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Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL 

7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f  is differentiable in an interval I, i.e., its
derivative f ′exists at each point of I, then a natural question
arises that given f ′at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain

conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and

definite integrals, which together constitute the Integral Calculus.

Chapter 7
INTEGRALS

G .W. Leibnitz
(1646 -1716)
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:

We know that (sin )d x
dx

 = cos x ... (1)

3

( )
3

d x
dx

 = x2 ... (2)

and ( )xd e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 
3

3
x

 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :

(sin + C) cos=
d x x
dx

, 
3

2( + C)
3

=
d x x
dx

and ( + C) =x xd e e
dx

Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )d x f x
dx , ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + Cd x
dx

 = f (x), x ∈ I
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval I.
Consider the function f = g – h defined by f (x) = g (x) – h(x), ∀ x ∈ I

Then
df
dx = f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f ′ (x) = 0, ∀ x ∈ I by hypothesis,
i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}
provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )dy f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f with respect to x

f (x) in ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral
An integral of f A function F such that

F′(x) = f (x)
Integration The process of finding the integral

Constant of Integration Any real number C, considered as
constant function
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We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)
1

1

n
nd x x

dx n

+⎛ ⎞
=⎜ ⎟+⎝ ⎠

 ;
1

C
1

n
n xx dx

n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1d x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cosd x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sind x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan secd x x
dx

=  ; 2sec tan Cx dx x= +∫

(v) ( ) 2– cot cosecd x x
dx

=  ; 2cosec cot Cx dx – x= +∫

(vi) ( )sec sec tand x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cotd x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1
2

1sin
1

d x
dx – x

=  ;
– 1

2
sin C

1

dx x
– x

= +∫

(ix) ( )– 1
2

1– cos
1

d x
dx – x

=  ;
– 1

2
cos C

1

dx – x
– x

= +∫

(x) ( )– 1
2

1tan
1

d x
dx x

=
+  ;

– 1
2 tan C

1
dx x

x
= +

+∫

(xi) ( )– 1
2

1– cot
1

d x
dx x

=
+  ;

– 1
2 cot C

1
dx – x

x
= +

+∫
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(xii) ( )– 1
2

1sec
1

d x
dx x x –

=  ;
– 1

2
sec C

1

dx x
x x –

= +∫

(xiii) ( )– 1
2

1– cosec
1

d x
dx x x –

=  ;
– 1

2
cosec C

1

dx – x
x x –

= +∫

(xiv) ( )x xd e e
dx

=  ; Cx xe dx e= +∫

(xv) ( ) 1log | |d x
dx x

= ;
1 log | | Cdx x
x

= +∫

(xvi)
x

xd a a
dx log a

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ; C

x
x aa dx

log a
= +∫

Note  In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f (x) = 2x. Then 2( ) Cf x dx x= +∫ . For different values of C, we get different
integrals. But these integrals are very similar geometrically.

Thus, y = x2 + C, where C is arbitrary constant, represents a family of integrals. By
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along y-axis.

Clearly, for C = 0, we obtain y = x2, a parabola with its vertex on the origin. The
curve y = x2 + 1 for C = 1 is obtained by shifting the parabola y = x2 one unit along
y-axis in positive direction. For C = – 1, y = x2 – 1 is obtained by shifting the parabola
y = x2 one unit along y-axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the y-axis and for
negative values of C, each has its vertex along the negative side of the y-axis. Some of
these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line x = a. In the Fig 7.1,
we have taken a > 0. The same is true when a < 0. If the line x = a intersects the
parabolas y = x2, y = x2 + 1, y = x2 + 2, y = x2 – 1, y = x2 – 2 at P0, P1, P2, P–1, P–2 etc.,

respectively, then 
dy
dx  at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, 2
C2 C F ( )x dx x x= + =∫ (say), implies that
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the tangents to all the curves y = FC (x), C ∈ R, at the points of intersection of the
curves by the line x = a, (a ∈ R), are parallel.

Further, the following equation (statement) ( ) F ( ) C (say)f x dx x y= + =∫ ,
represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the
sense of the following results :

( )d f x dx
dx ∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Fig 7.1
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Proof Let F be any anti derivative of f, i.e.,

F( )d x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )d f x dx
dx ∫  = ( )F ( ) + Cd x

dx

= F ( ) = ( )d x f x
dx

Similarly, we note that

f ′(x) = ( )d f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.
(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.
Proof Let f and g be two functions such that

( )d f x dx
dx ∫  = ( )d g x dx

dx ∫

or ( ) ( )d f x dx – g x dx
dx

⎡ ⎤
⎣ ⎦∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C , C Rf x dx + ∈∫
and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.
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Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]d f x g x dx
dx

⎡ ⎤
⎣ ⎦∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )d f x dx g x dx
dx

⎡ ⎤
⎣ ⎦∫ ∫  = ( ) + ( )d df x dx g x dx

dx dx∫ ∫
= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫

Proof By the Property (I), ( ) ( )d k f x dx k f x
dx

=∫ .

Also ( )d k f x dx
dx

⎡ ⎤
⎣ ⎦∫  =  ( ) = ( )dk f x dx k f x

dx ∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .
(V) Properties (III) and (IV) can be generalised to a finite number of functions f1, f2,

..., fn and the real numbers, k1, k2, ..., kn giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫
= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. We illustrate it
through some examples.
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Example 1 Write an anti derivative for each of the following functions using the
method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1
x , x ≠ 0

Solution
(i) We look for a function whose derivative is cos 2x. Recall that

d
dx  sin 2x = 2 cos 2x

or cos 2x = 
1
2

d
dx  (sin 2x) =

1 sin 2
2

d x
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

Therefore, an anti derivative of cos 2x is 
1 sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d x x
dx

+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.
(iii) We know that

1 1 1(log ) 0 and [log ( )] ( 1) 0d dx , x – x – , x
dx x dx – x x

= > = = <

Combining above, we get ( ) 1log 0d x , x
dx x

= ≠

Therefore, 
1 logdx x
x

=∫  is one of the anti derivatives of 
1
x

.

Example 2 Find the following integrals:

(i)
3

2
1x – dx

x∫ (ii)   
2
3( 1)x dx+∫ (iii)   ∫

3
2 1( 2 – )+ xx e dx

x

Solution
(i) We have

3
2

2
1 –x – dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)
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= 
1 1 2 1

1 2C C
1 1 2 1

–x x–
–

+ +⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

;  C1, C2 are constants of integration

= 
2 1

1 2C C
2 1

–x x– –
–

+  = 
2

1 2
1 + C C

2
x –

x
+

= 
2 1 + C

2
x

x
+ , where C = C1 – C2 is another constant of integration.

Note  From now onwards, we shall write only one constant of integration in the
final answer.

(ii) We have
2 2
3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2 1
3

C2 1
3

x x
+

+ +
+

 = 
5
33 C

5
x x+ +

(iii) We have 
3 3
2 21 1( 2 ) 2x xx e – dx x dx e dx – dx

x x
+ = +∫ ∫ ∫ ∫

=

3 1
2

2 – log + C3 1
2

xx e x
+

+
+

=
5
22 2 – log + C

5
xx e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2
1 sin
cos
– x dx

x∫
Solution

(i) We have
(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫

= – cos sin Cx x+ +
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(ii) We have
2(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +
(iii) We have

2 2 2
1 sin 1 sin

cos cos cos
– x xdx dx – dx

x x x
=∫ ∫ ∫

= 2sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4( 6 )d x – x
dx

 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.

Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3
Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks
(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f by adding any constant to F
expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find
2– xe dx∫  by inspection since we can not find a function whose derivative is 

2– xe
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(iii) When the variable of integration is denoted by a variable other than x, the integral
formulae are modified accordingly. For instance

4 1
4 51C C

4 1 5
yy dy y

+

= + = +
+∫

7.2.3 Comparison between differentiation and integration
1. Both are operations on functions.
2. Both satisfy the property of linearity, i.e.,

(i) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )d d dk f x k f x k f x k f x
dx dx dx

+ = +

(ii) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )k f x k f x dx k f x dx k f x dx+ = +∫ ∫ ∫
Here k1 and k2 are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. We will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. However, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose
degree is 1 less than the degree of  P. When a polynomial function P is integrated,
the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

7. The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

8. The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time t is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
t is known.

9. Differentiation is a process involving limits. So is integration, as will be seen in
Section 7.7.
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10. The process of differentiation and integration are inverses of each other as
discussed in Section 7.2.2 (i).

EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6. 3(4 + 1) xe dx∫ 7. 2
2

1(1 – )x dx
x∫ 8. 2( )ax bx c dx+ +∫

9. 2(2 )xx e dx+∫ 10.
21x – dx

x
⎛ ⎞
⎜ ⎟
⎝ ⎠∫ 11.

3 2

2
5 4x x – dx
x

+
∫

12.
3 3 4x x dx

x
+ +

∫ 13.
3 2 1

1
x x x – dx

x –
− +

∫ 14. (1 )– x x dx∫

15. 2( 3 2 3)x x x dx+ +∫ 16. (2 3cos )xx – x e dx+∫
17. 2(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.
2

2
sec

cosec
x dx
x∫ 20. 2

2 – 3sin
cos

x
x∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1x
x

⎛ ⎞+⎜ ⎟
⎝ ⎠

 equals

(A)
1 1
3 21 2 C

3
x x+ + (B)

2
232 1 C

3 2
x x+ +

(C)
3 1
2 22 2 C

3
x x+ + (D)

3 1
2 23 1 C

2 2
x x+ +

22. If 3
4

3( ) 4d f x x
dx x

= −  such that f (2) = 0. Then f (x) is

(A) 4
3

1 129
8

x
x

+ − (B) 3
4

1 129
8

x
x

+ +

(C) 4
3

1 129
8

x
x

+ + (D) 3
4

1 129
8

x
x

+ −
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7.3  Methods of Integration
In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,
this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution
2. Integration using Partial Fractions
3. Integration by Parts

7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing
the independent variable x to t by substituting x = g (t).

Consider I = ( )f x dx∫

Put x = g(t) so that 
dx
dt

 = g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫
This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:
(i) sin mx (ii) 2x sin (x2 + 1)

(iii)
4 2tan secx x

x
(iv)

1

2
sin (tan )

1

– x
x+

Solution
(i) We know that derivative of mx is m. Thus, we make the substitution

mx = t so that mdx = dt.

Therefore,      
1sin sinmx dx t dt
m

=∫ ∫  =  – 1
m

cos t + C  = – 
1
m cos mx + C
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(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  22 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 
1
21 1

2 2

–
x

x
= . Thus, we use the substitution

1so that giving
2

x t dx dt
x

= =  dx = 2t dt.

Thus,
4 2 4 2tan sec 2 tan secx x t t t dtdx

tx
=∫ ∫  = 4 22 tan sect t dt∫

Again, we make another substitution tan t = u so that sec2 t dt = du

Therefore, 4 2 42 tan sec 2t t dt u du=∫ ∫  = 
5

2 C
5

u
+

= 52 tan C
5

t +  (since u = tan t)

= 52 tan C (since )
5

x t x+ =

Hence,
4 2tan secx x dx

x∫  = 52 tan C
5

x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1
2

1tan
1

– x
x

=
+

. Thus, we use the substitution

tan–1 x = t so that 21
dx

x+
 = dt.

Therefore ,  
1

2
sin (tan ) sin

1

– x dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos(tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have
sintan
cos

xx dx dx
x

=∫ ∫
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Put  cos x = t so that sin x dx = – dt

Then tan log C log cos Cdtx dx – – t – x
t

= = + = +∫ ∫
or tan log sec Cx dx x= +∫

(ii) ∫cot = log sin + Cx dx x

We have
coscot
sin

xx dx dx
x

=∫ ∫
Put  sin x = t so that cos x dx = dt

Then cot dtx dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫sec = log sec + tan + Cx dx x x

We have
sec (sec tan )sec

sec + tan
x x xx dx dx

x x
+

=∫ ∫
Put sec x + tan x = t so that sec x (tan x + sec x) dx = dt

Therefore, sec log + C = log sec tan Cdtx dx t x x
t

= = + +∫ ∫
(iv) ∫cosec = log cosec – cot + Cx dx x x

We have
cosec (cosec cot )cosec

(cosec cot )
x x xx dx dx

x x
+

=
+∫ ∫

Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | Cdtx dx t x x
t

= = = + +∫ ∫

=
2 2cosec cot– log C

cosec cot
x x
x x
−

+
−

= log cosec cot Cx – x +

Example 6 Find the following integrals:

(i) 3 2sin cosx x dx∫ (ii)    
sin

sin ( )
x dx

x a+∫     (iii)  
1

1 tan
dx

x+∫
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Solution
(i) We have

3 2 2 2sin cos sin cos (sin )x x dx x x x dx=∫ ∫
= 2 2(1 – cos ) cos (sin )x x x dx∫

Put t = cos x so that dt = – sin x dx

Therefore,    2 2sin cos (sin )x x x dx∫  = 2 2(1 – )t t dt− ∫

= 
3 5

2 4( – ) C
3 5
t t– t t dt – –

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫

= 3 51 1cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )
sin ( ) sin

x t – adx dt
x a t

=
+∫ ∫

= 
sin cos cos sin

sin
t a – t a dt

t∫

= cos – sin cota dt a t dt∫ ∫
= 1(cos ) (sin ) log sin Ca t – a t⎡ ⎤+⎣ ⎦

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a⎡ ⎤+ + +⎣ ⎦

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )
x dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C1 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin
dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )
2 cos sin

x x x x dx
x x+∫
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= 
1 1 cos – sin
2 2 cos sin

x xdx dx
x x

+
+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin
x x – x dx

x x
+ +

+∫ ... (1)

Now, consider cos sinI
cos sin

x – x dx
x x

=
+∫

Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       2I log Cdt t
t

= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1+ + log cos sin
1 tan 2 2 2 2

dx x x x
x
= + +

+∫

= 1 2C C1+ log cos sin
2 2 2 2
x x x+ + +

= 1 2C C1+ log cos sin C C
2 2 2 2
x x x ,⎛ ⎞+ + = +⎜ ⎟

⎝ ⎠

EXERCISE 7.2
Integrate the functions in Exercises 1 to 37:

1. 2
2

1
x
x+

2. ( )2log x
x

3.
1
logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8. 21 2x x+

9. 2(4 2) 1x x x+ + + 10.
1

x – x 11.
4

x
x +

, x > 0

12.
1

3 53( 1)x – x 13.
2

3 3(2 3 )
x

x+ 14.
1

(log )mx x
, x > 0

15. 29 4
x

– x 16. 2 3xe + 17. 2x

x
e



INTEGRALS         305

18.
1

21

–tan xe
x+

19.
2

2
1
1

x

x
e –
e +

20.
2 2

2 2

x – x

x – x
e – e
e e+

21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.
1

2

sin

1

– x

– x

24.
2cos 3sin
6cos 4sin

x – x
x x+ 25. 2 2

1
cos (1 tan )x – x 26.

cos x
x

27. sin 2 cos 2x x 28.
cos

1 sin
x

x+ 29. cot x log sin x

30.
sin

1 cos
x

x+ 31. ( )2
sin

1 cos
x
x+ 32.

