
¢ Following are some of the standard derivatives (in appropriate domains):
i(sin‘1 X) = ! i(cos‘1 X)=— !
dx 1— x2 dx 1- x?
d 1 d 1 -1
—(tan""x) = —(cot™ x)=
dx( ) 1+ X° dx( ) 1+ x°

i( Cosa;_l X) — _—1
dx X+/1-x?
1

d
—(logx)==
dx( g) X

¢ Logarithmic differentiation isapowerful techniqueto differentiate functions
of the form f(x) = [u (X)]V®¥. Here both f(x) and u(x) need to be positive for

this technique to make sense.

¢ RollesTheorem: If f: [a, b] — R iscontinuouson [a, b] and differentiable
on (a, b) such that f(a) = f(b), then there exists some c in (a, b) such that

f/(c) = 0.

© Mean Value Theorem: If f: [a, b] — R is continuous on [a, b] and
differentiable on (a, b). Then there exists some cin (a, b) such that

f(c) =

f(b)— f(a)

b-a

—_— e —



Chapter

APPLICATION OF
DERIVATIVES

+» With the Calculus as a key, Mathematics can be successfully applied
to the explanation of the course of Nature.” — WHITEHEAD

6.1 Introduction

In Chapter 5, we have learnt how to find derivative of composite functions, inverse
trigonometric functions, implicit functions, exponentia functionsand logarithmic functions.
Inthischapter, wewill study applications of thederivativein variousdisciplines, e.g.,in
engineering, science, socia science, and many other fields. For instance, wewill learn
how the derivative can be used (i) to determinerate of change of quantities, (ii) to find
the equations of tangent and normal to acurveat apoint, (iii) to find turning pointson
the graph of afunction which in turn will help us to locate points at which largest or
smallest value (locally) of afunction occurs. Wewill also usederivativetofindintervals
on which afunctionisincreasing or decreasing. Finally, we use the derivative to find
approximate value of certain quantities.

6.2 Rate of Change of Quantities

ds
Recall that by the derivative o e mean the rate of change of distance s with

respect to thetimet. In asimilar fashion, whenever one quantity y varies with another
quantity x, satisfying some rule y= f(x), then % (or f/(X)) represents the rate of

dy
change of y with respect to x and dx} (or f’(x,)) represents the rate of change
X=X0

of y with respect tox at x=X, .
Further, if two variablesx and y are varying with respect to another variablet, i.e.,
if x=f(t)and y=g(t),thenby ChainRule

ﬂ:ﬂ %,if %io
dx dt/ dt dt
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Thus, the rate of change of y with respect to x can be calculated using the rate of
change of y and that of x both with respect to t.

Let us consider some examples.

Example 1 Find the rate of change of the area of a circle per second with respect to
itsradiusr whenr =5 cm.

Solution The area A of acircle with radiusr is given by A = nir2. Therefore, the rate

, . o dA d, ,
of change of the area A with respect toitsradiusr is given by W=a(ﬂ'f )=2nr

dA
When r =5 cm, E=10n. Thus, the area of the circle is changing at the rate of

10m cné/s.
Example 2 The volume of a cube isincreasing at arate of 9 cubic centimetres per

second. How fast is the surface area increasing when the length of an edge is 10
centimetres ?

Solution Let x be the length of aside, V be the volume and S be the surface area of
the cube. Then, V = x®and S = 6x?, where x is a function of time .

dv _
Now s = 9cm?/s (Given)

Theref 0= ¥ _9060)- 9 ). 2 @y ChainRule
eretore Tdt o x> B ule)
:3X2'%

dt
d_3 .
or G X - ()
ds d,. ., d _ , dx _
— = —(6x°)=—(6Xx")-—
Now m Olt( ) dx( ) g  (ByChanRule)
3) 36
—12x| = |== -
(ij ” (Using (1))

ds
Hence, when x=10cm, e 3.6cm?/s
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Example 3 A stoneis dropped into aquiet lake and waves move in circles at a speed
of 4cm per second. At the instant, when the radius of the circular wave is 10 cm, how
fast is the enclosed area increasing?

Solution The area A of acircle with radiusr is given by A = nr2. Therefore, the rate
of change of area A with respect totimet is

dA d, , d oy dr dr .
— = —(nr)=—(nmr°).-— = -
prallioen (mr?) I (mr?) kil i (By Chain Rule)
. dr
Itisgiven that i 4cm/s

dA
Therefore, whenr = 10 cm, o =21 (10) (4) = 80r

Thus, the enclosed areais increasing at the rate of 80r cm?/'s, whenr = 10 cm.

% is positive if y increases as x increases and is negative if y decreases

as X increases.

Example 4 The length x of a rectangle is decreasing at the rate of 3 cm/minute and
thewidth y isincreasing at the rate of 2cm/minute. When x =10cm and y = 6¢cm, find
the rates of change of (a) the perimeter and (b) the area of the rectangle.

Solution Since the length x is decreasing and the width y isincreasing with respect to
time, we have

%z =-3cm/min and ﬂz 2cm/min
at at
(@) The perimeter P of arectangleisgiven by
P=2(x+Yy)
dP (dx dy) :
— =2 —+—|=2(-3+2)=-2cm/min
Therefore pm a ( )
(b) TheareaA of the rectangle is given by
A=x.y
dA
Therefore = dX- +x-y

at T oa T
—3(6) +10(2) (asx=10cmandy=6cm)
=2cm?/min
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Example 5 Thetotal cost C(x) in Rupees, associated with the production of x units of
anitemisgiven by
C(x) = 0.005 x*—0.02 x + 30x + 5000
Find the marginal cost when 3 units are produced, where by marginal cost we
mean the instantaneous rate of change of total cost at any level of output.

Solution Since marginal cost is the rate of change of total cost with respect to the
output, we have

dc
Marginal cost (MC) = ~—-= 0.005(3x%) — 0.02(2x) + 30
When x =3, MC = 0.015(3%) — 0.04(3) + 30

=0.135-0.12 + 30 = 30.015
Hence, the required marginal cost is Rs 30.02 (nearly).

Example 6 Thetotal revenue in Rupees received from the sale of x units of a product
is given by R(x) = 3x? + 36x + 5. Find the marginal revenue, when x = 5, where by
marginal revenue we mean the rate of change of total revenue with respect to the
number of items sold at an instant.

Solution Since marginal revenueistherate of change of total revenue with respect to
the number of units sold, we have

dr
Marginal Revenue (MR) = vl 6x+36
When x =5, MR =6(5) + 36 = 66
Hence, the required marginal revenue is Rs 66.
| EXERCISE 6.1
1. Find therate of change of the area of a circle with respect to its radiusr when
(@ r=3cm (b) r=4cm

2. The volume of a cube is increasing at the rate of 8 cm®/s. How fast is the
surface area increasing when the length of an edge is 12 cm?

3. Theradiusof acircleisincreasing uniformly at the rate of 3 cm/s. Find the rate
at which the area of the circle isincreasing when the radius is 10 cm.

4. An edge of avariable cube isincreasing at the rate of 3 cm/s. How fast is the
volume of the cube increasing when the edge is 10 cm long?

5. A stoneisdropped into a quiet lake and waves move in circles at the speed of
5 cm/s. At the instant when the radius of the circular waveis 8 cm, how fast is
the enclosed area increasing?
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The radius of acircleisincreasing at the rate of 0.7 cm/s. What is the rate of
increase of its circumference?

The length x of a rectangle is decreasing at the rate of 5 cm/minute and the
widthyisincreasing at therate of 4 cm/minute. When x=8cm andy = 6cm, find
the rates of change of (@) the perimeter, and (b) the area of the rectangle.

A balloon, which awaysremainsspherical oninflation, isbeing inflated by pumping
in 900 cubic centimetres of gas per second. Find the rate at which the radius of
the balloon increases when the radiusis 15 cm.

A balloon, which alwaysremains spherical hasavariableradius. Find therate at
which its volume isincreasing with the radius when the later is 10 cm.

A ladder 5 m long is leaning against awall. The bottom of the ladder is pulled
along the ground, away from thewall, at the rate of 2cm/s. How fast isits height
on the wall decreasing when the foot of the ladder is4 m away from the wall ?
A particle moves along the curve 6y = x® +2. Find the points on the curve at
which the y-coordinate is changing 8 times as fast as the x-coordinate.

1
Theradiusof anair bubbleisincreasing at the rate of 5 cm/s. At what rateisthe
volume of the bubble increasing when the radiusis 1 cm?

3
A balloon, which always remains spherical, has a variable diameter > (2x+1).

Find the rate of change of its volume with respect to x.
Sand ispouring from apipeat therate of 12 cm?®/s. Thefalling sand formsacone
ontheground in such away that the height of the coneisalwaysone-sixth of the
radius of the base. How fast is the height of the sand cone increasing when the
heightis4 cm?
The total cost C(X) in Rupees associated with the production of x units of an
itemisgiven by

C(x) = 0.007x¢ — 0.003x2 + 15x + 4000.
Find the marginal cost when 17 units are produced.
The total revenue in Rupees received from the sale of x units of a product is
givenby

R(x) = 13x® + 26x + 15.

Find the marginal revenue when x=7.

Choose the correct answer in the Exercises 17 and 18.

17.

The rate of change of the area of acircle with respect toitsradiusr at r =6cmis
(A) 10rn (B) 12n (C) 8rn (D) 11n
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18. The total revenue in Rupees received from the sale of x units of a product is

givenby
R(X) = 3x* + 36x + 5. The marginal revenue, when x = 15is
(A) 16 (B) 9% (C) 2 (D) 126

6.3 Increasing and Decreasing Functions

Inthissection, wewill usedifferentiation to find out whether afunctionisincreasing or
decreasing or none.

Consider the function f given by f (X) = X3 x € R. The graph of thisfunctionisa
parabola asgiveninFig 6.1.

Valueslefttoorigin Vauesrighttoorigin

X | f(x=x X X | f(X)=x
-2 4 0 0
_3 9 1 1
2 4 £ 2 4
xl]
-1 1 . height of 1 1
7 1 © graph at x, 3 9
2 | 4 Ixe——eriay X2 | 4
0 0 T 2 4
as we move from left to right, the v as we move from left to right, the
height of the graph decreases Y height of the graph increases

Fig 6.1

First consider the graph (Fig 6.1) to the right of the origin. Observe that as we
move from left to right a ong the graph, the height of the graph continuously increases.
For thisreason, the function is said to be increasing for the real numbersx > 0.

Now consider the graph to the left of the origin and observe here that as we move
from left to right along the graph, the height of the graph continuously decreases.
Consequently, the function is said to be decreasing for the real numbers x < 0.

We shall now give the following analytical definitions for a function which is
increasing or decreasing on an interval.
Definition 1 Let | bean openinterval contained in the domain of areal valued function
f. Then fis said to be
(i) increasingonlif x <x,inl = f(x)<f(x) foralx,x, e I
(if) strictly increasingon | if x, <x,inl = f(x) <f(x) foralx, x, e I.
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(i) decreasingon |l if x <x, inl = f(x)=f(x) foral x, x,  I.
(iv) strictly decreasingon | if x, <x,inl = f(x)>f(x) foral x, x, € I.
For graphical representation of such functions see Fig 6.2.

Y Y Y
/ ’
Y’ vy’ Y
Increasing function Strictly Increasing function Decreasing function
@ (i) (i)
Y Y

~ LD L
° N/

X'<5 >X
N
Y’ \
. . . Y’
Strictly Decreasing function Neither Increasing nor Decreasing function
(iv) )

Fig 6.2
We shall now define when afunction isincreasing or decreasing at a point.

Definition 2 Let x, be apoint in the domain of definition of areal valued function f.
Then f issaid to beincreasing, strictly increasing, decreasing or strictly decreasing at
X, if there exists an open interval | containing x, such that f isincreasing, strictly
increasing, decreasing or strictly decreasing, respectively, in|.
Let usclarify thisdefinition for the case of increasing function.

A functionf issaidto beincreasing a x, if thereexistsaninterval | = (x,—h, x; + h),
h > 0 such that for x, X, € |

X <xinl=f(x)< f(x)

Similarly, the other cases can be clarified.
Example 7 Show that the function given by f(x) = 7x — 3is strictly increasing on R.

Solution Let x; and x, be any two numbersin R. Then
X <X, = TX <7X, = 7X —3<7X,-3= f(x) <f(x)
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Thus, by Definition 1, it followsthat fisstrictly increasing on R.

We shall now givethefirst derivative test for increasing and decreasing functions.
The proof of this test requires the Mean Value Theorem studied in Chapter 5.

Theorem 1 Let f be continuous on [a, b] and differentiable on the open interval
(a,b). Then

(@) f isincreasingin[a,b] if f’(x) >0 for eachx e (a, b)

(b) f isdecreasingin[ab] if f'(X) <0 for each x € (a, b)

(c) f isaconstant functionin[a,b] if f’(x) = 0 for each x € (a, b)
Proof (a) Let x,, X, € [a, b] be such that x, < Xx,.

Then, by Mean Vaue Theorem (Theorem 8 in Chapter 5), there exists a point ¢
between x, and X, such that

f(x) —f(x) = f'(c) (x, —x)
i.e f(x,) —=f(x) >0 (asf’(c) > 0 (given))
ie. f(x,) >f(x)
Thus, we have
X <X, = f(x)< f(x), foral x,x, €[a,b]

Hence, f isanincreasing function in [a,b].
The proofs of part (b) and (c) are similar. It isleft as an exercise to the reader.
Remarks

(i) fisstrictly increasingin (a, b) if f’(x) >0 for each x € (a, b)

(i) fisstrictly decreasing in (a, b) if f(x) <0 for each x € (a, b)

(iii) A function will beincreasing (decreasing) in R if itissoin every interval of R.

Example 8 Show that the function f given by
f(X) =X -3¢ +4x,xe R
isstrictly increasing on R.
Solution Note that
f’(X) =3x*—6x+4

=3x*-2x+1)+1

=3(x—12+1>0,inevery interval of R
Therefore, the function fisstrictly increasing on R.
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Example 9 Prove that the function given by f(X) = cos x is
(a) dtrictly decreasingin (0, i)
(b) dtrictly increasingin (i, 2m), and
(c) neither increasing nor decreasingin (O, 2r).

Solution Note that f’(X) = —sin x

(@) Since for each x € (0, m), sin x > 0, we have f’(x) < 0 and so f is strictly
decreasing in (0, ).

(b) Since for each x € (m, 2m), sin x < 0, we have f’(x) > 0 and so f is strictly
increasing in (m, 2m).

(c) Clearly by (a) and (b) above, f is neither increasing nor decreasing in (0, 2m).

| &= Note|Onemay notethat thefunctionin Example9isneither strictly increasingin

[, 21t] nor strictly decreasing in [0, it]. However, since the function is continuous at
the end points 0 and it, by Theorem 1, fisincreasingin [r, 2rt] and decreasing in [0, mt].

Example 10 Find the intervalsin which the function f given by f(X) = x* —4x + 6is
(a) strictlyincreasing (b) strictly decreasing

Solution We have
f(x) =x*—4x+6
or f'(x) =2x—-4
Therefore, f/(X) = 0 gives x = 2. Now the point x = 2 divides the real lineinto two
digoint intervals namely, (— <, 2) and (2, =) (Fig 6.3). In the interval (— oo, 2),
f’(X) =2x—-4<0.
Therefore, f is strictly decreasing in this

interval. Also, intheinterval (2,0), f'(x)>0 —® 2 +00
and sothefunction f isstrictly increasing inthis Fig 6.3
interval.

Note that the given function is continuous at 2 which isthe point joining

thetwo intervals. So, by Theorem 1, we concludethat the given functionisdecreasing
in (—eo, 2] and increasing in [2, oo).

Example 11 Find theintervalsin which thefunction f given by f (X) = 4 —6x2—72x + 30
is(a) strictly increasing (b) strictly decreasing.

Solution We have
f(x) =4x® —6x2—72x + 30
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or f/(x) =12 - 12x — 72
=12(x* —x - 6)
=12(x-3) (x+ 2)
Therefore, f'(X) = 0 givesx = — 2, 3. The : :

pointsx =—2and x=3dividestherea lineinto - -3 -2 400
threedigointintervals, namely, (—eo,—2), (-2, 3) Fig 6.4
and (3, ).

Intheintervals (— e, —2) and (3, =), f’(X) is positive whilein theinterval (-2, 3),
f’(x) is negative. Consequently, the function f is strictly increasing in the intervals
(=0, —2) and (3, =) while the function is strictly decreasing in the interval (— 2, 3).
However, f is neither increasing nor decreasing in R.