1
1 cot x+

33.
1

1 tan– x 34.
tan

sin cos
x

x x 35. ( )21 log x
x

+

36. ( )2( 1) logx x x
x

+ +
37.

( )3 1 4sin tan

1

–x x

x8+

Choose the correct answer in Exercises 38 and 39.

38. 10
9

10

10 10 log
10

x
e

x

x dx
x
+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10 + C
(C) (10x – x10)–1 + C (D) log (10x + x10) + C

39. 2 2 equals
sin cos

dx
x x∫

(A) tan x + cot x + C (B)  tan x – cot x + C
(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities
When the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) 2cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 3sin x dx∫
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Solution
(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2 x = 
1 cos 2

2
x+

Therefore,      2cos∫ x dx  = 
1 (1 + cos 2 )
2

x dx∫ = 
1 1 cos 2
2 2

dx x dx+∫ ∫

= 
1 sin 2 C

2 4
x x+ +

(ii) Recall the identity sin x cos y = 
1
2

[sin (x + y) + sin (x – y)] (Why?)

Then   sin 2 cos3∫ x x dx  = 
1 sin 5 sin
2

•⎡ ⎤
⎣ ⎦∫ ∫x dx x dx

= 
1 1 cos 5 cos C
2 5

– x x⎡ ⎤+ +⎢ ⎥⎣ ⎦

= 
1 1cos 5 cos C

10 2
– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3 x = 
3sin sin 3

4
x – x

Therefore,      3sin x dx∫  = 
3 1sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1– cos cos 3 C
4 12

x x+ +

Alternatively, 3 2sin sin sinx dx x x dx=∫ ∫  = 2(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     3sin x dx∫  = ( )21 – t dt− ∫  = 
3

2 C
3
t– dt t dt – t+ = + +∫ ∫

= 31cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x
4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos
1 cos

– x
x+ 9.

cos
1 cos

x
x+

10. sin4 x 11. cos4 2x 12.
2sin

1 cos
x
x+

13. cos 2 cos 2
cos cos

x –
x –

α
α

14.
cos sin

1 sin 2
x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.
3 3

2 2
sin cos
sin cos

x x
x x
+

18.
2

2
cos 2 2sin

cos
x x

x
+

19. 3
1

sin cosx x
20.

( )2
cos 2

cos sin
x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b
Choose the correct answer in Exercises 23 and 24.

23.
2 2

2 2
sin cos is equal to
sin cos

x x dx
x x
−

∫
(A) tan x + cot x + C (B) tan x + cosec x + C
(C) – tan x + cot x + C (D) tan x + sec x + C

24. 2
(1 ) equals

cos ( )

x

x
e x dx

e x
+

∫
(A) – cot (exx) + C (B) tan (xex) + C
(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions
In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:

(1) ∫ 2 2
1 –= log + C

2 +–
dx x a

a x ax a
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(2) ∫ 2 2
1 += log + C

2 ––
dx a x

a a xa x

(3) ∫ – 1
2 2

1 tan Cdx x= +
a ax + a

(4) ∫ 2 2
2 2

= log + – + C
–

dx x x a
x a

(5) ∫ – 1
2 2

= sin + C
–

dx x
aa x

(6) ∫ 2 2
2 2

= log + + + C
+

dx x x a
x a

We now prove the above results:

(1) We have  2 2
1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1
2 ( ) ( ) 2

x a x – a –
a x – a x a a x – a x a
⎡ ⎤+ ⎡ ⎤=⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

Therefore,  2 2
1
2

dx dx dx–
a x – a x ax – a
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
∫ ∫ ∫

= [ ]1 log ( )| log ( )| C
2

| x – a – | x a
a

+ +

= 
1 log C
2

x – a
a x a

+
+

(2) In view of (1) above, we have

2 2
1 1 ( ) ( )

2 ( ) ( )–
a x a x

a a x a xa x
⎡ ⎤+ + −

= ⎢ ⎥+ −⎣ ⎦
 = 

1 1 1
2a a x a x

⎡ ⎤+⎢ ⎥− +⎣ ⎦
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      Therefore, 2 2–
dx

a x∫  = 
1
2

dx dx
a a x a x
⎡ ⎤+⎢ ⎥− +⎣ ⎦∫ ∫

= 
1 [ log | | log | |] C
2

a x a x
a
− − + + +

= 
1 log C
2

a x
a a x

+
+

−

Note  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2
dx

x a+∫  = 
2

2 2 2
θ θ
θ

sec
tan

a d
a a+∫

= 11 1 1θ θ C tan C– xd
a a a a

= + = +∫
(4) Let x = a secθ. Then dx = a secθ tan θ d θ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=
2

12log 1 Cx x –
a a
+ +

= 2 2
1log log Cx x – a a+ − +

= 2 2log + Cx x – a+ , where C = C1 – log |a |
(5) Let x = a sinθ. Then dx = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

= 1θ = θ + C = sin C– xd
a
+∫

(6) Let x = a tanθ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫
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=
2

12log 1 Cx x
a a
+ + +

= 2
1log log Cx x a | a |2+ + − +

= 2log Cx x a2+ + + , where C = C1 – log |a|

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.

(7) To find the integral 2
dx

ax bx c+ +∫ , we write

ax2 + bx + c = 
2 2

2
22 4

b c b c ba x x a x –
a a a a a

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞+ + = + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

Now, put 
2
bx t
a

+ = so that dx = dt and writing 
2

2
24

c b– k
a a

= ± . We find the

integral reduced to the form 2 2
1 dt
a t k±∫  depending upon the sign of 

2

24
c b–
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

and hence can be evaluated.

(8) To find the integral of the type 
2

dx

ax bx c+ +
∫ , proceeding as in (7), we

obtain the integral using the standard formulae.

(9) To find the integral of the type 2
px q dx

ax bx c
+

+ +∫ , where p, q, a, b, c are

constants, we are to find real numbers A, B such that

2+ = A ( ) + B = A (2 ) + Bdpx q ax bx c ax b
dx

+ + +

To determine A and B, we equate from both sides the coefficients of x and the
constant terms. A and B are thus obtained and hence the integral is reduced to
one of the known forms.
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(10) For the evaluation of the integral of the type 
2

( )px q dx

ax bx c

+

+ +
∫ , we proceed

as in (9) and transform the integral into known standard forms.
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

(i) 2 16
dx

x −∫ (ii) 22

dx

x x−
∫

Solution

(i) We have 2 2 216 4
dx dx

x x –
=

−∫ ∫  = 
4log C

8 4
x –
x

1
+

+
[by 7.4 (1)]

(ii)
( )2 22 1 1

=
−

∫ ∫
dx dx

x x – x –

Put x – 1 = t. Then dx = dt.

Therefore,
22

dx

x x−
∫  =

21

dt

– t
∫  = 1sin ( ) C– t + [by 7.4 (5)]

= 1sin ( – 1) C– x +

Example 9 Find the following integrals :

(i) 2 6 13
dx

x x− +∫ (ii) 23 13 10
dx

x x+ −∫ (iii) 25 2

dx

x x−
∫

Solution
(i) We have  x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4

So,
6 13
dx

x x2 − +∫  =
( )2 2

1
3 2

dx
x – +∫

Let x – 3 = t. Then dx = dt

Therefore, 6 13
dx

x x2 − +∫  =  1
2 2

1 tan C
2 22

–dt t
t

= +
+∫ [by 7.4 (3)]

= 11 3tan C
2 2

– x –
+
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

23 13 10x x –+  =
2 13 103

3 3
xx –⎛ ⎞+⎜ ⎟

⎝ ⎠

=
2 213 173

6 6
x –

⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

(completing the square)

Thus
3 13 10

dx
x x2 + −∫  = 2 2

1
3 13 17

6 6

dx

x⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

Put 
13
6

x t+ = . Then dx = dt.

Therefore,
3 13 10

dx
x x2 + −∫  = 2

2

1
3 17

6

dt

t ⎛ ⎞− ⎜ ⎟
⎝ ⎠

∫

= 1

17
1 6log C17 173 2

6 6

t –

t
+

× × +
[by 7.4 (i)]

= 1

13 17
1 6 6log C13 1717

6 6

x –

x

+
+

+ +

= 1
1 6 4log C

17 6 30
x
x
−

+
+

= 1
1 3 2 1 1log C log

17 5 17 3
x
x
−

+ +
+

=
1 3 2log C

17 5
x
x
−

+
+ , where C = 1

1 1C log
17 3

+
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(iii) We have 
2 25 2 5

5

dx dx
xx x x –

2
=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∫ ∫

=
2 2

1
5 1 1

5 5

dx

x – –⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  (completing the square)

Put 
1
5

x – t= . Then dx = dt.

Therefore,
5 2

dx

x x2 −
∫  =

2
2

1
5 1

5

dt

t – ⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

=
2

21 1log C
55

t t – ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

[by 7.4 (4)]

= 21 1 2log C
5 55

xx – x –+ +

Example 10 Find the following integrals:

(i)
2

2 6 5
x dx

x x2

+
+ +∫ (ii) 2

3

5 4

x dx
x x

+

− +
∫

Solution
(i) Using the formula 7.4 (9), we express

x + 2 = ( )2A 2 6 5 Bd x x
dx

+ + +  = A (4 6) Bx + +

Equating the coefficients of x and the constant terms from both sides, we get

4A = 1 and 6A + B = 2   or    A = 
1
4

 and B = 
1
2

.

Therefore,
2

2 6 5
x

x x2

+
+ +∫  =

1 4 6 1
4 22 6 5 2 6 5

x dxdx
x x x x2 2

+
+

+ + + +∫ ∫

= 1 2
1 1I I
4 2

+     (say) ... (1)
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In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt

Therefore, I1 = 1log Cdt t
t
= +∫

= 2
1log | 2 6 5 | Cx x+ + +        ... (2)

and I2 = 2
2

1
522 6 5 3
2

dx dx
x x x x

=
+ + + +

∫ ∫

= 2 2
1
2 3 1

2 2

dx

x⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

Put 3
2

x t+ = , so that dx = dt, we get

I2 = 2
2

1
2 1

2

dt

t ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫  = 1
2

1 tan 2 C12
2

– t +
×

[by 7.4 (3)]

= 1
2

3tan 2 + C
2

– x⎛ ⎞+⎜ ⎟
⎝ ⎠

 = ( )1
2tan 2 3 + C– x + ... (3)

Using (2) and (3) in (1), we get

( )2 12 1 1log 2 6 5 tan 2 3 C
4 22 6 5

–x dx x x x
x x2

+
= + + + + +

+ +∫

where, C = 1 2C C
4 2
+

(ii) This integral is of the form given in 7.4 (10). Let us express

x + 3 = 2A (5 4 ) + Bd – x – x
dx = A (– 4 – 2x) + B

Equating the coefficients of x and the constant terms from both sides, we get

– 2A = 1 and – 4 A + B = 3, i.e., A = 
1
2

–  and B = 1
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Therefore, 2

3

5 4

x dx
x x

+

− −
∫  =

( )
2 2

4 21
2 5 4 5 4

– – x dx dx–
x x x x

+
− − − −

∫ ∫

=
1
2

–  I1 + I2 ... (1)

In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.

Therefore, I1=  ( )
2

4 2

5 4

– x dx dt
tx x

−
=

− −
∫ ∫  = 12 Ct +

= 2
12 5 4 C– x – x + ... (2)

Now consider I2 = 2 25 4 9 ( 2)

dx dx

x x – x
=

− − +
∫ ∫

Put x + 2 = t, so that dx = dt.

Therefore, I2 =
1

22 2
sin + C

33
–dt t

t
=

−
∫ [by 7.4 (5)]

= 1
2

2sin C
3

– x +
+ ... (3)

Substituting (2) and (3) in (1), we obtain

2 1
2

3 25 – 4 – + sin C
35 4

–x x– x x
– x – x

+ +
= +∫ , where 1

2
CC C
2

–=

EXERCISE 7.4
Integrate the functions in Exercises 1 to 23.

1.
2

6
3

1
x

x +
2. 2

1

1 4x+
3.

( )2

1

2 1– x +

4. 2

1

9 25– x
5. 4

3
1 2

x
x+

6.
2

61
x

x−

7. 2

1

1

x –

x –
8.

2

6 6

x

x a+
9.

2

2

sec

tan 4

x

x +



316 MATHEMATICS

10. 2

1

2 2x x+ +
11. 2

1
9 6 5x x+ +

12. 2
1

7 6– x – x

13.
( )( )

1
1 2x – x –

14. 2

1

8 3x – x+
15. ( )( )

1
x – a x – b

16. 2

4 1

2 3

x

x x –

+

+
17. 2

2

1

x

x –

+
18. 2

5 2
1 2 3

x
x x
−

+ +

19.
( )( )

6 7
5 4
x

x – x –
+

20. 2

2

4

x

x – x

+
21.

2

2

2 3

x

x x

+

+ +

22. 2
3

2 5
x

x – x
+

−
23. 2

5 3

4 10

x

x x

+

+ +
.

Choose the correct answer in Exercises 24 and 25.