Interval Sign of f’(x) Nature of function f
(=0, —2) = E==>0 fisstrictly increasing
(-2,3) =) <0 fisstrictly decreasing
(3, ) HH>0 fisstrictly increasing

Example 12 Find intervalsin which the function given by f () = sin 3x, XG[O,%:| is

(@) increasing (b) decreasing.
Solution We have

f(x) =sin3x
or f’(x) = 3cos 3x
3r
Therefore, f(x) =0givescos3x=0whichinturngives 3X—g 7 [Og}
implies 3xe | 0.~ ). So X=— and = . Thepoint X=— dividestheinterval {OE}
P 2| 6 N NP 6 2
T 1 t }
: o T x I
mtotwodls;omtlntervals[ 6) } 0 : 5

Fig6.5
TT
Now, f'(x)> 0 for all XG[O,EJ asO£x<%:>0£3x<g and f'(x)<0 for

al XE(E —j <x<£:>£<3x<3—n.
6 2 6 2 2 2
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T
Therefore, fisstrictly increasingin | 0:— | and strictly decreasing in I,
6 6 2

T
Also, thegivenfunctioniscontinuousat x=0and X= rE Therefore, by Theorem 1,

I T T
fisincreasing on [Og} and decreasing on [EE} .

Example 13 Find the intervalsin which the function f given by

f(X) =sinx+cosx, 0<x<2n
isstrictly increasing or strictly decreasing.

Solution We have
f(X) =sinXx + cos X,

or f’(X) =cosx—sinx

5n
Now f’(x) =0 givessinx = cos x which gives that X=—, — ®0<x<2n

I

5
The points x=% and X= 7“ dividetheinterval [0, 2r] intothreedisioint intervals,

T n 51 51 0 T S pX
Ol_ [_,_) _ 4 4
namely[ 4) 17 and(4,2n] '
Fig6.6
Notethat f'(x)>0 if m{O,%)u(%,Za}
o . L 5n
or f isstrictly increasing in theintervals {O’Zj and (I’ZR}
T 51
f'(X)<0if x [——)
Also (X) € 272
T 51
or f isstrictly decreasing in [Z?)
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Interval Signof f'(x) Nature of function
T
{O,Z) >0 f isstrictly increasing
24 <0 f isstrictly decreasing
5n
(T,ZR} >0 f isstrictly increasing
|[EXERCISE 6.2|

Show that the function given by f (x) = 3x + 17 isstrictly increasing on R.
Show that the function given by f (x) = e*is strictly increasing on R.
Show that the function given by f (x) = sinxis

T T
(a) strictlyincreasingin (O’Ej (b) strictly decreasingin (Eﬂtj
(c) neither increasing nor decreasing in (0, )
Find the intervalsin which the function f given by f(x) = 2x2—3x s

(a) strictlyincreasing (b) strictly decreasing
Find the intervalsin which the function f given by f(x) = 2 -3x—36x + 7 is
(a) strictlyincreasing (b) strictly decreasing

Find the intervals in which the following functions are strictly increasing or
decreasing:

(@ x*+2x-5 (b) 10-6x—2x2

(c) 23-9x*-12x+1 (d 6—-9x—x°

(6 (x+1p°(x-3)

2X
Show that y=Ilog(1+ X)—m, X > —1, is an increasing function of x

throughout itsdomain.
Find the values of x for which y = [x(x — 2)]? is an increasing function.
4sin6

Provethat y=—————-0 isanincreasing function of g in 0,E :
(2+ cos0) 2
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11.

12.

13.

14.

15.

16.

17.

18.
19.
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Prove that the logarithmic functionisstrictly increasing on (0, o).

Prove that the function f given by f(x) = x> —x + 1 is neither strictly increasing
nor strictly decreasing on (-1, 1).

Which of thefollowing functions are strictly decreasing on [Og) ?

(A) cosx (B) cos 2x (C) cos 3x (D) tan x
On which of the following intervalsisthe function f given by f (x) = x*® + sinx-1
strictly decreasing ?

(A) (0,1) (B) [%n) (©) (o,%) (D) None of these

Find the least value of a such that the function f given by f(x) = x*+ ax + 1is
strictly increasing on (1, 2).
Let | be any interval digoint from (-1, 1). Prove that the function f given by

f(x)= x+l isstrictly increasingon |.
X

Provethat thefunction f given by f (x) =log sinx isstrictly increasing on (0%)

and strictly decreasing on [g n‘) .

Prove that the function f given by f(X) = log cos x is strictly decreasing on
s . . . s

(O,EJ and strictly increasing on (E,nj .

Prove that the function given by f (x) = x* —3x* + 3x — 100 isincreasing in R.
Theinterval inwhichy = x? e*isincreasing is

6.4 Tangentsand Normals

In this section, we shall use differentiation to find the equation of the tangent line and
the normal lineto a curve at a given point.

Recall that the equation of a straight line passing through a given point (x,, Y,)

having finite lopemisgiven by

Y=Y, =MX=X)
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Note that the slope of the tangent to the curvey =1 (x)

M
e
e‘\‘\“‘e
‘@‘\%

at the point (x,, y,) is given by %} (=1t'(%)). So
X J60.%0)

2
3
=
<
%
2

the equation of thetangent at (x,, y,) tothecurvey=f(x)
isgiven by

Y=Y, = 06X = %)
Also, sincethe normal isperpendicular to the tangent,
the slope of the normal to the curvey = f(x) at (x,, y,) is

1 _ Fig6.7
T, if f'(x,)=0. Therefore, the equation of the
(%

normal to the curvey =f(x) at (x,, y,) isgivenby

-1
y-Y, = TXO)(X—Xo)

e (Y= ¥) F'(%) + (x=%)=0
| Note|If atangent lineto the curvey = f (x) makes an angle ® with x-axisin the

positive direction, then % = slope of the tangent = tan© .

Particular cases

(i) If slope of the tangent lineis zero, then tan 6 = 0 and so 6 = 0 which means the
tangent lineis parallel to the x-axis. In this case, the equation of the tangent at

the point (x,, y,) isgivenby y =y,.

@ 1fo —>g , thentan 6 — o, which meansthe tangent lineis perpendicular to the

x-axis, i.e., paralel to the y-axis. In this case, the equation of the tangent at
(X, Y,) isgiven by x=x (Why?).

Example 14 Find the slope of the tangent to the curve y =x® —xat x = 2.

Solution The slope of the tangent at x = 2 is given by

dy )
dezz 3x —1]X=2 =11,
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Example 15 Find the point at which the tangent to the curve y=+/4x-3 -1 hasits

2
slope§.
Solution Slope of tangent to the given curve at (X, y) is
dy 1 = 2
— = —(4x-3)24=
dx 2( ) 4x—-3
o 2
Theslopeisgivento beg.
2 2
= Jax-3 7 3
or 4x—-3=9
or x=3
Now Y=+4x-3-1 Sowhenx=3, y=4/4(3)-3-1=2.

Therefore, the required point is (3, 2).
Example 16 Find the equation of all lineshaving slope 2 and being tangent to the curve

2

y+;t§=0.

Solution Slope of the tangent to the given curve at any point (x,y) is given by
dy 2
o (x—3)?

But the slopeis given to be 2. Therefore

2 —_
-3

or x=3)2=1

or X—3=z%x1

or x=2,4

Now x =2 givesy = 2 and x = 4 givesy = — 2. Thus, there are two tangents to the
given curve with slope 2 and passing through the points (2, 2) and (4, —2). The equation
of tangent through (2, 2) isgiven by

y—2=2(x-2)
or y—-2x+2=0
and the equation of the tangent through (4, — 2) is given by
y-(=2=2(x-4
or y—2x+10=0



APPLICATION OF DERIVATIVES 209

2 2

Example 17 Find pointson the curve XZ + )2/—5 =1 at whichthetangentsare (i) parallel

tox-axis(ii) paralel to y-axis.
X2 y2
Solution Differentiating ) + %= 1 with respect to x, we get

X, 2ydy

2 25dx'O

dy —25x
x 4y
(i) Now, thetangent isparallel to the x-axisif the slope of the tangent iszero which

25X . L Xy .
———=0.Th ossibleif x=0. Then —+=—=1 for x=0 gives
gives 2y isis possibleif x T X giv

or

y2=25i.e,y=%5.
Thus, the points at which the tangents are parallel to the x-axis are (0, 5) and
(0,-5).
(i) Thetangent lineis parallel to y-axisif the slope of the normal is 0 which gives
2 2
ﬂ: 0,i.e,y=0. Therefore, X—+y—:l fory=0givesx =+ 2. Hence, the
25% 4 25
points at which the tangents are parallel to the y-axisare (2, 0) and (-2, 0).
X—7
E le 18 Find th [ f the t t to the curve y=————— at the
xample ind the equation of the tangent to urve y (x—2)(x-3)

point where it cuts the x-axis.

Solution Note that on x-axis, y = 0. So the equation of the curve, wheny = 0, gives
X =7. Thus, the curve cutsthe x-axis at (7, 0). Now differentiating the equation of the
curve with respect to x, we obtain

dy _ 1-y(2x-5)

dx ~ (x=2)(x-3 (Why?)

\ o] 1o s
dXlzo (5)(4) 20
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1
Therefore, the dope of the tangent at (7, 0) is — . Hence, the equation of the

20°
tangent at (7, 0) is
1
-0=—(x- or 20y-x+7=0
y AL y
2 2
Example 19 Find the equations of the tangent and normal to the curve x3 + y3 =2
at (1, 1).
2 2
Solution Differentiating x3 + y3 = 2 with respect to x, we get
-1 -1
3 37 dx
q 1
d_ (Y
” dx - (xj
. dy
Therefore, the slope of the tangent at (1, 1) is — =-1.
X Jr g
So the equation of the tangent at (1, 1) is
y—-1=-1(x-1) or y+x—-2=0
Also, the slope of the normal at (1, 1) isgiven by
-1 _q
slope of thetangent at (1,1)
Therefore, the equation of the normal at (1, 1) is
y—-1=1(x-1) or y—x=0
Example 20 Find the equation of tangent to the curve given by
x=asnt, y=bcos*t . (D

. T
atapomtwheret:E.

Solution Differentiating (1) with respect to t, we get

%=3asin2tcost and ﬂz—Sbcosztsint
dt dt
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d

dy dt _ —3bcos’tsint _—bcost

> d« dX 7 3asn’tcost a sint
dt

T
Therefore, slope of the tangent at t = > is

—bcos™
ﬂ} _ 2
dx

Also, when t =% , Xx=aandy = 0. Hence, the equation of tangent to the given

curve at t:% ,i.e,a(a 0)is

y—-0=0(x—a),i.e,y=0.

| EXERCISE 6.3
1. Find the slope of the tangent to the curvey = 3x* —4x at x = 4.

, -1
2. Find the slope of the tangent to the curve yz%, X# 2 at x=10.

3. Find the slope of the tangent to curvey = x® — x + 1 at the point whose
x-coordinateis 2.

4. Find the slope of the tangent to the curve y = xX* —3x + 2 at the point whose
x-coordinateis 3.

5. Find the slope of the normal to the curve x = acos’6, y=asin®0 at 9:%-

6. Find the slope of the normal to the curve x=1-asin®,y=bcos?6 at 6= g

7. Find points at which the tangent to the curve y=x®—3x2—-9x + 7 isparallel to
the x-axis.

8. Findapoint onthecurvey = (x—2)? at which thetangent isparallel to the chord
joining the points (2, 0) and (4, 4).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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Find the point on the curvey = x® — 11x + 5 at which the tangent isy = x —11.
Find the equation of all lines having slope —1 that are tangents to the curve

1
=—— xz1
y x-1
Find the equation of al lines having slope 2 which are tangents to the curve
1
=—— ,Xx#3.
y X-3
Find the equations of al lines having slope O which are tangent to the curve
yo—t
X2 —2x+3

2 2

, : X :
Find points on the curve 5 + i/—6 =1 at which the tangents are

(i) pardlel tox-axis (i) paralel toy-axis.
Find the equations of the tangent and normal to the given curvesat theindicated
points:
(i) y=x*—6x3+13x*—10x+ 5 at (0, 5)
(i) y=x*—6x3+13x*—10x + 5 at (1, 3)
(i) y=xat (1, 1)
(iv) y=x*at (0, 0)

(V) x=cost,y=snta tzg

Find the equation of the tangent line to the curvey = x> — 2x +7 which is
(@) pardlel totheline2x—y+9=0
(b) perpendicular to theline 5y — 15x = 13.

Show that the tangents to the curvey = 7x3 + 11 at the points where x = 2 and
X=—2areparaldl.

Find the points on the curve y = x® at which the slope of the tangent is equal to
the y-coordinate of the point.

For the curve y = 4x® — 25, find all the points at which the tangent passes
through theorigin.

Find the points on the curve x? + y?2 — 2x— 3 = 0 at which the tangents are parallel
to the x-axis.

Find the equation of the normal at the point (am?,am?) for the curve ay? = »3.
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21. Find the equation of the normalsto the curvey = X3 + 2x + 6 which are parallel
tothelinex+ 14y +4=0.

22. Findthe eguationsof the tangent and normal to the parabolay? = 4ax at the point
(at?, 2at).

23. Provethat the curves x = y? and xy = k cut at right angles* if 8k?* = 1.

24.  Findtheequations of thetangent and normal to the hyperbola :—z - Z—z =1 atthe
point (X, Y,)-

25.  Find the equation of thetangent to thecurve y = /3x— 2 whichisparalel tothe
line 4x-2y+5=0.

Choose the correct answer in Exercises 26 and 27.

26. The slope of the normal to thecurvey =2x2+3sinxat x=0is

1 1
(A) 3 ® 3 ©-= O 5

27. Theliney = x+ 1isatangent to the curve y? = 4x at the point

6.5 Approximations

In this section, we will use differential sto approximate values of certain quantities.
Letf: D — R, D c R, beagivenfunction 4

and let y = f(x). Let Ax denote a small Q(x+Axy+Ay)

increment in x. Recall that theincrementiny S (x +dx, y +dy)

corresponding to theincrement in x, denoted

by Ay, isgiven by Ay =f (x + Ax) —f (x). We

definethefollowing

(i) Thedifferential of x, denoted by dx,is  —
defined by dx = Ax.

(i) The differential of y, denoted by dy, X' o X
is defined by dy = f(x) dx or /
Fig6.8
dyz(ﬂij.
dx

*  Two curvesintersect at right angleif the tangents to the curves at the point of intersection
are perpendicular to each other.
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Incasedx = Axisrelatively small when compared with x, dy isagood approximation
of Ay and we denote it by dy = Ay.

For geometrical meaning of Ax, Ay, dxand dy, one may refer to Fig 6.8.

|@= Note|In view of the above discussion and Fig 6.8, we may note that the
differential of the dependent variable is not equal to the increment of the variable
where as the differential of independent variable is equal to the increment of the
variable.

Example 21 Use differential to approximate /36.6 -
Solution Take y=+/x.Let x=36and let Ax = 0.6. Then

AY = Jx+AX —/x =+/36.6 —/36 =/36.6 -6

or \36.6 =6+Ay
Now dy is approximately equal to Ay and is given by

(W) et 06 = -1 (06 = _
dy = [dxj AX = o (0.6) N (0.6) =0.05 (as y=+/X)

Thus, the approximate value of /36.6 is6 + 0.05=6.05.
1
Example 22 Use differential to approximate (25)3.
1
Solution Let y=x3. Let x= 27 and let Ax = — 2. Then
1 1 1 1 1
Ay = (X+Ax)3 -x3 = (25)% - (27)3 =(25)% -3
1

or (253 = 3+ Ay
Now dy is approximately equal to Ay and is given by
dy 1 2
= | —= =—(-2 as y=x3
dy ( dxj (-2 (Bsy=x)

3x3
- ——(-9-2--o00n4
3((27)3)?

1

Thus, the approximate value of (25)5 isgiven by
3+ (—0.074) =2.926
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Example 23 Find the approximate value of f(3.02), where f(x) = 3x* + bx + 3.
Solution Let x = 3 and Ax = 0.02. Then
f(3.02) =f(x+ Ax) = 3(Xx + AX)? + 5(x + AX) + 3
Note that Ay = f (X + AX) — f (X). Therefore
f(x+Ax) =f(X) + Ay
=f(x) + f’(X) A (as dx = AX)

or f(3.02) = (3x* + 5x + 3) + (6x + 5) Ax

= (3(3)2+5(3) +3) + (6(3) +5) (0.02) (asx=3,Ax=0.02)
(27 + 15+ 3) + (18 + 5) (0.02)
45+ 0.46 = 45.46
Hence, approximate value of f(3.02) is45.46.

Example 24 Find the approximate change in the volume V of a cube of side x meters
caused by increasing the side by 2%.

Solution Note that

VvV =x3
— (d—VJAX — 2
or av = ax = (3x%) Ax
= (3x%) (0.02x) = 0.06x3 m? (as 2% of x is 0.02x)

Thus, the approximate change in volume is 0.06 x3m?.

Example 25 If the radius of a sphere is measured as 9 cm with an error of 0.03 cm,
then find the approximate error in cal culating its volume.

Solution Let r be theradius of the sphere and Ar be the error in measuring the radius.
Then r =9 cm and Ar = 0.03 cm. Now, the volume V of the sphereis given by

4 3
V=_mr
37‘C
&y,
or g = A
av
Therefore dav = (WJN = (4nr?)Ar

= 4(9)? (0.03) = 9.72n cm®
Thus, the approximate error in calculating the volume is 9.72r cm?.
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| EXERCISE 6.4

1. Using differentials, find the approximate value of each of thefollowing upto 3
places of decimal.

() V253 (i) 495 i) 06
(V) (0009 ) (0999 ) (15
(vii) (26)% (vii) (255)% (%) (82):11
() (401)% (xi) (0.0037)% (xii) (26.57)%
(i) (815)" () (3.968)° () (32155

2. Find the approximate value of f(2.01), wheref(x) = 4x% + 5x + 2.

3. Find the approximate value of f(5.001), where f(x) = x3 —7x* + 15.

4. Find the approximate change in the volume V of acube of side x metres caused
by increasing the side by 1%.

5. Find the approximate change in the surface area of a cube of side x metres
caused by decreasing the side by 1%.

6. If theradiusof asphereismeasured as 7 mwith an error of 0.02 m, then find the
approximate error in cal culating itsvolume.

7. If theradiusof asphereismeasured as9 mwith an error of 0.03 m, then find the
approximate error in calculating its surface area.

8. If f(x) =3x2+ 15x + 5, then the approximate value of f (3.02) is
(A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66

9. The approximate change in the volume of a cube of side x metres caused by
increasing the side by 3%is
(A) 0.06x*m* (B) 0.6x m* (C) 0.09x% m*(D) 0.9x® m?

6.6 Maximaand Minima

In this section, we will use the concept of derivatives to calculate the maximum or
minimum values of variousfunctions. In fact, wewill find the ‘turning points' of the
graph of a function and thus find points at which the graph reaches its highest (or
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lowest) locally. The knowledge of such pointsisvery useful in sketching the graph of
agiven function. Further, wewill aso find the absol ute maximum and absol ute minimum
of afunction that are necessary for the solution of many applied problems.

Let us consider the following problemsthat arisein day to day life.

(i) The profit from a grove of orange treesis given by P(x) = ax + bx?, where a,b
are constants and x is the number of orange trees per acre. How many trees per
acrewill maximisethe profit?

(i) A bal, thrown into the air from a building 60 metres high, travels along a path

2
givenby h(x) = 60+ x - % ,wherexisthehorizontal distancefrom the building

and h(x) is the height of the ball . What is the maximum height the ball will
reach?

(i) An Apache helicopter of enemy is flying aong the path given by the curve
f(X) =x2+ 7. A soldier, placed at the point (1, 2), wants to shoot the helicopter
when it is nearest to him. What is the nearest distance?

In each of the above problem, thereis something common, i.e., wewish to find out
the maximum or minimum values of the given functions. In order to tackle such problems,
we first formally define maximum or minimum values of a function, points of local
maximaand minimaand test for determining such points.

Definition 3 Let f be afunction defined on an interval I. Then
(@) fissaidto have amaximumvalueinl, if there existsapoint cin| such that
f(c)> f(x),fordl xe I.

The number f(c) is called the maximum value of fin | and the point ciscalled a
point of maximum value of fin I.

(b) f issaidto haveaminimumvalueinl, if there existsapoint cin | such that
f(c)<f(x), fordl xe l.
The number f (c), inthiscase, iscalled the minimum value of fin | and the point
c, inthis case, is called a point of minimum value of f inl.

(c) fissaidto have an extreme value in | if there exists a point ¢ in | such that
f (c) is either amaximum value or aminimum valueof f inl.

The number f(c), inthiscase, iscalled an extremevalue of f inl and the point c
is called an extreme point.

Remark In Fig 6.9(a), (b) and (c), we have exhibited that graphs of certain particular
functions help usto find maximum value and minimum value at apoint. Infact, through
graphs, we can even find maximum/minimum value of afunction at apoint at which it
isnot even differentiable (Example 27).
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Fig 6.9

Example 26 Find the maximum and the minimum values,
if any, of thefunctionf given by

f(X) =%, xe R.

Solution From the graph of the given function (Fig 6.10),
we have f(x) =0if x=0.Also
f(x) >0, foral xe R.

Therefore, the minimum value of f is0 and the point
of minimum value of fisx= 0. Further, it may be observed
from the graph of the function that f has no maximum
value and hence no point of maximum value of f inR.

If we restrict the domain of fto[-2, 1] only,

then f will have maximum value(—2)? =4 at x =—2.

Example 27 Find the maximum and minimum values
of f,if any, of thefunction givenby f(x) =|x|, xe R.

Solution From the graph of the given function
(Fig 6.11) , note that

f(x) =0, foralxe Rand f(x) =0 if x=0.

Therefore, the function f has aminimum value 0 X<
and the point of minimum value of fisx = 0. Also, the
graph clearly shows that f has no maximum valuein
R and hence no point of maximum valueinR.

Y
N
—t—t X
-3-2-10] 1
v
Y(
Fig 6.10
Y
N
13
T2
+1
——t ——t >X
3210|123
4
Y!
Fig6.11

(i) If werestrict thedomain of fto[—2, 1] only, thenfwill have maximum value

I-2|=2.
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(i) One may note that the function f in Example 27 is not differentiable at
x=0.

Example 28 Find the maximum and the minimum values, if any, of the function
givenby
f(x) =x,xe (0, 1).

Solution The given function is an increasing (strictly) function in the given interval
(O, 1). From the graph (Fig 6.12) of thefunctionf, it Y
seems that, it should have the minimum value at a T
point closest to 0 on itsright and the maximum value
at a point closest to 1 on its left. Are such points
available? Of course, not. It isnot possibleto locate
such points. Infact, if apoint x; is closest to 0, then

>X

we find %<X0 for al x, €(0,1). Also, if x, is X¢5
1
1 Y f@=xin(0,1)
> foral x €(0,3). Fig 6.12
Therefore, the given function has neither the maximum value nor the minimum
valueintheinterval (0,1).

Remark The reader may observe that in Example 28, if we include the points 0 and 1
inthedomain of f,i.e, if weextend thedomain of f to[0,1], thenthefunction f has
minimum value 0 at x = 0 and maximum value 1 at x = 1. Infact, we have the following
results (The proof of these results are beyond the scope of the present text)

Every monotonic function assumes its maximunm/minimum value at the end
points of the domain of definition of the function.

A more general result is
Every continuous function on a closed interval has a maximum and a minimum
value.

By a monotonic function f in an interval |, we mean that f is either
increasingin | or decreasingin .

X +
closest to 1, then

M aximum and minimum values of afunction defined on aclosed interval will be
discussed later in this section.

L et us now examine the graph of afunction as shown in Fig 6.13. Observe that at
pointsA, B, C and D on the graph, the function changes its nature from decreasing to
increasing or vice-versa. These points may be called turning points of the given
function. Further, observethat at turning points, the graph haseither alittlehill or alittle
valley. Roughly speaking, the function has minimum value in some neighbourhood
(interval) of each of the points A and C which are at the bottom of their respective
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Fig 6.13

valleys. Similarly, the function has maximum val uein some neighbourhood of points B

and D which are at the top of their respective hills. For this reason, the pointsA and C

may be regarded as points of local minimum value (or relative minimum value) and

points B and D may beregarded as points of local maximumvalue (or relative maximum

value) for the function. The local maximum value and local minimum value of the

function arereferred to aslocal maximaand local minima, respectively, of thefunction.
We now formally givethefollowing definition

Definition 4 Let f beareal vaued function and let ¢ bean interior point in thedomain
of f. Then

(@) ciscaledapoint of local maxima if thereisan h > 0 such that
f(c)=2f(x), foral xin(c—h,c+h)
The value f(c) is called the local maximum value of f.
(b) ciscaledapoint of local minimaif thereisan h > 0 such that
f(c) <f(x), foral xin(c—h,c+h)
The value f(c) is called the local minimum value of f .

Geometrically, theabove definition statesthat if x=cisapoint of local maximaof f,
then the graph of f around c will be asshownin Fig 6.14(a). Note that thefunctionf is
increasing (i.e., f’(x) > 0) intheinterval (c—h, ¢) and decreasing (i.e., f’(X) <0) inthe
interval (c, ¢ + h).

This suggests that f’(c) must be zero.

Y f©=0
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Similarly, if cisapoint of local minimaof f, then the graph of f around c will beas
shownin Fig 6.14(b). Heref isdecreasing (i.e., f’(x) < 0) intheinterval (c—h, ¢) and
increasing (i.e., f’(X) > 0) in theinterval (c, ¢ + h). This again suggest that f ’(c) must

be zero.

The above discussion lead usto the following theorem (without proof).

Theorem 2 Let f beafunction defined on an openinterval |. Supposec € | be any
point. If f hasalocal maximaor alocal minimaat x = ¢, then either f ’(c) =0 or f isnot

differentiable at c.

Remark The converse of above theorem need
not betrue, that is, apoint at which the derivative
vanishes need not be a point of local maxima or
local minima. For example, if f (X) =x3, thenf ’(X)
=3x?and so f ’(0) = 0. But 0 is neither a point of
local maximanor apoint of local minima(Fig 6.15).

A point c in the domain of afunction
fat which either f(c) =0 or fisnot differentiable
is called a critical point of f. Note that if f is
continuous at ¢ and f’(c) = 0, then there exists
anh>0suchthat fisdifferentiableintheinterval
(c—=h, c+h).

Xr

Y

flo)=x

X
point of inflection

YV
Fig 6.15

We shall now give aworking rule for finding points of local maxima or points of

local minimausing only thefirst order derivatives.

Theorem 3 (First Derivative Test) Let f be afunction defined on an open interval |.

Let f be continuous at acritical point cinl. Then

(i) If f’(X) changes sign from positive to negative as x increases through c, i.e., if
f’(x) > 0 at every point sufficiently close to and to theleft of ¢, and f ’(x) <0 at
every point sufficiently close to and to the right of ¢, then ¢ isa point of local

maxi ma.

(i) If f’(x) changes sign from negative to positive as x increases through ¢, i.e., if
f’(x) <0 at every point sufficiently close to and to theleft of ¢, and f ’(x) > 0 at
every point sufficiently close to and to the right of ¢, then c isapoint of local

minima.

(i) If f”(x) does not change sign as x increases through c, then ¢ is neither a point of
local maximanor apoint of local minima. Infact, such apoint is caled point of

inflection (Fig 6.15).
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[a== Note|If cisapoint of local maximaof f , then f (c) is alocal maximum value of
f. Similarly, if cisapoint of local minimaof f, then f(c) isaloca minimum valueof f.

Figures6.15 and 6.16, geometrically explain Theorem 3.

point of
local maxima
Y point of non differentiability
\ f(c)=0 and point of local maxima

point of non differentiability

: point

' of local ' and point of local minima
X' N minima N . >X
(0] , C; C, C, C,
Yl

Fig6.16
Example 29 Find all points of local maxima and local minima of the function f
givenby
f(x) =x*—-3x+ 3.

Solution We have

f(x) =x*-3x+3
or f'(x) =3¢ -3=3(x-1) (x+1)
or f'x) =0atx=landx=-1

Thus, x =+ 1 aretheonly critical pointswhich could possibly bethe pointsof local
maximaand/or local minimaof f . Let usfirst examine the point x = 1.

Note that for values close to 1 and to theright of 1, f’(x) > 0 and for values close
to 1 and to the left of 1, f'(X) < 0. Therefore, by first derivative test, x = 1 isapoint
of local minimaand local minimum valueisf (1) = 1. In the case of x = —1, note that
f’(x) > 0, for values close to and to the | eft of —1 and f’(x) < O, for values close to and
totheright of — 1. Therefore, by first derivativetest, x=—1isapoint of local maxima
and local maximum valueis f(-1) =5.

Valuesof x Sign of f’(x) =3(x—1) (x + 1)
to theright (say 1.1 etc.) >0

Closeto to the left (say 0.9 etc.) <0
totheright (say — 0.9 etc.) <0

Closeto -1 \ {5 the left (say —1.1 etc)) >0
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Example 30 Find al the points of local maxima and local minima of the function f
givenby

f(X) =2 —6X2 + 6X +5.
Solution We have

f(X) =2¢—-6x*+6x+5
or f/(X) =6x*—12x+ 6 = 6(x— 1)?
or f’x) =0 a x=1

Thus, x=1istheonly critical point of f.We shall now examinethispoint for local

maximaand/or local minimaof f. Observethatf’(x) >0, for all xe R andin particular
f’(x) > O, for values close to 1 and to the left and to the right of 1. Therefore, by first
derivative test, the point x = 1 is neither a point of local maxima nor a point of local
minima. Hence x = 1isapoint of inflexion.

Remark One may note that since f’(x), in Example 30, never changesits sign on R,
graph of f has no turning points and hence no point of local maximaor local minima.

We shall now give another test to examine local maxima and local minima of a
given function. Thistest is often easier to apply than the first derivative test.

Theorem 4 (Second Derivative Test) Let f be afunction defined on an interval |
andce |. Letf betwice differentiable at c. Then

(i) x=cisapoint of loca maximaif f’(c) =0andf”(c) <0
Thevaluef (c) islocal maximum value of f.
(i) x=cisapoint of loca minimaif f’(c)=0 andf”(c) >0
Inthiscase, f (c) isloca minimum value of f.
(i) Thetest failsif f’(c) = 0and f”(c) = 0.
In this case, we go back to thefirst derivative test and find whether cisapoint of
local maxima, local minimaor apoint of inflexion.

[ Note| As f is twice differentiable at ¢, we mean - T
second order derivative of f exists at c. @R_ g

Example 31 Find local minimum value of the function f
givenby f(x) =3+ |x|,xe R.

Solution Notethat thegiven functionisnot differentiable X<t — —gr————X
at x =0. So, second derivative test fails. Let ustry first
derivative test. Note that O isacritical point of f. Now ,
totheleft of 0, f(X) =3 —xand sof’(x) =—1 < 0. Also Fig6.17
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to theright of 0, f(x) =3 + xand so f’(x) = 1> 0. Therefore, by first derivative test,
x=0isapoint of loca minimaof f andloca minimum vaueof f isf(0) =3.

Example 32 Find local maximum and local minimum vauesof thefunction f given by

f(X) =3x"+ 43 -12¢ + 12
Solution We have
f(X) =3¢ +43-12 + 12

or f/(x) =12¢ + 12¢ - 24x = 12x (x—=1) (x + 2)
or f’'(X) =0ax=0,x=1andx=-2.
Now f7(x) =36x2 +24x —24 = 12(3x* + 2x - 1)
f"(0) =-12<0
or f"1) =48>0
f"(-2) =84>0

Therefore, by second derivative test, x = 0 isa point of local maxima and local
maximum valueof fat x=0isf (0) = 12 whilex =1 and x = — 2 are the points of local
minimaand local minimum valuesof fat x=—1and—2aref (1) = 7and f (-2) =20,
respectively.

Example 33 Find al the points of local maxima and local minima of the function f
givenby

f(X) = 2x® — 6X° + 6x +5.
Solution We have

f(X) = 23 — 6%* + 6x +5

{f’(x) =6x% — 12X+ 6= 6(x—1)>
or

f"(x)=12(x-1)
Now f’(x) = 0 gives x =1. Also f”(1) = 0. Therefore, the second derivative test
failsin this case. So, we shall go back to the first derivative test.
We have aready seen (Example 30) that, using first derivativetest, x =1 isneither
apoint of local maximanor apoint of local minimaand so itisapoint of inflexion.

Example 34 Find two positive numbers whose sum is 15 and the sum of whose
squaresisminimum.

Solution Let one of the numbers be x. Then the other number is (15 — x). Let S(x)
denote the sum of the squares of these numbers. Then
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S(X) = X% + (15— x)? = 2x* — 30x + 225
S(x)=4x-30
or
S(x)=4

Now S'(x) =0gives x= % .Also S”(%j =4> 0. Therefore, by second derivative

test, x= % isthe point of local minimaof S. Hence the sum of squares of numbersis

minimum when the numbers are % and 15— % = % )

Remark Proceeding as in Example 34 one may prove that the two positive numbers,
whose sum is k and the sum of whose sgquares is minimum, are g and g .

Example 35 Find the shortest distance of the point (0, c) from the parabolay = X,
where0<c< 5.