24. 2 equals
2 2
dx

x x+ +∫
(A) x tan–1 (x + 1) + C (B) tan–1 (x + 1) + C
(C) (x + 1) tan–1x + C (D) tan–1x + C

25. 2
equals

9 4

dx

x x−
∫

(A) –11 9 8sin C
9 8

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(B) –11 8 9sin C
2 9

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(C) –11 9 8sin C
3 8

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(D)
–11 9 8sin C

2 9
x −⎛ ⎞ +⎜ ⎟

⎝ ⎠

7.5  Integration by Partial Fractions
Recall that a rational function is defined as the ratio of two polynomials in the form

P( )
Q( )

x
x

, where P (x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x)

is less than the degree of Q(x), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if 
P( )
Q( )

x
x

 is improper, then 1P ( )P( ) T( )
Q( ) Q( )

xx x
x x

= + ,

where T(x) is a polynomial in x and 1P ( )
Q( )

x
x

is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

linear and quadratic factors. Assume that we want to evaluate 
P( )
Q( )

x dx
x∫ , where 

P( )
Q( )

x
x

is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

Table 7.2

 S.No. Form of the rational function Form of the partial fraction

1.
( – ) ( – )

px q
x a x b

+ , a ≠ b
A B

x – a x – b
+

2. 2( – )
px q
x a

+
( )2

A B
x – a x – a

+

3.
2

( – ) ( ) ( )
px qx r

x a x – b x – c
+ + A B C

x – a x – b x – c
+ +

4.
2

2( – ) ( )
px qx r

x a x – b
+ +

2
A B C

( )x – a x – bx – a
+ +

5.
2

2( – ) ( )
px qx r

x a x bx c
+ +

+ + 2
A B + Cx

x – a x bx c
+

+ +
,

where x2 + bx + c cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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Example 11 Find ( 1) ( 2)
dx

x x+ +∫

Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)], we write

1
( 1) ( 2)x x+ +

 =
A B

1 2x x
+

+ +
... (1)

where, real numbers A and B are to be determined suitably. This gives
1 = A (x + 2) + B (x + 1).

Equating the coefficients of x and the constant term, we get
A + B = 0

and 2A + B = 1
Solving these equations, we get A =1 and B = – 1.
Thus, the integrand is given by

1
( 1) ( 2)x x+ +

 =
1 – 1

1 2x x
+

+ +

Therefore, ( 1) ( 2)
dx

x x+ +∫  =
1 2

dx dx–
x x+ +∫ ∫

= log 1 log 2 Cx x+ − + +

=
1log C
2

x
x
+

+
+

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an
identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.

Example 12 Find 
2

2
1

5 6
x dx

x x
+

− +∫

Solution Here the integrand 
2

2
1

5 6
x

x – x
+
+

 is not proper rational function, so we divide

x2 + 1 by x2 – 5x + 6 and find that
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2

2
1

5 6
x

x – x
+
+

 = 2
5 5 5 51 1

( 2) ( 3)5 6
x – x –

x – x –x – x
+ = +

+

Let
5 5

( 2) ( 3)
x –

x – x –
 =

A B
2 3x – x –
+

So that 5x – 5 = A (x – 3) + B (x – 2)
Equating the coefficients of x and constant terms on both sides, we get A + B = 5

and 3A + 2B = 5. Solving these equations, we get A = – 5  and B = 10

Thus,
2

2
1

5 6
x

x – x
+
+

 =
5 101

2 3x – x –
− +

Therefore,
2

2
1

5 6
x dx

x – x
+
+∫  =

15 10
2 3

dxdx dx
x – x –

− +∫ ∫ ∫
= x – 5 log |x – 2 | + 10 log |x – 3 | + C.

Example 13 Find 2
3 2

( 1) ( 3)
x dx

x x
−

+ +∫

Solution The integrand is of the type as given in Table 7.2 (4). We write

2
3 2

( 1) ( 3)
x –

x x+ +
 = 2

A B C
1 3( 1)x xx
+ +

+ ++

So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2

= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )
Comparing coefficient of x2, x and constant term on both sides, we get

A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get
11 5 11A B and C
4 2 4

– –,= = = . Thus the integrand is given by

2
3 2

( 1) ( 3)
x

x x
−

+ +  = 2
11 5 11

4 ( 1) 4 ( 3)2 ( 1)
– –

x xx+ ++

Therefore, 2
3 2

( 1) ( 3)
x

x x
−

+ +∫  = 2
11 5 11
4 1 2 4 3( 1)

dx dx dx–
x xx

−
+ ++∫ ∫ ∫

=
11 5 11log +1 log 3 C
4 2 ( +1) 4

x x
x

+ − + +

=
11 +1 5log + C
4 + 3 2 ( +1)

x
x x

+
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Example 14 Find 
2

2 2( 1) ( 4)
x dx

x x+ +∫

Solution  Consider 
2

2 2( 1) ( 4)
x

x x+ +
 and put x2 = y.

Then
2

2 2( 1) ( 4)
x

x x+ +
 =

( 1) ( 4)
y

y y+ +

Write
( 1) ( 4)

y
y y+ +

 =
A B

1 4y y
+

+ +

So that y =  A (y + 4) + B (y + 1)
Comparing coefficients of y and constant terms on both sides, we get A + B = 1

and 4A + B = 0, which give

A =
1 4and B
3 3

− =

Thus,
2

2 2( 1) ( 4)
x

x x+ +
 = 2 2

1 4
3 ( 1) 3 ( 4)

–
x x

+
+ +

Therefore,
2

2 2( 1) ( 4)
x dx

x x+ +∫  = 2 2
1 4
3 31 4

dx dx–
x x

+
+ +∫ ∫

= 1 11 4 1tan tan C
3 3 2 2

– – x– x + × +

= 1 11 2tan tan C
3 3 2

– – x– x + +

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

Example 15 Find 
( )

2

3 sin 2 cos
5 cos 4 sin

–
d

– –
φ φ

φ
φ φ∫

Solution Let y = sinφ

Then dy = cosφ dφ
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Therefore,
( )

2

3 sin 2 cos
5 cos 4 sin

–
d

– –
φ φ

φ
φ φ∫  = 2

(3 – 2)
5 (1 ) 4

y dy
– – y – y∫

= 2
3 2

4 4
y – dy

y – y +∫

= ( )2
3 2 I (say)

2
y –

y –
=∫

Now, we write
( )2
3 2

2
y –

y –
 = 2

A B
2 ( 2)y y
+

− −
[by Table 7.2 (2)]

Therefore, 3y – 2 = A (y – 2) + B
Comparing the coefficients of y and constant term, we get A = 3 and B – 2A = – 2,

which gives A = 3 and B = 4.
Therefore, the required integral is given by

I = 2
3 4[ + ]

2 ( 2)
dy

y – y –∫  = 23 + 4
2 ( 2)

dy dy
y – y –∫ ∫

=
13 log 2 4 C

2
y –

y
⎛ ⎞

− + +⎜ ⎟−⎝ ⎠

= 43 log sin 2 C
2 sin–

φ − + +
φ

= 43 log (2 sin ) + C
2 sin

− φ +
− φ

 (since, 2 – sinφ is always positive)

Example 16 Find 
2

2
1

( 2) ( 1)
x x dx
x x

+ +
+ +∫

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2(5)]. Write

2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
 = 2

A B + C
2 ( 1)

x
x x

+
+ +

Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
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Equating the coefficients of x2, x and of constant term of both sides, we get
A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get

3 2 1A , B and C
5 5 5

= = =

Thus, the integrand is given by

2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
 = 2

2 1
3 5 5

5 ( 2) 1

x

x x

+
+

+ +
 = 2

3 1 2 1
5 ( 2) 5 1

x
x x

+⎛ ⎞+ ⎜ ⎟+ +⎝ ⎠

Therefore,
2

2
1

( +1) ( 2)
x x dx

x x
+ +

+∫  = 2 2
3 1 2 1 1
5 2 5 51 1

dx x dx dx
x x x

+ +
+ + +∫ ∫ ∫

= 2 13 1 1log 2 log 1 tan C
5 5 5

–x x x+ + + + +

EXERCISE 7.5
Integrate the rational functions in Exercises 1 to 21.