Solution Let (h, k) be any point on the parabolay = x?. Let D be the required distance
between (h, k) and (0, ¢). Then

D=4/(h—0)?+(k—c)® =\[h*+ (k—c)? (1)
Since (h, k) lies on the parabolay = x?, we have k = h%. So (1) gives

D=D(K) = Jk+(k-0)

o D'k 1+2(k—-c)
I =
2.k + (k—c)?
2c-1
Now D’(k) =0gives k =—

2c-1
Observe that when k<CT,then 2(k—-c)+1<0, i.e, D'(k)<0.Alsowhen

2c-1 2c-1

k> ,then D'(K) > 0. So, by first derivativetest, D (k) isminimumat k =

Hence, the required shortest distance is given by
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2 2 2 2

D(2c—1j:\/2c—1+(2c—1_cj2 _fAc-1

The reader may note that in Example 35, we have used first derivative
test instead of the second derivative test as the former is easy and short.

Example 36 Let AP and BQ be two vertical poles at 2

pointsA and B, respectively. If AP=16m, BQ=22m
and AB = 20 m, then find the distance of a point R on
AB from the point A such that RP? + RQ? is minimum.

P

16m
22m

Solution Let R be apoint on AB such that AR =x m.
Then RB = (20 —x) m (asAB =20 m). From Fig 6.18, A ]
we have xm - RS20 " 9m
RP2 = AR? + AP? 20m

and RQ? = RB? + BQ Fig6.18
Therefore RP* + RQ? = AR? + AP* + RB? + BQ?

=X+ (16)* + (20 — x)? + (22)?

= 2x* —40x + 1140
Let S=S(x) = RP? + RQ? = 2x% — 40x + 1140.

Therefore S'(x) = 4x —40.

Now S'(x) = 0 gives x = 10. Also S”(x) =4 > 0, for all x and so S”(10) > O.
Therefore, by second derivativetest, x = 10 isthe point of local minimaof S. Thus, the
distance of R from A onAB isAR =x =10 m.

Example 37 If length of three sides of atrapezium other than base are equal to 10cm,
then find the area of the trapezium when it is maximum.

Solution Therequired trapeziumisasgivenin Fig 6.19. Draw perpendiculars DP and

D 10 cm C
§
S, G
N [
%
A [ 1 ]
xcem P 10 cm Q xcm B

Fig 6.19
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CQonAB. Let AP=xcm. Notethat AAPD ~ ABQC. Therefore, QB = x cm. Also, by
Pythagoras theorem, DP= QC = /100 — x? - Let A be the area of the trapezium. Then

1
A=A(X) = - (sumof parallel sides) (height)

. %(2x+10+10)( 1002

(x+10)(v100-2)

x+10—=2X (V00— )

or A’(X)

2100 x*
—2x% —10x+100
© J100-x2
Now A’(X) =0gives2x* + 10x—100=0, i.e, X =5and x=-10.
Since x represents distance, it can not be negative.
So, x =5. Now
J100— X2 (~4x-10) — (-2x% —10x+100)=2X)__
no — 21/100- x*
A (X) - 2
100-x
2x*-300x-1000 .
= 3 (onsimplification)
(100— x?)2
2(5)% - -1 -2250  -30
or A7) = (5)° —300(5) -1000 B <0

- = =
= 75V 75 75
(100~ (5)*)? V75
Thus, area of trapezium is maximum at x =5 and the areais given by
A (5) = (5+10)y/100— (5) =15J75 = 753 cm?
Example 38 Prove that the radius of the right circular cylinder of greatest curved
surface area which can be inscribed in a given cone is half of that of the cone.

Solution Let OC =r bethe radius of the cone and OA =h beitsheight. Let acylinder
with radius OE = x inscribed in the given cone (Fig 6.20). The height QE of the cylinder
isgiven by
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QE EC i
oA - oC (since AQEC ~ AAOC)
QE r-x
or h _I’
h(r — X
or QE= ( )

Let S be the curved surface area of the given
cylinder. Then

2nxh(r — x 2rh
S =5()= = f ) ’: (rx—x2)

Fig 6.20

S’(x):z%h(r - 2X)

or

S'(x) = —4zh

r r
Now S'(x) = 0 gives X=§. Since S”(x) < 0 for all x, S’(sz<0. So X=§ isa

point of maximaof S. Hence, the radius of the cylinder of greatest curved surface area
which can be inscribed in agiven coneis half of that of the cone.

6.6.1 Maximum and Minimum Values of a Function in a Closed Interval
Let us consider afunction f given by
f(x) =x+2,xe (0,1)
Observethat thefunctioniscontinuouson (0, 1) and neither hasamaximum value

nor has a minimum value. Further, we may note that the function even has neither a
local maximum value nor aloca minimum value.

However, if we extend thedomain of f totheclosedinterval [0, 1], thenf still may
not havealocal maximum (minimum) valuesbut it certainly does have maximum value
3 =1(21) and minimum value 2 = f(0). The maximum value 3 of f at x = 1 is called
absolute maximum value (global maximum or greatest value) of f on the interval
[0, 1]. Similarly, the minimum value 2 of f at x = 0is called the absolute minimum
value (global minimum or least value) of f on [0, 1].

Consider the graph given in Fig 6.21 of a continuous function defined on a closed
interval [a, d]. Observe that the function f has a local minima at x = b and local
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X
e if(a) if(b) if(C) e
O, a b c d
Y/
Fig 6.21

minimum valueisf (b). Thefunction also hasalocal maximaat x = candloca maximum
valueisf (c).

Also from the graph, it is evident that f has absolute maximum value f (a) and
absolute minimum value f (d). Further note that the absolute maximum (minimum)
valueof f isdifferent from local maximum (minimum) value of f.

We will now state two results (without proof) regarding absolute maximum and
absolute minimum values of afunction on aclosed interval .

Theorem 5 Let f be a continuous function on an interval | =[a, b]. Then f has the
absolute maximum value and f attains it at least once in |. Also, f has the absolute
minimum value and attainsit at least oncein .

Theorem 6 Let f be a differentiable function on a closed interval | and let ¢ be any
interior point of I. Then

(i) f’(c) =0if fattainsits absolute maximum value at c.

(i) f’(c)=0if fattainsitsabsolute minimum value at c.

Inview of theaboveresults, we havethefollowing working rulefor finding absolute
maximum and/or absolute minimum values of a function in a given closed interval
[a, b].

Working Rule
Step 1: Find al critical points of f in the interval, i.e., find points X where either
f’(x)=0 orf isnot differentiable.

Step 2: Takethe end points of the interval.
Sep 3: At dl these points (listed in Step 1 and 2), calculate the values of f.

Sep 4: Identify the maximum and minimum valuesof f out of thevaluescalculatedin
Step 3. Thismaximum valuewill be the absol ute maximum (greatest) val ue of
f and the minimum value will be the absolute minimum (least) value of f.
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Example 39 Find the absol ute maximum and minimum values of afunction f given by
f(X) = 2¢ —15x% + 36x +1 on theinterval [1, 5].

Solution We have
f(X) =2 -15x + 36x + 1
or f'(X) =6x2—30x+36=6(x—3) (x—2)
Note that f'(xX) = 0 gives x=2and x = 3.
We shall now evaluate the value of f at these points and at the end points of the
interval [1,5],i.e,ax=1x=2,x=3anda x=5. S0
f(1)=2(1%-15(1»)+36(1) +1=24
f(2)=2(2°)-15(25) +36(2) +1=29
f(3)=2(3)-15(3%) +36(3) +1=28
f(5) =2(5°) —15(5%) +36(5) + 1 =56
Thus, we conclude that absolute maximum value of fon[1, 5] is56, occurring at
x =5, and absolute minimum value of f on [1, 5] is 24 which occursat x = 1.
Example 40 Find absolute maximum and minimum values of afunction f given by

4 1
f(x)=12x3 - 6x3, xe[-1 1]
Solution We have
4 1

f(x) = 12x3 —6x3

1
2 2ex-))
or f'(x) = 16x° —— = 2
x3 x3

1
Thus, f’(X) = 0 gives X= 3 Further note that f’(x) is not defined at x = 0. So the
1 . .
critical pointsare x =0 and x=§. Now evaluating the value of f at critical points

1
x=0, 3 and at end points of theinterval x = -1 and x = 1, we have

f(-1) = 12(-1)3 -6(-1)3 =18
f(0) =12(0)—6(0) =0
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. 4 1
f(—j - 12(%3 —G(ET -9
8 8 8) 4

4 1

f(1) = 12()% -6(1)3 =6
Hence, we conclude that absolute maximum value of f is18that occursat x =—1

- 1
and absolute minimum value of fis 79 that occursat X= 3

Example 41 An Apache helicopter of enemy is flying along the curve given by
y=x?+ 7. A soldier, placed at (3, 7), wants to shoot down the helicopter when it is
nearest to him. Find the nearest distance.

Solution For each value of x, the helicopter’s position is at point (x, x* + 7).
Therefore, the distance between the helicopter and the soldier placed at (3,7) is

Jx=32+(C+7-7)2 i, \J(x-3)7+x*.
Let f(x) =(x=3)*+x*
or f/() =2(x=3) + ¢ =2(x—1) (2¢ + 2x + 3)
Thus, f’(xX) =0 givesx = 1 or 2x¢ + 2x + 3 = 0 for which there are no real roots.
Also, there are no end points of theinterval to be added to the set for which f” is zero,

i.e., there is only one point, namely, x = 1. The value of f at this point is given by
f(1) = (1-3)*+ (1)* =5. Thus, the distance between the solider and the helicopter is

Jf@®=+5.
Notethat /5 is either amaximum value or aminimum value. Since
JF(0) =J(0-3%+(0)* =3>+/5,

it follows that /5 isthe minimum value of ./f(x). Hence, /5 isthe minimum
distance between the soldier and the helicopter.

|EXERCISE 6.5|
1. Find the maximum and minimum values, if any, of the following functions
givenby
(i) T =(2x-1)*+3 (i) T() =9+ 12x+2

(iii) f(x) = — (x— 1) + 10 (iv) g =+ 1
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Find the maximum and minimum values, if any, of the following functions
givenby

) f=Ix+2|-1 () g(x)=—|x+1|+3

(i) h(x)=sin(2x) +5 (iv) f(x) =|sin4x + 3|

V) h(x)=x+1,xe (=11
Find thelocal maximaand local minima, if any, of thefollowing functions. Find
also thelocal maximum and the local minimum values, as the case may be:

i f(x)=x (i) g(¥) =x®-3x
(iii) h(x)=sinx+cosx,0<x<g
(iv) f(x) =sinx—cosx, 0<x<2n
) X 2
(V) f()=x—6x+9x+15 (Vi) g(X)=§+;, x>0

x21+2 (Vi) f(X)=xJ1-Xx, x>0

Provethat thefollowing functions do not have maximaor minima:
(i) f(x) =¢e (i) g(x) =log x
@) h(xX)=x+x+x+1
Find the absol ute maximum val ue and the absol ute minimum val ue of thefollowing
functionsinthegivenintervals:
() fx)=x, xe [-2, 2] (i) f(x) =sinx+cosx,xe [0, x|

(vi)) 9(x) =

(i) f(x) =4x—%x2, Xe[—Z,g} (iv) f(x)=(x-22+3 xe[-31]

Find the maximum profit that a company can make, if the profit function is
givenby
p(x) =41 —24x —18x?
Find both the maximum value and the minimum value of
3-8+ 12x2 —48x + 25 on theinterval [0, 3].
Atwhat pointsintheinterval [0, 2r], doesthe function sin 2x attain its maximum
value?
Wheat is the maximum value of the function sin x + cos x?

Find the maximum value of 2x® — 24x + 107 in the interval [1, 3]. Find the
maximum value of the same functionin[-3, —1].
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Itisgiventhat at x= 1, thefunction x* — 62x* + ax + 9 attainsits maximum value,
ontheinterval [0, 2]. Find the value of a.

Find the maximum and minimum valuesof x+ sin2xon|[0, 2x].
Find two numbers whose sum is 24 and whose product is as large as possible.
Find two positive numbers x and y such that x + y = 60 and xy? is maximum.

Find two positive numbers x and y such that their sumis 35 and the product x?y®
isamaximum.

Find two positive numbers whose sum is 16 and the sum of whose cubes is
minimum.

A sguare piece of tin of side 18 cm is to be made into a box without top, by
cutting asquare from each corner and folding up the flapsto form the box. What
should be the side of the square to be cut off so that the volume of the box isthe
maximum possible.

A rectangular sheet of tin 45 cm by 24 cm isto be made into a box without top,
by cutting off square from each corner and folding up the flaps. What should be
the side of the square to be cut off so that the volume of the box is maximum ?

Show that of al the rectanglesinscribed in agiven fixed circle, the square has
the maximum area.

Show that the right circular cylinder of given surface and maximum volumeis
such that its height is equal to the diameter of the base.

Of all the closed cylindrical cans(right circular), of agiven volume of 100 cubic
centimetres, find the dimensions of the can which has the minimum surface
area?

A wire of length 28 mis to be cut into two pieces. One of the piecesisto be
made into a square and the other into a circle. What should be the length of the
two pieces so that the combined area of the square and the circle is minimum?

Prove that the volume of the largest cone that can be inscribed in a sphere of

8
radiusR is 57 of the volume of the sphere.

Show that the right circular cone of least curved surface and given volume has

an altitude equal to V2 timethe radius of the base.
Show that the semi-vertical angle of the cone of the maximum volume and of

givenslant height is tan~+/2..
Show that semi-vertical angle of right circular cone of given surface area and

. .41
maximum volumeis sin 1(5)
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Choose the correct answer in the Exercises 27 and 29.
27. Thepoint on the curve x2 = 2y which is nearest to the point (0, 5) is

(A) (V2,4  (B) (22,00 (© (0,00 (D) (2,2

. 1-x+ X2 .

28. For dl rea values of x, the minimum value of — s
1+ X+ X

1

(A) O (B) 1 © 3 (D) 3

1
29. Themaximumvaueof [X(x-D)+1]®, o< x<1is

1

1
Wl ®; ©1 oo

Miscellaneous Examples

Example 42 A car startsfrom apoint Pat timet = 0 seconds and stops at point Q. The
distance x, in metres, covered by it, int secondsis given by

ele )

Find the time taken by it to reach Q and aso find distance between P and Q.

Solution Let v be the velocity of the car at t seconds.

Now X = tz(z_ij
3
dx
Therefore VzE =4t -t2=t(4-1)

Thus,v=0givest=0and/ort = 4.
Nowv=0at Paswell asat Qandat P t=0. So, at Q, t = 4. Thus, the car will
reach the point Q after 4 seconds. Also the distance travelled in 4 secondsis given by

X _ =& 2-2) 16[ 2]
t=4 3 3) 3
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Example 43 A water tank has the shape of an inverted right circular cone withitsaxis
vertical and vertex lowermost. Its semi-vertical angle is tan™(0.5). Water is poured
into it at a constant rate of 5 cubic metre per hour. Find the rate at which the level of
the water isrising at the instant when the depth of water in the tank is4 m.

Solution Let r, h and o be asin Fig 6.22. Then tana =%-

afr
S o = tan (Fj .
But o =tan?(0.5) (given)
r —_
or e 0.5
_h
or r= E

Let V bethe volume of the cone. Then

1 , 1 (hY
S P L IS
V=3" 3”()

Theref d_V_in_h?’@ by Chain Rul
eretore dt ~ dh| 12 ) ot (by ChainRule)
=Eh2@

4 dt

LAV _
Now rate of change of volume, i.e., E=5m /hand h=4m.
T 2 dh
== -—
Therefore 5 4() o
d 4n 88 7

Thus, the rate of change of water level is % m/h.

Example 44 A man of height 2 metres walks at a uniform speed of 5 km/h away from
alamp post which is 6 metres high. Find the rate at which the length of his shadow
increases.
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Solution In Fig 6.23, Let AB be the lamp-post, the
lamp being at the position B and let MN be the man
at aparticular time t and let AM = | metres. Then,
MS is the shadow of the man. Let MS = s metres.

Note that AMSN ~ AASB

MS MN
or A_S = E

Fig6.23
or AS=3s(asMN =2 and AB = 6 (given))
Thus AM =3s—-s=2s ButAM =1
o [=2s
Therefore a_ Zd—s
dt dt

Since % =5km/h. Hence, the length of the shadow increases at the rate g km/h.

Example45 Find the equation of the normal to the curvex? = 4y which passes through
thepoint (1, 2).
Solution Differentiating x* = 4y with respect to x, we get

dy X

dx 2
Let (h, k) be the coordinates of the point of contact of the normal to the curve
X2 = 4y. Now, slope of the tangent at (h, k) is given by

ﬂ} _h
dXJh ~ 2

2
h
Therefore, the equation of normal at (h, k) is

Hence, slope of the normal at (h, k) =

-2
Sinceit passes through the point (1, 2), we have

) 2
2-k=—=(-N) or k=2+-(1-h) - (2
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Since (h, K) lies on the curve X* = 4y, we have
h? = 4k - (3)
From (2) and (3), we have h =2 and k = 1. Substituting the values of hand kin (1),
we get the required equation of normal as

y—l:%z(x—Z) o x+y =3

Example 46 Find the equation of tangents to the curve

y=cos(x+Yy),-2n < x<2n
that are parallel tothelinex + 2y = 0.