1. ( 1) ( 2)
x

x x+ + 2. 2
1

9x –
3.

3 1
( 1) ( 2) ( 3)

x –
x – x – x –

4. ( 1) ( 2) ( 3)
x

x – x – x – 5. 2
2
3 2
x

x x+ +
6.

21
(1 2 )

– x
x – x

7. 2( 1) ( – 1)
x

x x+
8. 2( 1) ( 2)

x
x – x + 9. 3 2

3 5
1

x
x – x x

+
− +

10. 2
2 3

( 1) (2 3)
x

x – x
−

+
11. 2

5
( 1) ( 4)

x
x x+ −

12.
3

2
1

1
x x

x
+ +
−

13. 2
2

(1 ) (1 )x x− + 14. 2
3 1

( 2)
x –

x + 15. 4
1

1x −

16.
1

( 1)nx x +  [Hint:  multiply numerator and denominator by x n – 1 and put xn = t ]

17.
cos

(1 – sin ) (2 – sin )
x

x x [Hint : Put sin x = t]
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18.
2 2

2 2
( 1) ( 2)
( 3) ( 4)
x x
x x

+ +
+ +

19. 2 2
2

( 1) ( 3)
x

x x+ +
20. 4

1
( 1)x x –

21.
1

( 1)xe – [Hint : Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23.

22.
( 1) ( 2)

x dx
x x− −∫  equals

(A)
2( 1)log C

2
x
x
−

+
−

(B)
2( 2)log C

1
x
x
−

+
−

(C)
21log C

2
x
x
−⎛ ⎞ +⎜ ⎟−⎝ ⎠

(D) log ( 1) ( 2) Cx x− − +

23. 2( 1)
dx

x x +∫ equals

(A) 21log log ( +1) + C
2

x x− (B) 21log log ( +1) + C
2

x x+

(C) 21log log ( +1) + C
2

x x− + (D) 21 log log ( +1) + C
2

x x+

7.6  Integration by Parts
In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

( )d uv
dx

 =
dv duu v
dx dx

+

Integrating both sides, we get

uv =
dv duu dx v dx
dx dx

+∫ ∫

or dvu dx
dx∫  =

duuv – v dx
dx∫ ... (1)

Let u = f (x) and 
dv
dx = g (x). Then

du
dx = f ′(x) and v = ( )g x dx∫
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Therefore, expression (1) can be rewritten as

( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ] ( )f x g x dx – g x dx f x dx′∫ ∫ ∫
i.e., ( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ( ) ]f x g x dx – f x g x dx dx′∫ ∫ ∫

If we take f as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) × (integral
of the second function) – Integral of [(differential coefficient of the first function)
× (integral of the second function)]”

Example 17 Find cosx x dx∫
Solution Put f (x) = x (first function) and g (x) = cos x (second function).
Then, integration by parts gives

cosx x dx∫  = cos [ ( ) cos ]dx x dx – x x dx dx
dx∫ ∫ ∫

= sin sinx x – x dx∫  = x sin x + cos x + C

Suppose, we take f (x) = cos x and g (x) = x. Then

cosx x dx∫  = cos [ (cos ) ]dx x dx – x x dx dx
dx∫ ∫ ∫

= ( )
2 2

cos sin
2 2
x xx x dx+ ∫

Thus, it shows that the integral cosx x dx∫  is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(i) It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for sinx x dx∫ .
The reason is that there does not exist any function whose derivative is

x  sin x.

(ii) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

cosx x dx∫  = (sin ) (sin )x x k x k dx+ − +∫
= (sin ) (sinx x k x dx k dx+ − −∫ ∫
= (sin ) cos Cx x k x – kx+ − +  = sin cos Cx x x+ +

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the
first function. However, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find log x dx∫
Solution To start with, we are unable to guess a function whose derivative is log x. We
take log x as the first function and the constant function 1 as the second function. Then,
the integral of the second function is x.

Hence, (log .1)x dx∫  = log 1 [ (log ) 1 ]dx dx x dx dx
dx

−∫ ∫ ∫

=
1(log ) – log Cx x x dx x x – x
x

⋅ = +∫ .

Example 19 Find xx e dx∫
Solution Take first function as x and second function as ex. The integral of the second
function is ex.

Therefore, xx e dx∫  = 1x xx e e dx− ⋅∫  = xex – ex + C.

Example 20 Find 
1

2

sin

1

–x x dx
x−

∫

Solution Let first function be sin – 1x and second function be 21

x

x−
.

First we find the integral of the second function, i.e., 
21

x dx

x−
∫ .

Put t =1 – x2. Then dt = – 2x dx
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Therefore,
21

x dx

x−
∫  =

1
2

dt–
t∫  = 2– 1t x= − −

Hence,
1

2

sin

1

–x x dx
x−

∫  = ( )1 2 2
2

1(sin ) 1 ( 1 )
1

– x – x – x dx
x

− − −
−

∫
= 2 11 sin C– x x x−− + +  = 2 11 sin Cx – x x−− +

Alternatively, this integral can also be worked out by making substitution sin–1 x  = θ and
then integrating by parts.

Example 21  Find sinxe x dx∫
Solution  Take ex as the first function and sin x as second function. Then, integrating
by parts, we have

I sin ( cos ) cosx x xe x dx e – x e x dx= = +∫ ∫
= – ex cos x + I1 (say) ... (1)

Taking ex
 and cos x as the first and second functions, respectively, in I1, we get

I1 = sin sinx xe x – e x dx∫
Substituting the value of I1 in (1), we get

I = – ex cos x + ex sin x – I  or  2I = ex (sin x – cos x)

Hence, I = sin (sin cos ) + C
2

x
x ee x dx x – x=∫

Alternatively, above integral can also be determined by taking sin x as the first function
and ex the second function.

7.6.1 Integral of the type [ ( ) + ( )]xe f x f x dx′∫
We have I = [ ( ) + ( )]xe f x f x dx′∫  = ( ) + ( )x xe f x dx e f x dx′∫ ∫

= 1 1I ( ) , where I = ( )x xe f x dx e f x dx′+ ∫ ∫ ... (1)
Taking f (x) and ex as the first function and second function, respectively, in I1 and

integrating it by parts, we have I1 = f (x) ex – ( ) Cxf x e dx′ +∫
Substituting I1 in (1), we get

I = ( ) ( ) ( ) Cx x xe f x f x e dx e f x dx′ ′− + +∫ ∫  = ex f (x) + C
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Thus, ′∫ [ ( ) ( )]xe  f x + f x dx  = ( ) Cxe f x +

Example 22 Find (i) 1
2

1(tan )
1

x –e x
x

+
+∫ dx   (ii) 

2

2
( +1)

( +1)

xx e
x∫  dx

Solution

(i) We have I = 1
2

1(tan )
1

x –e x dx
x

+
+∫

Consider f (x) = tan– 1x, then  f ′(x) = 2
1

1 x+
Thus, the given integrand is of the form ex [ f (x) + f ′(x)].