Solution Differentiating y = cos(x + y) with respect to x, we have

dy _ —sin(x+y)

dx  1+sin(x+y)

or slope of tangent at (x )—M
P g Y= 1+sin(x+Yy)

Sincethetangentsto the given curve are parallel to thelinex + 2y = 0, whose slope

is —, we have

2

—sin(x+y) -1

1+sin(x+y) ~ 2
or sn(x+y)=1

T
or x+y=n7c+(—1)"?nez
Then y = cos(X +y) = cos(mw(—l)” gj, ne Z
=0,fordlne Z

Also, since —2n < x< 271, we get x=_—§n and x=g. Thus, tangents to the

given curve are paralel to theline x + 2y = 0 only at points (_—gnoj and (20) :

Therefore, the required equation of tangents are
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-1 3n
y—0=—|X+—| or 2x+4y+3n=0
2 2
_ —_1()(_&)
and y-0= 5 5 or 2x+4y-n=0
Example 47 Find intervalsin which the function given by
3.4 4., > 36
= —X —=X"=-3X"+—x+11
f0=30" "5 5

is(a) strictly increasing (b) strictly decreasing.
Solution We have

34 453 o2 36
= —X —=X"=-3x"+—x+11
f0=7""5 5
3, .3 4, 5 36
(xX) = —(4x°) —=(3x") - 3(2X) + —
Therefore f/(x) 10( ) 5( )—3(2x) =
6 T
= g(x—l)(x+ 2)(x-3) (onsimplification)
Now f’(x) =0givesx=1,x=—2,0rx=3. The i i
pointsx =1, —2, and 3dividethereal lineinto four ~ —2 1 3
digoint intervals namely, (— e, —2), (-2, 1), (1, 3) Fig6.24

and (3, «) (Fig 6.24).
Consider theinterval (—eo, — 2), i.e,, when —eco < x < —2.
In this case, we havex—-1<0,x+2<0andx—-3<0.
(In particular, observe that for x = -3, f'(X) = (x—1) (x+ 2) (x=3) = (-4) (- 1)
(-6)<0)
Therefore, f’(X) <Owhen —eo < x<-2.
Thus, the function f is strictly decreasing in (— oo, — 2).
Consider theinterval (-2, 1), i.e, when —2<x<1.
In this case, we havex —1<0,x+2>0and x-3<0
(In particular, observe that for x =0, f’(x) = (x—1) (x + 2) (x—3) = (-1) (2) (-3)
=6>0)
So f’(x) >0when—-2<x<1.
Thus, fisstrictly increasingin (—2, 1).
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Now consider the interval (1, 3), i.e.,, when 1 < x < 3. In this case, we have
Xx—=1>0,x +2>0and x-3<0.
o, f’(X) <Owhen 1<x<3.
Thus, fisstrictly decreasingin (1, 3).

Finally, consider theinterval (3, ), i.e., when x> 3. Inthiscase, wehavex—1>0,
x+2>0and x—3>0.Sof’(x) >0whenx>3.

Thus, f isstrictly increasing intheinterval (3, «).
Example 48 Show that the function f given by

f(x) =tan*(sinx + cosx), x>0
isalwaysan strictly increasing functionin (o%) .

Solution We have
f(x) =tan?*(sinx + cosx), x>0

1 :

Therefore f'(x) = COSX—SiNX

) 1+ (sinx +cosx)? ( )

COSX—SinX T
= orsnox (onsimplification)
. . Tc

Note that 2 + sin 2x > 0 for all xin [O’Z) :
Therefore f’'(x) >0 if cosx—sinx>0
or f’(x) >0 if cosx>sinx orcotx>1
Now cotx>1iftanx<1,i.e.,if0<x<%

Thus £/(x) >0 in (o,%)

Hencef isstrictly increasing functionin (O, gj :

Example 49 A circular disc of radius 3 cm is being heated. Due to expansion, its
radius increases at the rate of 0.05 cm/s. Find the rate at which its areais increasing
when radiusis 3.2 cm.



240 MATHEMATICS

Solution Let r be the radius of the given disc and A be its area. Then

A =T1r?
d—A = 27trﬂ by Chain Rule
o dt dt (by ule)

dr
Now approximate rate of increase of radius = dr = EM =0.05cn/s.

Therefore, the approximate rate of increase in areais given by

dA dr
= —(At) = 2nr| —At
dA dt(t) n(dt j

=21 (3.2) (0.05) = 0.320 cm?/s (r = 3.2 cm)

Example 50 An open topped box isto be constructed by removing equal squaresfrom
each corner of a3 metre by 8 metre rectangular sheet of aluminium and folding up the
sides. Find the volume of the largest such box.

Solution Let x metre be the length of a side of the removed squares. Then, the height
of the box isx, length is 8 — 2x and breadth is 3 — 2x (Fig 6.25). If V(X) isthe volume

of the box, then

& < I [ |x
' L=
' N
82 i x| 2
xﬂ [_x 8-2x
(a) (b)
Fig6.25

V(X) =x(3-2x) (8—2x)
=43 — 222 + 24X

Therefore V'(X) =12x2 — 44x + 24 = 4(x—3)(3x - 2)
V'(X)=24x—-44
Now V’(x) =0 gives x= 3,% . But x# 3 (Why?)

2
Thus, we have X=§. Now V”(§j=24[§)—44=—28<0.
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Therefore, x:% is the point of maxima, i.e., if we remove a square of side %

metre from each corner of the sheet and make a box from the remaining sheet, then
the volume of the box such obtained will bethelargest and it is given by

(343 =

200
=—mMm
27

Example 51 Manufacturer can sell x items at a price of rupees [5—%} each. The

cost price of x itemsisRs (g + 500) . Find the number of items he should sell to earn

maximum profit.

Solution Let S(x) be the selling price of x items and let C(x) be the cost price of x
items. Then, we have

2
S(x) = (5—ijx=5x—x—
100 100

X
and C(x) = g+ 500
Thus, the profit function P(x) is given by

P(x) = S(x)—C(x)=5x—m—§—500
= P(X) = %X—X—Z—SOO
5 100
or P = -2
5 50
Now P'(xX) = 0 gives x = 240. Also P"(X) =;—;. So P"(240) =;—é< 0

Thus, x = 240 is a point of maxima. Hence, the manufacturer can earn maximum
profit, if hesells240 items.
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Miscellaneous Exercise on Chapter 6

Using differentials, find the approximate value of each of thefollowing:

(@ [E_D‘l‘ (b) (395

Show that the function given by f (x) = logx has maximum at x = e.
X

The two equal sides of an isosceles triangle with fixed base b are decreasing at
the rate of 3 cm per second. How fast is the area decreasing when the two equal
sides are equal to the base ?

Find the equation of the normal to curve x? = 4y which passes through the point
1,2).
Show that the normal at any point @ to the curve
X=acosh+a0snb,y=asind —ad cosd
is at a constant distance from the origin.
Find theintervalsin which the function f given by

4s8in X — 2X— XCOSX

f(xX)=
() 2+ COSX

is(i) increasing (ii) decreasing.

Find theintervalsin which thefunction f given by f (x) = X +i3, x=0is
X

(i) increasing (i) decreasing.
2 y2

Find themaximum areaof an isoscel&striangleinscribedintheellipse¥+? =1
with its vertex at one end of the mgjor axis.

A tank with rectangular base and rectangular sides, open at the top is to be
constructed so that its depth is2 m and volumeis 8 m?3. If building of tank costs
Rs 70 per sq metres for the base and Rs 45 per square metre for sides. What is
the cost of least expensive tank?

The sum of the perimeter of acircle and square isk, where k is some constant.
Prove that the sum of their areas is least when the side of square is double the
radius of the circle.



11.

12.

13.

14.

15.

16.

17.

18.

APPLICATION OF DERIVATIVES 243

A window isin the form of arectangle surmounted by a semicircular opening.
Thetotal perimeter of thewindow is10 m. Find the dimensions of thewindow to
admit maximum light through the whol e opening.

A point on the hypotenuse of atriangleis at distance a and b from the sides of
thetriangle.

2 2 3
Show that the maximum length of the hypotenuseis (aé i bé)i :

Find the points at which the function f given by f (xX) = (x—2)* (x + 1) has
(i) loca maxima (i) loca minima
(ifi) pointof inflexion
Find the absol ute maximum and minimum val ues of the function f given by
f(X) =cos? x +sinx, x € [0, m]
Show that the altitude of the right circular cone of maximum volume that can be

4r
inscribed in asphere of radiusr is 3

Let f be afunction defined on [a, b] such that f’(x) > O, for all x e (a, b). Then
provethat f isan increasing function on (a, b).

Show that the height of the cylinder of maximum volumethat can beinscribedin

asphereof radiusRis 2R . Also find the maximum volume.

V3

Show that height of the cylinder of greatest volume which can beinscribedin a
right circular cone of height h and semi vertical angle o is one-third that of the

4
cone and the greatest volume of cylinder is Enhg’ tan’ o .

Choose the correct answer in the Exercises from 19 to 24.

19.

20.

A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314
cubic metre per hour. Then the depth of the wheat isincreasing at the rate of

(A) 1méh (B) 0.1 m¥h

(C) 11mdh (D) 0.5m%h

The slope of the tangent to the curve x =t + 3t — 8, y = 2t? — 2t — 5 at the point
2-1is

22 6 7 -6
(A) = (B) 7 © s (D) -
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21,

22.

23.

24,
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Theliney = mx + 1 isatangent to the curve y? = 4x if the value of mis

) 1 ®2 ©3 O
The normal at the point (1,1) on the curve2y + x? = 31is
(A) x+y=0 (B) x-y=0

(C) x+y+1=0 (D) x—-y=0

The normal to the curve x* = 4y passing (1,2) is

(A) x+y=3 (B) x-y=3

(C) x+y=1 (D) x-y=1

The points on the curve 9y? = x3, where the normal to the curve makes equal
intercepts with the axes are

8 -8
(A) (4’ ig) (B) [4;)
o 53] o (+43)
Summary

¢ If aquantity y varieswith another quantity x, satisfying somerule y= f (x),

then % (or f'(x)) representsthe rate of change of y with respect to x and

dy
dx} (or f'(x,)) represents the rate of change of y with respect to x at
X=X0

X=X -
If two variables x and y are varying with respect to another variablet, i.e., if
x= f(t)and y=g(t), then by Chain Rule

yzﬂ % if %io_
dx dt/ dt’ dt

A function f issaidto be
(@) increasing onaninterval (a, b) if
X, <X, in(a b) = f(x) <f(x) foral x, x, € (a b).
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Alternatively, if f(x) > 0 for each x in (a, b)
(b) decreasing on (a,b) if
X, <X, in(a b) = f(x) = f(x) for al x, x, € (a, b).
Alternatively, if f/(x) < 0 for each x in (a, b)
The equation of the tangent at (X, y,) tothecurvey = f (x) is given by

Y-V, =—J (X=%)
’ dx (X:Yo)

d
If &y does not exist at the point (x,,Y,) , then the tangent at this point is

parallel to the y-axis and its equation is x = X,.

If tangent to acurvey =f (x) at x = x, is parallel to x-axis, then ﬂ} =0.
Wb

Equation of the normal to the curvey = f (x) at apoint (x,,Y,) iSgiven by
-1
Y=Yo= T(X— )
AX Jix,y0)

If % at the point (X, Y,) iSzero, then equation of the normal isx = x,.

d
If &y atthepoint (x,,Y,) doesnot exist, then the normal isparallel to x-axis

anditsequationisy =y..
Let y = f(X), Ax be a small increment in x and Ay be the increment in y
corresponding to the increment in x, i.e., Ay = f(x + AX) — f(x). Then dy

given by
dy= f’(x)dx or dyz(g—zg AX .

isagood approximation of Aywhen dx = Ax isrelatively small and we denote
it by dy = Ay.

A point c in the domain of afunction f at which either f’(c) = 0 or f is not
differentiable is called a critical point of f.
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@ First Derivative Test Let f be a function defined on an open interval |. Let

f becontinuous at acritical point cinl. Then

(i) If f’(x) changessign from positive to negative as x increases through c,
i.e., if f’(x) >0 at every point sufficiently close to and to the left of c,
and f’(x) < 0 at every point sufficiently close to and to the right of c,
then cis a point of local maxima.

(i) If f’(X) changes sign from negative to positive as x increases through c,
i.e., if f’(x) <0 at every point sufficiently close to and to the left of c,
and f’(x) > 0 at every point sufficiently close to and to the right of c,
then cis a point of local minima.

(i) If f’(x) does not change sign as x increases through c, then c is neither
apoint of local maximanor apoint of local minima. Infact, such apoint
is called point of inflexion.

Second Derivative Test Let f be a function defined on an interval | and
ce l. Letf betwice differentiable at c. Then

(i) x=cisapoint of loca maximaif f’(c)=0andf”(c) <0
The valuesf (c) islocal maximum value of f.
(i) x=cisapoint of loca minimaif f’(c) =0andf”(c) >0
In this case, f (c) islocal minimum value of f.
(i) Thetest falsif f’(c) =0andf”(c) = 0.
In this case, we go back to the first derivative test and find whether cis
apoint of maxima, minimaor apoint of inflexion.
Working rulefor finding absol ute maximaand/or absolute minima

Step 1: Find al critical points of f in the interval, i.e., find points x where
either f’(x) = 0 or fis not differentiable.

Step 2:Take the end points of the interval.
Step 3: At all these points (listed in Step 1 and 2), calculate the valuesof f.

Siep 4: Identify the maximum and minimum values of f out of the values
calculated in Step 3. This maximum value will be the absolute maximum
valueof f andthe minimum valuewill be the absolute minimum value of f.

—_— % —
L4



Appendix 1

(PROOFSIN MATHEMATICS)

+*Proofs are to Mathematics what calligraphy is to poetry.
Mathematical works do consist of proofs just as
poems do consist of characters.
— VLADIMIR ARNOLD <

A.1.1 Introduction

InClasses|X, X and X1, we have learnt about the concepts of a statement, compound
statement, negation, converse and contrapositive of a statement; axioms, conjectures,
theorems and deductive reasoning.

Here, wewill discuss various methods of proving mathematical propositions.

A.1.2 What isa Proof?

Proof of amathematical statement consists of sequence of statements, each statement
being justified with adefinition or an axiom or aproposition that ispreviousy established
by the method of deduction using only the allowed logical rules.

Thus, each proof isachain of deductive arguments each of which hasits premises
and conclusions. Many atimes, we prove a proposition directly from what isgivenin
the proposition. But some timesiit is easier to prove an equivalent proposition rather
than proving the proposition itself. This leadsto, two ways of proving a proposition
directly or indirectly and the proofs obtained are called direct proof and indirect proof
and further each has three different ways of proving which is discussed below.
Direct Proof Itisthe proof of aproposition inwhich we directly start the proof with
what isgiveninthe proposition.

(i) Straight forward approach Itisachain of argumentswhich leadsdirectly from
what isgiven or assumed, with the help of axioms, definitionsor aready proved
theorems, to what is to be proved using rules of logic.

Consider thefollowing example:
Example 1 Show that if X* —5x+6 =0, thenx=3 or x = 2.
Solution x2—5x + 6 = 0 (given)
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= (x—3) (x—2) =0 (replacing an expression by an equal/equival ent expression)
= X—3=0o0rx—2 =0 (from the established theorem ab = 0 = either a= 0 or
b=0,fora binR)

= X—-3+3=0+30r x—2+2=0+ 2 (adding equal quantitieson either side of the
equation does not alter the nature of the
equation)

= X+0=3o0rx+0=2 (using theidentity property of integers under addition)

= x=3o0rx=2(using theidentity property of integers under addition)

Hence, x> —5x+ 6 =0impliesx=3 or x = 2.

Explanation Let p bethe given statement “x>—5x + 6 = 0" and q be the conclusion
statement “x =3 or x = 2".

From the statement p, we deduced the statement r:“(x — 3) (x — 2) = 0" by
replacing the expression x2 — 5x + 6 in the statement p by another expression (x — 3)
(x—2) which is equal to x* —5x + 6.

There arise two questions:

(i) How does the expression (x — 3) (X — 2) is equal to the expression x? — 5x + 6?
(i) How can we replace an expression with another expression which is equal to
the former?

Thefirst oneisproved in earlier classes by factorization, i.e.,
X—=BX+6=xX-3-2X+6=x(X-3)2(X—-3)=(Xx-3) (x—2).
The second oneisby valid form of argumentation (rules of logic)

Next this statement r becomes premises or given and deduce the statement s
“x—=3=00rx—2=0" and the reasons are given in the brackets.

This process continues till we reach the conclusion.

The symbolic equivalent of the argument is to prove by deduction that p = g
istrue.

Starting with p, wededucep=r = s= ... = q. Thisimpliesthat “p = q" istrue.

Example 2 Prove that the functionf: R - R
defined by f(x) = 2x + 5 is one-one.
Solution Note that afunction f is one-one if
f(x) =f(x,) = x =X, (definition of one-one function)
Now, given that f(x) =f(x),i.e,2x+5=2x,+5
= 2x,+5—5 = 2x,+5-5 (adding the same quantity on both sides)
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= 2x+0=2x,+0
= 2X, = 2x, (using additiveidentity of real number)

2 2 o .
= 5 X = 5 X, (dividing by the same non zero quantity)
= X, =X,

Hence, the given function is one-one.
(ii) Mathematical Induction

Mathematical induction, isastrategy, of proving aproposition which isdeductivein
nature. The whole basis of proof of this method depends on the foll owing axiom:

For agiven subset Sof N, if
(i) thenatural number 1 € S and
(i) thenatural number k + 1 € Swhenever ke S, then S=N.

According to the principle of mathematical induction, if a statement “S(n) istrue
for n=1" (or for some starting point j), and if “S(n) istruefor n= k" impliesthat “ S(n)
istrueforn=k+ 1" (whatever integer k> j may be), then the statement is true for any
positiveinteger n, for all n>j.

We now consider some examples.
Example 3 Show that if

[ cosn® snno]

cosO sino
A= |—-sinn6 cosno |

-sin® cose} then A=

Solution We have

[ cosn® sinno |

P(n) : A" = -sinn® cosno
[ cos® sin6
. 1 —
We note that P(1) : At = |—sin® cos6

Therefore, P(1) istrue.
Assume that P(K) istrue, i.e.,

) cosk® snko
P(k): A= —-sink ® cosk 6
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We want to prove that P(k + 1) is true whenever P(K) istrue, i.e.,
cos(k+1) 6 sin (k+1)e}

—sin(k +1)6 cos (k+1) 6

Now Al = Ak A

Since P(K) is true, we have

P(k + 1) :Ak”:[

) cosk® snk®o cosO sino
+1 —
A= —-sink® cosk# —sin® cosO

[ cosk 6 cos®-sink0sin® cosk ©sin O +sink 6 cos6
| —sink 0O cosO—-coskOsin® —sinkOsin®+ cosk 6 cosO

(by matrix multiplication)

fcos(k+1)6 sin(k+1)6
= | -sin(k +1)0 cos (k +1) e}

Thus, P(k + 1) is true whenever P(K) is true.

Hence, P(n) istruefor all n> 1 (by the principle of mathematical induction).
(i) Proof by cases or by exhaustion

Thismethod of proving astatement p= qispossible only when p can be splitinto
severa cases, r, St (say) sothat p=r v sv t(where”\ " isthe symbol for “OR").

If the conditionals r=q;
S=q
and t=q
are proved, then (r v s v t) = q, isproved and so p = q is proved.

The method consists of examining every possible case of the hypothesis. It is
practically convenient only when the number of possible cases are few.

Example 4 Show that in any triangle ABC,
a=bcosC+ccosB

Solution Let p be the statement “ABC is any triangle” and g be the statement
“a=bcosC + ccosB”

Let ABC be atriangle. From A draw AD a perpendicular to BC (BC produced if
necessary).

Aswe know that any triangle hasto be either acute or obtuse or right angled, we
can split p into three statementsr, sand t, where
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r : ABC isan acute angled triangle with £ C is acute.

s: ABCisan obtuse angled triangle with £ C is obtuse.

t: ABCisaright angled trianglewith £ Cisright angle.
Hence, we prove the theorem by three cases.

When £ Cis acute (Fig. AL.1). A
From theright angled triangle ADB,
BD
E =cosB c b
i.e. BD = AB cos B
=ccosB
Fromtheright angled triangle ADC, B a I_D C
cD Fig ALl
AC =cosC
i.e. CD=ACcosC
=bcosC
Now a=BD + CD
=ccosB +bcosC .. (1)

When Z Cisobtuse (FigA1l.2).
From theright angled triangle ADB,

BD
E =cosB A
ie. BD = AB cos B I
=ccosB :
From theright angled triangle ADC, i
CD |
o cos £ ACD |
= cos (180° — C) |
= —-cosC |
e CD = —AC cosC B a C"_ED

= —bcosC Fig Al2
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Now a= BC=BD-CD
i.e. a= ccosB—(-bcosC)
a= ccosB+bcosC
When £ Cisaright angle (Fig A1.3).
From theright angled triangle ACB,

BC _ B

AB - 008
i.e. BC=AB cosB

B
a =ccos B,
and b cos C = b cos 90°= 0. Fig AL3
Thus, we may write a=0+ccosB
=bcosC+ccosB .. (3)

From (1), (2) and (3). We assert that for any triangle ABC,
a=bcosC+ccosB
By case (i), r = qis proved.
By case (ii), s= qis proved.
By case (iii), t = q is proved.
Hence, from the proof by cases, (r v s v t) = qisproved, i.e., p= qisproved.

Indirect Proof Instead of proving the given proposition directly, we establish the proof
of the proposition through proving a proposition which is equivaent to the given
proposition.

(i) Proof by contradiction (Reductio Ad Absurdum) : Here, we start with the
assumption that the given statement is false. By rules of logic, we arrive a a
conclusion contradi cting the assumption and henceit isinferred that the assumption
iswrong and hence the given statement is true.

Let usillustrate this method by an example.
Example 5 Show that the set of all prime numbersisinfinite.

Solution Let Pbe the set of al prime numbers. We take the negation of the statement
“the set of all prime numbersisinfinite”, i.e., we assume the set of all prime numbers
to be finite. Hence, we can list al the prime numbersas P, P,, P,,..., P, (say). Note
that we have assumed that there is no prime number other than P, P,, P,,..., P, .

Now consider N = (P, P,P,...P) +1..(1)
Nisnotinthelist asN islarger than any of the numbersin thelist.
N is either prime or composite.
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If N isaprime, then by (1), there exists a prime number which isnot listed.

Ontheother hand, if N iscomposite, it should have aprime divisor. But none of the
numbersin the list can divide N, because they al leave the remainder 1. Hence, the
prime divisor should be other than the onein thelist.

Thus, in both the cases whether N is a prime or a composite, we ended up with
contradiction to the fact that we have listed all the prime numbers.

Hence, our assumption that set of al prime numbersisfiniteisfalse.
Thus, the set of al prime numbersisinfinite.

Observe that the above proof also uses the method of proof by cases.

(i) Proof by using contrapositive statement of the given statement
Instead of proving the conditional p = @, we prove its equivalent, i.e.,
~ (0= ~p. (students can verify).
The contrapositive of aconditional can beformed by interchanging the conclusion
and the hypothesis and negating both.

Example 6 Prove that the functionf: R = R defined by f (x) = 2x + 5 is one-one.

Solution A function is one-one if f(x)) = f(x)) = X, = X,.

Using thiswe have to show that “2x + 5=2x, + 5" = “x, =x,". Thisis of theform
p= g, where, pis2x+5=2x,+5and q: X, =X, We have proved thisin Example 2
of “direct method”.

We can also prove the same by using contrapositive of the statement. Now
contrapositive of this statement is~ q = ~ p, i.e., contrapositive of “ if f(x ) = f(x),
then x = x,” is“if x, #x,, then f(x) = f(x)".

Now X, #X,

= 2X, # 2X,

= 2X+5#2x,+5
= f(x) #f(x,).

Since“~q= ~p", isequivaent to “p = q" the proof is complete.
Example 7 Show that “if amatrix A isinvertible, then A isnon singular”.

Solution Writing the above statement in symbolic form, we have
p = q, where, pis“matrix A isinvertible” and qis“A isnon singular”

Instead of proving the given statement, we proveits contrapositive statement, i.e.,
if Alisnot anon singular matrix, then the matrix A isnot invertible.
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If A isnot anon singular matrix, then it meansthe matrix A issingular, i.e.,
IAl=0

adi A

Then Al= doesnot exist as|A|=0

Hence, A isnot invertible.

Thus, we have proved that if A isnot anon singular matrix, then A isnot invertible.

i.e,~q=~p.

Hence, if amatrix A isinvertible, then Aisnon singular.

(iif) Proof by a counter example
In the history of Mathematics, there are occasions when all attempts to find a
valid proof of astatement fail and the uncertainty of thetruth value of the statement
remains unresolved.

Insuch asituation, itisbeneficial, if we find an exampleto fasify the statement.
The exampleto disprove the statement is called a counter example. Since the disproof
of aproposition p = qismerely aproof of the proposition ~ (p = ). Hence, thisis
also amethod of proof.

Example 8 For each n, 22" +1lisaprime (n € N).
This was once thought to be true on the basis that

22 +1=224+ 1=5isaprime.
22 +1=2+1=17isaprime.
22 +1=28+1=257isaprime
However, at first sight the generalisation looksto be correct. But, eventually it was
shown that 2% 41 = 2% + 1 = 4294967297
which isnot aprime since 4294967297 = 641 x 6700417 (aproduct of two numbers).

So the generalisation “For each n, 22 +1 isaprime (ne N)” isfase.

Just thisone example 2% +1issufficient to disprovethe generalisation. Thisisthe
counter example.

Thus, we have proved that the generalisation “For each n, 2% +1 is a prime
(ne N)” isnot true in general.
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Example 9 Every continuous function is differentiable.
We consider some functions given by

() f() =x
(i) g(x) =¢
(i) h(x) =sinx

These functions are continuous for all values of x. If we check for their
differentiability, we find that they are all differentiable for all the values of x. This
makes usto believethat the generalisation  Every continuousfunctionisdifferentiable”
may betrue. But if we check the differentiability of the function given by “¢ (x) = | x|’
which is continuous, we find that it is not differentiable at x = 0. This means that the
statement “ Every continuous function is differentiable” is false, in general. Just this
onefunction® ¢ (X) = | X|" is sufficient to disprove the statement. Hence, “¢ (X) = | x|”
iscalled acounter exampleto disprove “ Every continuous functionisdifferentiable”.

O/

— ... —



Appendix 2

(MATHEMATICAL MODELLING )

A.2.1 Introduction

Inclass X1, we have learnt about mathematical modelling as an attempt to study some
part (or form) of somereal-life problemsin mathematical terms, i.e., the conversion of
aphysical situation into mathematics using some suitable conditions. Roughly speaking
mathematical modellingisan activity in which we make model sto describe the behaviour
of various phenomenal activitiesof our interest in many waysusing words, drawingsor
sketches, computer programs, mathematical formulae etc.

In earlier classes, we have observed that solutions to many problems, involving
applications of various mathematical concepts, involve mathematical modellingin one
way or the other. Therefore, it isimportant to study mathematical modelling asaseparate
topic.

In this chapter, we shall further study mathematical modelling of some real-life
problems using techniques/resultsfrom matrix, calculusand linear programming.

A.2.2 Why Mathematical Modelling?

Studentsare aware of the solution of word problemsin arithmetic, al gebra, trigonometry
and linear programming etc. Sometimes we solve the problems without going into the
physical insight of the situational problems. Situational problems need physical insight
that isintroduction of physical laws and some symbolsto compare the mathematical
results obtained with practical values. To solve many problemsfaced by us, we need a
technique and this is what is known as mathematical modelling. Let us consider the
following problems:.

(i) Tofind thewidth of ariver (particularly, when it isdifficult to crosstheriver).

(i) To find the optimal angle in case of shot-put (by considering the variables
such as: the height of the thrower, resistance of the media, acceleration due to
gravity etc.).

(i) Tofindtheheight of atower (particularly, whenitisnot possibleto reach thetop
of the tower).

(iv) To find the temperature at the surface of the Sun.



v)

(vi)
(vii)

(viii)

(i)
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Why heart patientsare not allowed to uselift? (without knowing the physiology
of ahuman being).

To find the mass of the Earth.

Estimate the yield of pulses in India from the standing crops (a person is not
alowedto cut al of it).

Find the volume of blood inside the body of a person (apersonisnot allowed to
bleed completely).

Estimate the popul ation of Indiain theyear 2020 (apersonisnot allowed to wait
till then).

All of these problems can be solved and infact have been solved with the help of
Mathematics using mathematical modelling. Infact, you might have studied the methods
for solving some of themin the present textbook itself. However, it will beinstructiveif
you first try to solve them yourself and that too without the help of Mathematics, if
possible, you will then appreciate the power of Mathematics and the need for
mathematical modelling.

A.2.3 Principlesof Mathematical M odelling

Mathematical modelling isaprincipled activity and so it has some principlesbehind it.
These principles are almost philosophical in nature. Some of the basic principles of
mathematical modelling arelisted below intermsof instructions:

@)
(i)
(iii)
(iv)
v)
(Vi)

(vii)

(viii)

Identify the need for the model. (for what we are looking for)
List the parameters/variables which are required for the model.
Identify the available relevent data. (what is given?)

Identify the circumstances that can be applied (assumptions)
Identify the governing physical principles.

| dentify

() theequationsthat will be used.

(b) thecaculationsthat will be made.

(c) thesolutionwhichwill follow.

Identify tests that can check the

(a) consistency of the model.

(b) utility of themodel.

Identify the parameter values that can improve the model.
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The above principles of mathematical modelling lead to the following: steps for
mathematical modelling.

Sep 1: Identify the physical situation.

Step 2: Convert the physical situation into a mathematical model by introducing
parameters/ variables and using various known physical laws and symbols.

Step 3: Findthe solution of the mathematical problem.

Sep 4: Interpret the result in terms of the original problem and compare the result
with observations or experiments.
Sep 5: If theresult isin good agreement, then accept the model. Otherwise modify
the hypotheses / assumptions according to the physical situation and go to
Step 2.
The above steps can also be viewed through the following diagram:

Solution of
Original
Problem

|

Physical |Introduce|/Mathematicall Solve |Mathematical| Interpret
Situation —»  Model Solution >
Physical

Laws and Symbols

v

Accept the [ In Good Ag.lzeement R
Model - Compare with|

“~-.._Observation
Tie—————

Modify .
Hypothesis | Not in Good Agreement

Fig A.2.1
Example 1 Find the height of agiven tower using mathematical modelling.

Solution Step 1 Given physical situation is “to find the height of a given tower”.

Siep 2 Let AB be the given tower (Fig A.2.2). Let PQ be an observer measuring the
height of the tower with hiseyeat P. Let PQ =h and let height of tower beH. Let o
be the angle of elevation from the eye of the observer to the top of the tower.

- T 1
————————— B
""""""" H
P |
............. )y C
N[ —
r B N
Q B
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Let |=PC=0QB
N tano = oo =0
ow ano = 5=
or H=h+ltaha - ()

Step 3 Note that the values of the parameters h, | and o (using sextant) are known to
the observer and so (1) givesthe solution of the problem.

Sep 41n casg, if thefoot of thetower isnot accessible, i.e., when | isnot knowntothe
observer, let B be the angle of depression from P to the foot B of the tower. So from
APQB, we have

PQ

h
tanB=—=— orl =hcot
B B ] B

Sep 5isnot required in this situation as exact values of the parameters h, |, o and 3
are known.

Example 2 Let a business firm produces three types of products P, P, and P, that
usesthreetypes of raw materialsR , R, and R,. Let the firm has purchase orders from
two clients F, and F,. Considering the situation that the firm has alimited quantity of
R, R, and R,, respectively, prepare a model to determine the quantities of the raw
material R, R, and R, required to meet the purchase orders.

Solution Step 1 The physical situation iswell identified in the problem.

Sep 2 Let A be amatrix that represents purchase orders from the two clients F, and
F,. Then, Ais of the form

Let B be the matrix that represents the amount of raw materials R, R, and R,,
required to manufacture each unit of the products P, P, and P,. Then, B is of the form
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Siep 3 Note that the product (which in this caseis well defined) of matricesA and B
isgiven by thefollowing matrix

Rl R2 RS
F]_ |:. L] .}
AB=
F2 L] L] L]
which in fact gives the desired quantities of the raw materials R , R, and R, to fulfill
the purchase orders of the two clients F, and F,,

Example 3 Interpret the model in Example 2, in case

340
10 15 6
A= ,B=|7 9 3
10 20 O
512 7

and the availableraw materialsare 330 unitsof R, 455 unitsof R, and 140 unitsof R,.
Solution Note that

340

10 15 6]|0 o,
AB=110 20 0
512 7

Rl IQZ RS
_F[165 247 87
F,[170 220 60

This clearly shows that to meet the purchase order of F, and F,, the raw material
requiredis335 unitsof R, 467 unitsof R, and 147 unitsof R, which ismuch morethan
the available raw material. Since the amount of raw material required to manufacture
each unit of the three products is fixed, we can either ask for an increase in the
available raw material or we may ask the clients to reduce their orders.