Therefore, 1
2

1I (tan )
1

x –e x dx
x

= +
+∫  = ex tan– 1x + C

(ii) We have 
2

2
( + 1)I

( +1)

xx e
x

= ∫ dx
2

2
1 + 1+1)[ ]

( +1)
x x –e dx

x
= ∫

2

2 2
1 2[ ]

( +1) ( +1)
x x –e dx

x x
= +∫  2

1 2[ + ]
+1 ( +1)

x x –e dx
x x

= ∫

Consider 
1( )
1

xf x
x
−

=
+

, then  2
2( )

( 1)
f x

x
′ =

+

Thus, the given integrand is of the form ex [f (x) + f ′(x)].

Therefore,
2

2
1 1 C

1( 1)
x xx xe dx e

xx
+ −

= +
++∫

EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.

1. x sin x 2. x sin 3x 3. x2 ex 4. x log x
5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1 x

9. x cos–1 x 10. (sin–1x)2 11.
1

2

cos

1

x x

x

−

−
12. x sec2 x

13. tan–1x 14. x (log x)2 15. (x2 + 1) log x
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16. ex (sinx + cosx) 17. 2(1 )

xx e
x+ 18.

1 sin
1 cos

x xe
x

⎛ ⎞+
⎜ ⎟+⎝ ⎠

19. 2
1 1–xe
x x

⎛ ⎞
⎜ ⎟
⎝ ⎠

20. 3
( 3)
( 1)

xx e
x
−
− 21. e2x sin x

22. 1
2

2sin
1

– x
x

⎛ ⎞
⎜ ⎟+⎝ ⎠

Choose the correct answer in Exercises 23 and 24.

23.
32 xx e dx∫  equals

(A)
31 C

3
xe + (B)

21 C
3

xe +

(C)
31 C

2
xe + (D)

21 C
2

xe +

24. sec (1 tan )xe x x dx+∫  equals

(A) ex cos x + C (B) ex sec x + C
(C) ex sin x + C (D) ex tan x + C

7.6.2 Integrals of some more types
Here, we discuss some special types of standard integrals based on the technique of
integration  by parts :

(i) 2 2x a dx−∫ (ii) 2 2x a dx+∫ (iii) 2 2a x dx−∫
(i)  Let 2 2I x a dx= −∫

Taking constant function 1 as the second function and integrating by parts, we
have

I = 2 2
2 2

1 2
2

xx x a x dx
x a

− −
−

∫

=
2

2 2
2 2

xx x a dx
x a

− −
−

∫  = 
2 2 2

2 2
2 2

x a ax x a dx
x a

− +
− −

−
∫
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= 2 2 2 2 2
2 2

dxx x a x a dx a
x a

− − − −
−

∫ ∫

= 2 2 2
2 2

I dxx x a a
x a

− − −
−

∫

or 2I = 2 2 2
2 2

dxx x a a
x a

− −
−

∫

or I = ∫ 2 2x – a dx = 
2

2 2 2 2– – log + – + C
2 2
x ax a x x a

Similarly, integrating other two integrals by parts, taking constant function 1 as the
second function, we get

(ii) ∫
2

2 2 2 2 2 21+ = + + log + + + C
2 2

ax a dx x x a x x a

(iii) ∫
2

2 2 2 2 –11– = – + sin + C
2 2

a xa x dx x a x
a

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sinθ in (iii) respectively.

Example 23 Find 2 2 5x x dx+ +∫
Solution Note that

2 2 5x x dx+ +∫  = 2( 1) 4x dx+ +∫
Put  x + 1 = y, so that dx = dy. Then

2 2 5x x dx+ +∫  = 2 22y dy+∫

= 2 21 44 log 4 C
2 2

y y y y+ + + + +         [using 7.6.2 (ii)]

= 2 21 ( 1) 2 5 2 log 1 2 5 C
2

x x x x x x+ + + + + + + + +

Example 24 Find 23 2x x dx− −∫
Solution Note that 2 23 2 4 ( 1)x x dx x dx− − = − +∫ ∫
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Put x + 1 = y so that dx = dy.

Thus 23 2x x dx− −∫  = 24 y dy−∫

= 2 11 44 sin C
2 2 2

– yy y− + + [using 7.6.2 (iii)]

=
2 11 1( 1) 3 2 2 sin C

2 2
– xx x x +⎛ ⎞+ − − + +⎜ ⎟
⎝ ⎠

EXERCISE 7.7
Integrate the functions in Exercises 1 to 9.

1. 24 x− 2. 21 4x− 3. 2 4 6x x+ +

4. 2 4 1x x+ + 5. 21 4x x− − 6. 2 4 5x x+ −

7. 21 3x x+ − 8. 2 3x x+ 9.
2

1
9
x

+

Choose the correct answer in Exercises 10 to 11.

10. 21 x dx+∫ is equal to

(A) ( )2 211 log 1 C
2 2
x x x x+ + + + +

(B)
3

2 22 (1 ) C
3

x+ + (C)
3

2 22 (1 ) C
3

x x+ +

(D)
2

2 2 211 log 1 C
2 2
x x x x x+ + + + +

11. 2 8 7x x dx− +∫  is equal to

(A) 2 21 ( 4) 8 7 9log 4 8 7 C
2

x x x x x x− − + + − + − + +

(B) 2 21 ( 4) 8 7 9log 4 8 7 C
2

x x x x x x+ − + + + + − + +

(C) 2 21 ( 4) 8 7 3 2 log 4 8 7 C
2

x x x x x x− − + − − + − + +

(D) 2 21 9( 4) 8 7 log 4 8 7 C
2 2

x x x x x x− − + − − + − + +
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7.7   Definite Integral
In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by ( )
b

a
f x dx∫ , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [a, b], then its value is the difference  between the values of F at the end
points, i.e., F(b) – F(a). Here, we shall consider these two cases separately as discussed
below:

7.7.1  Definite integral as the limit of a sum
Let f be a continuous function defined on close interval [a, b]. Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the x-axis.

The definite integral ( )
b

a
f x dx∫  is the area bounded by the curve y = f (x), the

ordinates x = a, x = b and the x-axis. To evaluate this area, consider the region PRSQP
between this curve, x-axis and the ordinates x = a and x = b (Fig 7.2).

Divide the interval [a, b] into n equal subintervals denoted by [x0, x1], [x1, x2] ,...,
[xr – 1, xr], ..., [xn – 1, xn], where x0 = a, x1 = a + h, x2 = a + 2h, ... , xr = a + rh and

xn = b = a + nh or .b an
h
−

=  We note that as n → ∞, h → 0.

Fig 7.2

O

Y

XX'

Y'

Q

P

C
M

D
L

S

A B R
a = x0 x1 x2 xr-1 xr x =bn

y f x
 = ( )
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The region PRSQP under consideration is the sum of n subregions, where each
subregion is defined on subintervals [xr – 1, xr], r = 1, 2, 3, …, n.