Remark If we replace A in Example 3 by A, given by

9 12 6
A =
: [10 20 o}

i.e., if the clients agree to reduce their purchase orders, then

912 67° %0
AlB:[lO ” o} 7 9 3 :[141 216 78}
5 10 7 170 220 60
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Thisrequires 311 units of R, 436 units of R, and 138 units of R, which are well
below the availableraw materials, i.e., 330 unitsof R, 455 unitsof R, and 140 units of
R,. Thus, if the revised purchase orders of the clients are given by A, then the firm
can easily supply the purchase orders of the two clients.

|« Note|One may further modify A so as to make full use of the available
raw material.

Query Can wemake amathematical model with agiven B and with fixed quantities of
theavailableraw material that can help thefirm owner to ask the clientsto modify their
ordersin such away that the firm makes the full use of its available raw material?

The answer to thisquery isgiven in the following example:

Example 4 Suppose P,P, P, and R, R, R, aeas in Example 2. Let the firm has
330 unitsof R , 455 unitsof R, and 140 units of R, available with it and |et the amount
of raw materials R, R, and R, required to manufacture each unit of the three products
isgiven by

Rl R2 RS
PI3 4 0
B=R,|7 9 3
Rl5 12 7
How many units of each product isto be made so asto utilisethefull availableraw

material?
Solution Step 1 The situation iseasily identifiable.

Step 2 Suppose the firm produces x units of P, y units of P, and z units of P,. Since
product P, requires 3 unitsof R , P, requires 7 unitsof R, and P, requires 5 unitsof R,
(observe matrix B) and the total number of units, of R , available is 330, we have

3x + 7y + 5z = 330 (for raw material R))
Similarly, wehave
4x + 9y + 127 = 455 (for raw material R))
and 3y + 7z =140 (for raw materia R))
This system of equations can be expressed in matrix form as

3 7 57[x] [330
4 9 12||y| =455
03 7||z| |140
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Step 3 Using elementary row operations, we obtain

10 0][x] [20
010||yl=|35
00 1|z 5

Thisgivesx =20, y=35and z= 5. Thus, the firm can produce 20 units of P, 35
units of P, and 5 units of P, to make full use of its available raw material.

Remark One may observe that if the manufacturer decides to manufacture according
to the available raw material and not according to the purchase orders of the two
clients F, and F, (asin Example 3), he/she is unable to meet these purchase orders as
F, demanded 6 units of P, where as the manufacturer can make only 5 units of P,.

Example 5 A manufacturer of medicinesis preparing a production plan of medicines
M, and M, There are sufficient raw material's available to make 20000 bottles of M,
and 40000 bottles of M,, but there are only 45000 bottles into which either of the
medicines can be put. Further, it takes 3 hours to prepare enough material to fill 1000
bottles of M, it takes 1 hour to prepare enough material to fill 1000 bottles of M, and
there are 66 hours available for this operation. The profit is Rs 8 per bottle for M, and
Rs 7 per bottle for M. How should the manufacturer schedule his’her production in
order to maximise profit?

Solution Step 1 To find the number of bottles of M, and M, in order to maximise the
profit under the given hypotheses.

Sep 2 Let x be the number of bottles of type M, medicine and y be the number of
bottles of type M, medicine. Since profit is Rs 8 per bottle for M, and Rs 7 per bottle
for M,, therefore the objective function (which isto be maximised) is given by

Z=Z(XYy)=8x+7y
The objectivefunction isto be maximised subject to the constraints (Refer Chapter
12 on Linear Programming)

X < 20000
y<40000
X+ y< 45000
3x+ y< 66000 - (D)
x>0,y>0

Step 3 The shaded region OPQRST is the feasible region for the constraints (1)
(Fig A.2.3). The co-ordinates of vertices O, P, Q, R, Sand T are (0, 0), (20000, 0),
(20000, 6000), (10500, 34500), (5000, 40000) and (0, 40000), respectively.
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S
S
A ©

=
N
]
=

LS (5,000, 40,000)

y=40,000

—R (10,500, 34,500)

) Q (20,000, 6,000)
t t t » X
v l{&)
Y’ X
v A
P (20,000, 0) \
2
2
Fig A.2.3
Note that
ZaP(0,0=0

Z at P (20000, 0) = 8 x 20000 = 160000

Z at Q (20000, 6000) =8 x 20000 + 7 x 6000 = 202000

Z at R (10500, 34500) =8 x 10500 + 7 x 34500 = 325500
Z at S= (5000, 40000) = 8 x 5000 + 7 x 40000 = 320000
Zat T =(0,40000) =7 x 40000 = 280000

Now observe that the profit is maximum at x = 10500 and y = 34500 and the
maximum profit is Rs 325500. Hence, the manufacturer should produce 10500 bottles
of M, medicine and 34500 bottles of M, medicine in order to get maximum profit of

Rs325500.

Example 6 Suppose acompany plans to produce a new product that incur some costs
(fixed and variable) and let the company plans to sell the product at a fixed price.
Prepare a mathematical model to examine the profitability.

Solution Sep 1 Situationisclearly identifiable.
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Sep 2 Formulation: We are given that the costs are of two types: fixed and variable.
Thefixed costs are independent of the number of units produced (e.g., rent and rates),
while the variable costs increase with the number of units produced (e.g., material).
Initially, we assume that the variable costs are directly proportional to the number of
units produced — this should simplify our model. The company earn acertain amount
of money by selling its products and wantsto ensurethat it is maximum. For convenience,
we assume that all units produced are sold immediately.

The mathematical model
Let x = number of units produced and sold
C =total cost of production (in rupees)
| = income from sales (in rupees)
P = profit (in rupees)
Our assumptions above state that C consists of two parts:
(i) fixed cost = a (in rupees),
(i) variable cost = b (rupees/unit produced).

Then C=a+ bx . (D
Also, income | depends on selling price s (rupees/unit)
Thus | =sx - (2
The profit P is then the difference between income and costs. So
P=1-C
=sx—(a+ bx)
=(s-b)yx-a - (3

We now have a mathematical model of the relationships (1) to (3) between
thevariablesx, C, I, P, a, b, s. These variables may be classified as:

independent X
dependent CIP
parameters abs

The manufacturer, knowing X, a, b, s can determine P,
Step 3 From (3), we can observethat for the break even point (i.e., make neither profit
nor loss), he must haveP =0, i.e,, x=ib units.

S_
Seps4 and 5 In view of the break even point, one may conclude that if the company

produces few units, i.e., less than x=ib units, then the company will suffer loss
S_
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and if it produces large number of units, i.e., much more than ib units, then it can

make huge profit. Further, if the break even point provesto be unrealistic, then another
model could betried or the assumptions regarding cash flow may be modified.

Remark From (3), we aso have

EE=s—b
dx
This means that rate of change of P with respect to x depends on the quantity
s—b, which is the difference of selling price and the variable cost of each product.
Thus, in order to gain profit, this should be positive and to get large gains, we need to
produce large quantity of the product and at the same time try to reduce the variable
cost.

Example 7 Let atank contains 1000 litres of brine which contains 250 g of salt per
litre. Brine containing 200 g of salt per litreflowsinto thetank at therate of 25 litres per
minute and the mixture flows out at the same rate. Assume that the mixture is kept
uniform al the time by stirring. What would be the amount of salt in the tank at
any timet?

Solution Step 1 The situation iseasily identifiable.

Sep 2 Lety =y (t) denote the amount of salt (in kg) in thetank at timet (in minutes)
after the inflow, outflow starts. Further assume that y is a differentiable function.

Whent =0, i.e, before the inflow—outflow of the brine starts,
y =250 g x 1000 = 250 kg
Note that the change in y occurs due to the inflow, outflow of the mixture.

Now the inflow of brine brings salt into the tank at the rate of 5 kg per minute
(as 25 x 200 g = 5 kg) and the outflow of brine takes salt out of the tank at the rate of

ZS(L) Y kg per minute (as at timet, the salt in thetank is

1000/ 40 1000
Thus, the rate of change of salt with respect tot is given by

dy y
2 -5 2 ?
ot 40 (Why?)
dy 1
or —+—Y =5 - ()

dt 40
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This givesamathematical model for the given problem.

Step 3 Equation (1) isalinear equation and can be easily solved. The solution of (1) is
givenby

t
ye%:ZOOe% +Cory(t)=200+Ce % .. (2)
where, ¢ is the constant of integration.
Note that whent = 0, y = 250. Therefore, 250 = 200 + C
or C=50
Then (2) reduces to

_t
y=200+50 e © e

y=200 4
=e
or 50
t
or e® _ 50
y—200
Therefore t= 40Ioge( S0 J .. (4
y—200

Here, the equation (4) givesthetimet at which the salt in tank isy kg.

t
Step 4 Since e © isaways positive, from (3), we conclude that y > 200 at all times
Thus, the minimum amount of salt content in the tank is 200 kg.
Also, from (4), weconcludethatt > 0if andonly if 0<y—200<50i.e., if and only

if 200 <y < 250i.e., theamount of salt content in the tank after the start of inflow and
outflow of the brineis between 200 kg and 250 kg.

Limitations of Mathematical Modelling

Till today many mathematical model shave been devel oped and applied successfully
to understand and get an insight into thousands of situations. Some of the subjectslike
mathematical physics, mathematical economics, operationsresearch, bio-mathematics
etc. areamost synonymous with mathematical modelling.

But there are still alarge number of situations which are yet to be modelled. The
reason behind this is that either the situation are found to be very complex or the
mathematical models formed are mathematically intractable.
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The development of the powerful computers and super computers has enabled us
to mathematically model alarge number of situations (even complex situations). Due
to these fast and advanced computers, it has been possible to prepare more realistic
models which can obtain better agreements with observations.

However, we do not have good guidelinesfor choosing various parameters/ variables
and a sofor estimating the values of these parameters/ variablesused in amathematical
model. Infact, we can prepare reasonably accurate modelsto fit any data by choosing
fiveor six parameters/ variables. We requireaminimal number of parameters/ variables
to be able to estimate them accurately.

Mathematical modelling of large or complex situationshasits own special problems.
These type of situations usually occur in the study of world models of environment,
oceanography, pollution control etc. Mathematical modellers from al disciplines —
mathematics, computer science, physics, engineering, social sciences, etc., areinvolved
in meeting these challenges with courage.

—_— % —
L4



CONSTITUTION OF INDIA

Part Il (Articles 12 — 35)
(Subject to certain conditions, some exceptions
and reasonabl e restrictions)

guaranteesthese

Fundamental Rights

Right to Equality

before law and equal protection of laws;

irrespective of religion, race, caste, sex or place of birth;
of opportunity in public employment;

by abolition of untouchability andtitles.

Right to Freedom

e 0of expression, assembly, association, movement, residence and profession;

e of certain protectionsin respect of conviction for offences;

e of protection of lifeand personal liberty;

e of free and compulsory education for children between the age of six and
fourteen years,

e of protection against arrest and detention in certain cases.

Right against Exploitation
e for prohibition of traffic in human beings and forced labour;
e for prohibition of employment of childrenin hazardousjobs.

Right to Freedom of Religion

e freedom of conscience and free profession, practice and propagation of
religion;

e freedom to managereligious affairs;

e freedom asto payment of taxes for promotion of any particular religion;

e freedom as to attendance at religious instruction or religious worship in
educational institutionswholly maintained by the State.

Cultural and Educational Rights

o for protection of interests of minoritiesto conservetheir language, script and
culture;

o for minoritiesto establish and administer educational institutions of their choice.

Right to Constitutional Remedies

e by issuance of directions or orders or writs by the Supreme Court and High
Courts for enforcement of these Fundamental Rights.



ANSWERS

|[EXERCISE 1.1|

1. (i) Neither reflexive nor symmetric nor transitive.
(i) Neither reflexive nor symmetric nor transitive.
(i) Reflexiveand transitive but not symmetric.
(iv) Reflexive, symmetric and transitive.
(v) (a) Reflexive, symmetricand transitive.
(b) Reflexive, symmetric and transitive.
(c) Neither reflexive nor symmetric nor transitive.
(d) Neither reflexive nor symmetric nor transitive.
(e) Neither reflexive nor symmetric nor transitive.
3. Neither reflexive nor symmetric nor transitive.
5. Neither reflexive nor symmetric nor transitive.

9. (H{1,59, (i){1} 12. T isrelatedto T..
13. Thesetof all triangles 14. Thesetof al linesy=2x+c,ce R
15. B 16. C
|EXERCISE 1.2|
1. No
2. (i) Injectivebut not surjective (i) Neither injectivenor surjective

(i) Neither injectivenor surjective (iv) Injective but not surjective
(V) Injectivebut not surjective

7. (i) One-oneand onto (i) Neither one-one nor onto.

9. No 10. Yes 11. D 12. A
|EXERCISE 1.3|

1. gof ={(1,3), (3.1), (4,3)}

w

- () (gof) (x) = [5]x]-2], (fog) (x) = |5x — 2|
(i) (gof) (¥) = 2%, (fog) (X) = 8x
4. Inverseof fisf itself



5.

6.

11.
13.

NP

11.
12.

© N o g k&
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() No, sincefismany-one (i) No, since g is many-one.
(ili) Yes, since h is one-one-onto.

fLisgivenby f1(y) = ﬁ,y;ﬁ 1 7. flisgivenbyf1(y) = yT

flisgivenby f(a)=1,f1(b)=2andf(c) = 3.
© 14. (B)

| EXERCISE 1.4
(i) No (i) Yes (i) Yes (iv) Yes (v) Yes
(i) =*isneither commutative nor associative

(i) = iscommutative but not associative
(ili) = isboth commutative and associative

(iv) *iscommutative but not associative

(V) *isneither commutative nor associative

(vi) = isneither commutative nor associative

Al 1] 2345
111111
21|22 2|2
31|23 ]3]3
4 1| 2(3|4a]|a4
s 1] 2345
() @*3)*4=1and2* (3*4)=1 (i) Yes (i)l

Yes

(i) 5*7=3520*16=80 (ii) Yes (iii) Yes (ivi (v)1

No 8. =*isboth commutative and associative; * does not have any identity in N
(i), (iv), (v) are commutative; (V) is associative.

Identity element does not exist.

(i) False (i) True 13. B
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11.
15.
19.

13.

13.

17.
21.

15.

MATHEMATICS

Miscellaneous Exercise on Chapter 1

y-7

g(y) = 0

xt—6x3 + 10x% — 3x
i F={(S, a), (2,b), (1, 0}, (ii) Ftdoes not exist

Yes 16. A 17. B
B
| EXERCISE 2.1
- , = . T
6 6 6
2 5 T . T
3 C 4 6
3 10. = n =
4 T4 C 4
B 14. B
EXERCISE 2.2
—tan71X 6 E $C—1X 7 5
2 T2
sintX 10, 3tant2 1n.
a 4
X+Y 1 1
1_ 14 - 15. iﬁ
= 18 Y 19. B
n - .
B

Miscellaneous Exercise on Chapter 2

U o|a

n

2. Theinverseof fisfitsalf

8. No

13. x=

O ola

17. C

Ala

10.
12.
18.

12.

12.

16.

20.

14.

n!
No
No

oy @7 ol

Ala

wla

i
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|[EXERCISE 3.1

1. (i) 3x4 (i) 12 (iii) 19, 35,5, 12,2

1x24,2x12,3%x8,4%x6,6%x4,8%x3,12x2,24x1;1x13,13x1
1x18,2x9,3%x6,6x3,9%x2 18x1;1x55x1

2 - 1 9o 2
0 2 (i) 2 iy |2 2
9 3 2 1 8 18
12
1112
: 2 5 2 10 -1 -2
15 5 3 |
ofiziyelza
4 L 32
L 2 2]
(i) x=1, y=4, z=3
(i) x=4, y=2, z=0 or x=2, y=4,z=0
(i) x=2, y=4, z=3
a=1b=2c=3,d=4
C 9. B 10. D
|[EXERCI SE 3.2|

. 37 11
- () A+B-[1 7} (i) A—B-[5 _3}

18 7| | -6 26 |11 10
(iii) 3A—C-[6 2} (iv) AB-[1 19} (V) BA_[11 2}
r B 2 2
0 20a zb} i (a+b)2 (b+c)2}
L a | (@a-c)” (a-b)
11 11 0 .
@iy |16 5 21 (iv) 1 J

5 10 9
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(@4b? 0 2o -3 -4 1
3. () , |00 4 6 8 (iii) 8 13 9
L 0 a +b _6 9 12 -
(14 0 42 1 23 _
, 14 -6
(iv) |18 -1 56 v) |1 45 (vi) 4 5
-2 70 -2 20 -
-1 -2 0
4. A+B= 7|,B-C= -1 3
3 -1 4
0 0O
5. 10 00 [; ﬂ
0 0O
2 12 2 13
50 20 5 5 5 5
X: = = ’
7. (i) [1 4} [1 J (i X 1 Y “
— 3 — 2
5 5
-1 -1
8. X:[ 5 J 9. x=3,y=3 10. x=3,y=6,z=9,t=6
11. x=3,y=-4 12. x=2,y=4,w=3,z=1
1 -1 -3
15. |-1 -1 -10| 17. k=1
-5 4 4
19. (a8) Rs15000, Rs15000 (b) Rs5000, Rs25000
20. Rs20160 21. A 22. B
|[EXERCI SE 3.3|
N P 12 _5152
1. () 5 (i) 1 3 (iii)
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- 0 0O0|][O0O a
4 |74 9. |lo 0 o|,|]-a 0 ¢
11 6 ' ’
- 0 0O0||-b —cO
_ A_'3 3 . 0 2
00 273 a2 0
6 -2 2 0O 0 O
i) A =1|-2 3 -1/+]0 0 O
2 -1 3 0O 0 O
3 1 B |, 5 3
2 2 2 2
1 -5 1 2 0 3
iy A== -2 2|+|— 0 3 (iv) A= +
2 2 2 2| |-3 0
- -2 2 -3 -3 0
| 2 1 12
11. A 12. B
EXERCISE 34
3 1 . ) )
T E 1 -1 7 -3
1. S 2. 3.
-2 1 -1 2] -2 1]
|5 5
-7 3 4 1] 3 -5]
4. |5 -2 o -7 2] 6. -1 2|
. 2 - . 4 -5] 5 7 -10
|5 3 S |-3 4] -2 3
1 % -1 3]
10. 3 11. | 1 12. Inverse does not exist.
2 = - !
L 2 -
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13.

15.

18.

10

11.

15.

MATHEMATICS

2 3
1 2} 14. Inverse does not exist.
2 45 3 1 2 3
51 1 ° 2 i 151 st
— = 0| 16 |— — =| 17. |-15 6 -5
5 5 5 25 25 5 > o
21 =2 =13 )
|5 5 5] |5 25 25]
D
Miscellaneous Exercise on Chapter 3
X_+i y—+i Z—+i
—_ 21 - 61 _\/é
Xx=-1 9. x=%43
. (a) Tota revenue in the market - | = Rs 46000

Total revenue in the market - 1| = Rs 53000

(b) Rs15000, Rs 17000

x=1‘ 13. C
2 0

() 18

C 16.

EXERCISE 4.1 |

2. () 1, (i) ¥—x2+2

C

() —12, (i) 46, (iii) 0, (iv) 5
() x=+~3, (i) x=2

| EXERCISE 4.2|

6. 0
8. (B)

15.



ANSWERS 275

| EXERCISE 4.3|

1 () % (ii) 4—27, (i) 15

3. () 0,8 (i) 0,8 4. (i) y=2x (i) x—3y=0 5. (D)
| EXERCISE 4.4

1. () M,=3,M,=0, M,=-4, M, =2,A =3,A,=0A, =4A,=2
@i M,=d,M,=b, M, =c, M,=a
A,=d A=-bA, =-¢c A, =a
2. () M=1,M_=0M_,=0, M, =0,M,=1,M_=0,M_=0,M_=0,M_=1,
A=1A=0 A_=0A=0A_=1A_=0 A=0 A =0 A-=1
(i) M,=11,M_=6 M =3 M,=-4M,_=2M,=1 M,=-20,M_=-13 M_=5
AL A=-6A=3 A=4A=2A=-1A=-20A=13A =5

3.7 4. x= -2 (@z-x 5 (D)
| EXERCISE 45|
3 1 -11
42 12 5 -1 1)3 2
bl . > 124 2
6 2 5
, R JB3 00
1—13[3_} 70 5 -4 8,%3—10
- 0 0 2 9 -2 3
-1 5 3 20 1 1 0 0
0. S|-4 2 12|10 |9 23 11 [0 cosa sna
1 -11 -6 6 1 -2 0 siha —cosa
3 4 5
= = = at=tlo 1 -4
18. 30, 3 14. a=—-4,b=1 15. T -1 -

5 3 -1
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16.

10.

12.
14.

15.

16.

17.

MATHEMATICS

31 1
L 3 1
2 17. B 18. B

-1 1 3

EXERCISE 4.6

Consistent 2. Consistent 3. Inconsistent
Consistent 5. Inconsistent 6. Consistent
_2 —_ 3 8 X—__5 _E 9 X—__6 —__19
X=ay=- 1w’ Y YT
—y=4 1L x=1 y=%, 2=
X=— 1y_ . X=1 y_21 - 2
x=2,y=-1,z=1 13. x=1y=2,z=-1

x=2,y=1,2z=3

0 1 -2
-2 9 -23 X=1y=2,2z=3
-1 5 -13

cost of onions per kg=Rs 5
cost of wheat per kg = Rs8
costof riceperkg =Rs8

Miscellaneous Exercise on Chapter 4

9 -85
-a —
1 5. X=— A
3 1 02
—20¢ +Vy9) 10. xy 16. x=2,y=3,z=5
A 18. A 19. D
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10.
12.
14.
15.

16.
18.

20.
22.

23.
24,

26.

29.
34.
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|[EXERCISE 5.1

fiscontinuousat x =3
(@), (b), (c) and (d) are dl continuous functions
fiscontinuous at x = 0 and x = 2; Not continuous at x = 1

Discontinuous at x = 2 7. Discontinuousat x =3
Discontinuousat x=0 9. Nopoint of discontinuity
No point of discontinuity 11. Nopoint of discontinuity
fiscontinuousat x =1 13. fisnot continuousat x =1

fisnot continuousat x=1and x=3
x = 1listheonly point of discontinuity

. 2
Continuous 17. a=b+ 3

For no value of A, fiscontinuous at x =0 but f is continuous at x = 1 for any
value of A.

fiscontinuousat x =m 21. (a), (b) and (c) aredl continuous
Cosine function is continuous for all x € R; cosecant is continuous except for

X =nm, N € Z; secant is continuous except for x = (2n+1)g, ne Z and

cotangent function is continuous except for x=nn,ne Z
Thereisno point of discontinuity.

Yes, fiscontinuousfor al xe R 25. fiscontinuousfor al xe R
3 -2
k=6 27. k=— 28. k=—
4 o
9
= 30. a=2,b=1
Thereisno point of discontinuity.
|[EXERCISE 5.2|
2x cos(x? + 5) 2. —cosxsn(snx) 3. acos(ax+ b)
sec(tan/x).tan (tanv/x ).sec® v/x

2./x

a cos(ax + b) sec(cx + d) + c sin(ax + b) tan(cx + d) sec(cx + d)
10x* sinx® cosx® cosx® — 3x? sinx® sin? x®
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. _ -22x . _sinyx
" sinx?ysin2x? ' 2x
|EXERCISE 5.3
_ 2 a
1. o —2 2. 3. —(—
3 cosy-3 2by+siny
sec’ x—y (2x+Y) (3x% +2xy+Y?)
4. oo 1 5. T ow - T2 2
X+2y-1 (x+2y) (X°+2xy+3y°)
ysinxy sin2x 2 3
- sn2y-xsnxy sin2y % 1ax 10 X
n — 12. =2 13 —2 14 2
C 143 C 14X C 14X CoJ1-x2
3 2
1o 1- X2
EXERCISE 5.4|
X /o sin-1
1. e(LZC(E(),X;tmc,ne Z 2. ——=,Xe(-1])
sin®x 1- X
—X -1 X
3 32e’ 4 _E cos(tzﬂx e’)
l+e

5. —etane, e"¢(2n+1)g,n eN 6. e+2x° +3x% +4x%e +5x%e”

x 1
€ x>0 8.

N xlog x

x>1

_ (xsinx-logx+cosx)
x(logx)®

, x>0 10. —(1+e")sin(logx+e"),x>0
X




10.

11.

12.

14.

16.
17.
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|[EXERCISE 5.5|
— COS X COS 2X €os 3X [tan x + 2 tan 2x + 3 tan 3x]

l\/ (x=1)(x—2) [ 1,1 1 1 1}

2\ (x-3)(x-4)(x-5)| x-1 Xx—2 x-3 x-4 x-5
(Iogx)""sx[ﬂ—sinxIog(logx)}
xlogx

X< (1 + log x) — 25"* cos x log 2
(x+ 3) (x+4)? (x + 5)* (9%% + 70x + 133)

1) x2-1 1 1= (x+1-logx
X+— 5 +Iog(x+;) X X —
X

X +1 X
(log Xyt [1+log x . log (log X)] + 2x'%1 . logx
1 1
(sinx)*(xcotx +logsinx) + &
2 \x-x2

. | SinX : . :
X S {—+cosx Iogx} + (sin x)®* [cos x cot X —sin x log sin X]
X

. 4x
x*xox[cosx. (1 +logX)—xsinxlogX] - ——
[ (1+1logx) g X Z 17
1 xcot x+1-log(xsinx
(x cos X)*[1 — x tan X + log (x cos X)] + (x sin x) x{ Cotx+ _209( S )}
X
_ " ry*logy 13 Y[ y-xlogy
x’ logx+xy * x| x-ylogx
ytanx-+logcosy 15 y(x-1)
xtan y+logcosx " x(y+))

1 2X 4x° 8x7}
1+X)(1+x)@A+x)(1+x8 + + + : /(1) =120
( ) ( ) ( ) ( )[1+x 1+x2 1+x* 1+x8 @

5x* — 20x% + 45x?> — 52x + 11

|EXERCISE 5.6

oo

2t? 2. 3. —4sdnt 4. =3
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12.

10.

11.

MATHEMATICS

€0s6—2c0s20 0
Ecoszec@ 10. tan©
a
|[EXERCISE5.7|
2 2. 380 x® 3. —=XCOosSX—2snXx
1
“Z 5 x(+6logx) 6. 2e*(5cos5x—12 sin5x)
2X
9 e (3 cos 3x—4 sin 3X) 8. —m
_(A+logx) 0 _ sin (logx) + cos(log x)
(xlogx)? ' X
— cot y cosec? y

Miscellaneous Exercise on Chapter 5

27 (3 —9x + 5)8 (2x—3) 2. 3sinx cosx (sinx — 2 cos*x)
(5x) 3052 {M_ 6sin2xlog 5X}

X
3 [ x . 1 . cos 5
2\V1-¢ \/4—X2\/2X+7 (2)(4_7)g
1 7. (logx) |ng[1+—log (Iogx)] x>1
2 X X

(asinx—bcosx) sin (acosx + b sinx)
(sinx — cosx)snx-csx (cosx + sinx) (1 + log (sinx — cos X)), Sinx > cosx

X (L+logx) + ax** + a*log a
2

X 3+2x|og(x—3)}

2
x< 3 {X—3+ 2xlog x} (x—3)* [
X X—
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3

,0<t<£
2

900 cm?/s

2 o
5 Cm/s

21t cmd¥/s

Rs 20.967

D

Strictly increasing for —2 < x < —1 and strictly decreasing for x <—2 and

12. Ecotl 13. 0 17.
5 2
|EXERCISE 6.1
1. (a) 6m cm?/s (b) 8m cm?/s
8
2. 3 cmé/s 3. 60r cm?s 4.
80m cm?/s 6. 1.4mcm/s
7. (8 —2cm/min (b) 2cm?min
1
8. g cm/s 9. 400r cm?/s 10.
=31
11. (4,11) and (_4’Tj 12.
27
130 LreEx+? 14 2 s 15.
8 487
16. Rs208 17. B 18.
|[EXERCISE 6.2|
w3 o (-3)
@ (g (b) |~
5. (@ (-e,—-2)and(3,) (b (-273)
6. (@) Strictly decreasing for x <—1 and strictly increasing for x> —1
. : 3 o . 3
(b) Strictly decreasing for X> 5 and strictly increasing for X< 5
(c)
x>-1
(d)

9 9
Strictly increasing for X<—— and strictly decreasing for X>—§

2
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(e) Strictly increasing in (1, 3) and (3, <), strictly decreasing in (— o, —1)

and (-1, 1).
8. 0O<x<landx>2 12. A, B
13. D 14, a=-2 19. D
|EXERCISE 6.3
1. 764 2 _—1 3.1 4. 24
. o . .
—a
5.1 6. > 7. (3,-20)and (-1, 12)
8. (31 9. (2,-9

10. () y+x+1=0andy+x-3=0
11. No tangent to the curve which has slope 2.

1
12. y=§ 13. (i) (0,£4) (ii)) (3,0
14. (i) Tangent: 10x +y=15; Normal: x—10y + 50 =0
(i) Tangent:y=2x+ 1, Normal: x +2y—7=0
(i) Tangent:y =3x—2; Normal: x+3y—-4=0
(iv) Tangent:y=0; Normal: x=0

(v) Tangent: x+y —/2=0; Norma x=y
15. (@) y-2x—3=0 (b) 36y+12x—227=0
17. (0,0),(3,27) 18. (0,0), (1, 2), (-1, -2)
19. (1,2 20. 2x+3my—anm? (2+3m) =0
21, x+14y—-254=0,x+14y+86=0
22, ty=x+at?, y=—tx+ 2at + at®

XXO_YYO_:L Y=Y% X=% _q4

24. a2 b2 azyo bzxo

05. 48x—24y=23 26. D 27. A
|EXERCISE 6.4|

1. () 503 (i) 7.035 i) 0.8

(iv) 0.208 (v) 0.9999 (Vi) 1.96875
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(vii) 2.9629 (viil) 3.9961 (ix) 3.009
(x) 20.025 (xi) 0.06083 (xii) 2.948
(xiii) 3.0046 (xiv) 7.904 (xv) 2.00187
2. 2821 3. —34.995 4. 0.03x*m?
5. 0.12 x> m? 6. 392t m? 7. 216t m?
8. D 9. C
|EXERCISE 6.5
1. (i) MinimumVaue=3 (i) Minimum Value=-2
(i) MaximumVaue=10 (iv) Neither minimum nor maximum value
2. (i) Minimum Vaue=-1; No maximum value
(i) Maximum Value=3; Nominimum value
(@iii) Minimum Value=4; Maximum Value=6
(iv) Minimum Value=2; Maximum Value=4
(v) Neither minimum nor Maximum Value
3. (i) local minimumatx=0, local minimumvaue=0
(i) loca minimumatx=1, local minimumvaue=-2
local maximum at x =—1, local maximumvalue=2
(i) local maximum at x=%, local maximumvalue= /2
. . 3n )
(iv) local maximum at X=7, local maximumvalue= /2
. n -
local minimum at X= local minimumvalue=—,/2
(v) loca maximumatx=1, local maximumvalue=19

(Vi)

[ocal minimumat x =3, local minimumvaue=15
[ocal minimumat x = 2, [ocal minimum vaue=2
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5.

N o

10.
11.
12.
13.
17.

21,

22.

1.
3.

(vii) local maximumatx=0, local maximumvalue=

(viii) local maximum at x=§, local maximumvalue= ——

MATHEMATICS

2

2.3
9

(i) Absoluteminimumvaue=-8, absolutemaximumvalue=8

(i) Absoluteminimumvalue=-1, absolute maximumvalue= /2

(i) Absolute minimum value=-10, absolute maximumvalue=28
(iv) Absoluteminimumvalue=19, absolute maximumvaue=3

Maximum profit = 49 unit.
Minimaat x =2, minimum value = -39, Maximaat x = 0, maximum value = 25.

5
At x=%and7n 9. Maximumvalue= /2

Maximum at X = 3, maximum value 89; maximum at x =—2, maximum value= 139
a=120
Maximum at X = 2rt, maximum vaue = 2rt; Minimum at x =0, minimumvaue=0

12,12 14. 45,15 15. 25,10 16. 8,8
3cm 18. x=5cm
p p
radius = (@T cm and height = 2(@j3cm
TT TT
12 28n
om, = em 27, A 28. D 29. C

n+4 n+4

Miscellaneous Exercise on Chapter 6
(a) 0677 (b) 0.497
b3 cm?s 4. x+y-3=0
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6. () 0O<x<= d3—n< <2 i E<x<3—n
() X 2an 5 X<2n (i) 5 5
7. () x<-landx>1 (i) —1<x<1
8. #ab 9. Rs1000
11. length= 20 breadth—£ m

g ™ Cn+4

: : y . 2

13. (i) local maximaatx=2 (i) local minimaat X=7

(i) point of inflectionat x =-1

5

14. Absolute maximum = E Absolute minimum =1
17, 2R 19. A 20. B 21. A

22. B 23. A 24. A

—_— % —
%®
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