From Fig 7.2, we have
area of the rectangle (ABLC) < area of the region (ABDCA) < area of the rectangle

(ABDM)         ... (1)
Evidently as xr – xr–1 → 0, i.e., h → 0 all the three areas shown in (1) become

nearly equal to each other. Now we form the following sums.

sn = h [f(x0) + … + f (xn - 1)] = 
1

0
( )

n

r
r

h f x
−

=
∑ ... (2)

and  Sn = 1 2
1

[ ( ) ( ) ( )] ( )
n

n r
r

h f x f x f x h f x
=

+ +…+ = ∑ ... (3)

Here, sn and Sn denote the sum of areas of all lower rectangles and upper rectangles
raised over subintervals [xr–1, xr] for r = 1, 2, 3, …, n, respectively.

In view of the inequality (1) for an arbitrary subinterval [xr–1, xr], we have
sn < area of the region PRSQP < Sn ... (4)

As n →∞ strips become narrower and narrower, it is assumed that the limiting
values of (2) and (3) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

lim Snn→∞
 = lim nn

s
→∞  = area of the region PRSQP = ( )

b

a
f x dx∫ ... (5)

It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (5) as

( )
b

a
f x dx∫  =

0
lim [ ( ) ( ) ... ( ( – 1) ]
h

h f a f a h f a n h
→

+ + + + +

or ( )
b

a
f x dx∫  =

1( – ) lim [ ( ) ( ) ... ( ( – 1) ]
n

b a f a f a h f a n h
n→∞

+ + + + +      ... (6)

where h =
– 0b a as n
n

→ →∞

The above expression (6) is known as the definition of definite integral as the limit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

t or u instead of x, we simply write the integral as ( )
b

a
f t dt∫  or ( )

b

a
f u du∫ instead of

( )
b

a
f x dx∫ . Hence, the variable of integration is called a dummy variable.

Example 25 Find 
2 2
0

( 1)x dx+∫  as the limit of a sum.

Solution By definition

( )
b

a
f x dx∫  =

1( – ) lim [ ( ) ( ) ... ( ( – 1) ],
n

b a f a f a h f a n h
n→∞

+ + + + +

where, h =
–b a
n

In this example, a = 0, b = 2, f (x) = x2 + 1, 
2 – 0 2h

n n
= =

Therefore,
2 2
0

( 1)x dx+∫  =  
1 2 4 2 ( – 1)2 lim [ (0) ( ) ( ) ... ( )]

n

nf f f f
n n n n→∞

+ + + +

=
2 2 2

2 2 2
1 2 4 (2 – 2)2 lim [1 ( 1) ( 1) ... 1 ]

n

n
n n n n→∞

⎛ ⎞
+ + + + + + +⎜ ⎟

⎝ ⎠

= 2 2 2

-

1 12 lim [(1 1 ... 1) (2 4 ... (2 – 2) ]2→∞
+ + + + + + +

n
n terms

n
n n

=
2

2 2 21 22 lim [ (1 2 ... ( –1) ]
n

n n
n n2→∞

+ + + +

= 1 4 ( 1) (2 –1)2 lim [ ]
6n

n n nn
n n2→∞

−
+

= 1 2 ( 1) (2 –1)2 lim [ ]
3n

n nn
n n→∞

−
+

=
2 1 12 lim [1 (1 ) (2 – )]
3n n n→∞

+ −  = 
42 [1 ]
3

+  = 
14
3
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Example 26 Evaluate 
2

0
xe dx∫ as the limit of a sum.

Solution By definition

2

0
xe dx∫  =

2 4 2 – 2
01(2 – 0) lim ...

n
n n n

n
e e e e

n→∞

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦

Using the sum to n terms of a G.P., where a = 1, 
2
nr e= , we have

2

0
xe dx∫ =

2

2
1 –12 lim [ ]

1

n
n

n
n

e
n

e
→∞

−
 = 

2

2
1 –12 lim

–1
n

n

e
n

e
→∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
2

2

2 ( –1)

–1lim 22
n

n

e

e

n
→∞

⎡ ⎤
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

 = e2 – 1 [using 
0

( 1)lim 1
h

h

e
h→

−
= ]

EXERCISE 7.8
Evaluate the following definite integrals as limit of sums.

1.
b

a
x dx∫ 2.

5

0
( 1)x dx+∫ 3.

3 2
2

x dx∫

4.
4 2

1
( )x x dx−∫ 5.

1

1
xe dx

−∫ 6.
4 2
0

( )xx e dx+∫
7.8  Fundamental Theorem of Calculus
7.8.1  Area function

We have defined ( )
b

a
f x dx∫  as the area of

the region bounded by the curve y = f (x),
the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, b]. Then ( )
x

a
f x dx∫

represents the area of the shaded region Fig 7.3
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in Fig 7.3 [Here it is assumed that f (x) > 0 for x ∈ [a, b], the assertion made below is
equally true for other functions as well]. The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of x. We denote this
function of x by A(x). We call the function A(x) as Area function and is given by

A (x) = ∫ ( )
x

a
f x dx ... (1)

Based on this definition, the two basic fundamental theorems have been given.
However, we only state them as their proofs are beyond the scope of this text book.

7.8.2  First fundamental theorem of integral calculus
Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (x) be
the area function. Then A′′′′′(x) = f (x), for all x ∈∈∈∈∈ [a, b].

7.8.3  Second fundamental theorem of integral calculus
We state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.
Theorem 2 Let f  be continuous function defined on the closed interval [a, b] and F be

an anti derivative of f. Then ∫ ( )
b

a
f x dx = [F( )] =b

ax  F (b) – F(a).

Remarks

(i) In words, the Theorem 2 tells us that ( )
b

a
f x dx∫ = (value of the anti derivative F

of f at the upper limit b – value of the same anti derivative at the lower limit a).
(ii) This theorem is very useful, because it gives us a method of calculating the

definite integral more easily, without calculating the limit of a sum.
(iii) The crucial operation in evaluating a definite integral is that of finding a function

whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

(iv) In ( )
b

a
f x dx∫ , the function f needs to be well defined and continuous in [a, b].

For instance, the consideration of definite integral 
1

3 2 2
2

( – 1)x x dx
−∫  is erroneous

since the function f expressed by f (x) = 
1

2 2( –1)x x  is not defined in a portion
– 1 < x < 1 of the closed interval [– 2, 3].
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Steps for calculating ( )
b

a
f x dx∫ .

(i) Find the indefinite integral ( )f x dx∫ . Let this be F(x). There is no need to keep
integration constant C because if we consider F(x) + C instead of F(x), we get

( ) [F ( ) C] [F( ) C] – [F( ) C] F( ) – F( )
b b

aa
f x dx x b a b a= + = + + =∫ .

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

(ii) Evaluate F(b) – F(a) = [F ( )]b
ax , which is the value of  ( )

b

a
f x dx∫ .

We now consider some examples

Example 27 Evaluate the following integrals:

(i)
3 2
2

x dx∫ (ii)
9

34
22(30 – )

x dx
x

∫

(iii)
2

1 ( 1) ( 2)
x dx

x x+ +∫ (iv)   34
0

sin 2 cos2t t dt
π

∫

Solution

(i) Let 
3 2
2

I x dx= ∫ . Since 
3

2 F ( )
3
xx dx x= =∫ ,

Therefore, by the second fundamental theorem, we get

I = 
27 8 19F (3) – F (2) –
3 3 3

= =

(ii) Let 
9

34
22

I
(30 – )

x dx
x

= ∫ . We first find the anti derivative of the integrand.

Put 
3
2 330 – . Then –

2
x t x dx dt= =  or 

2–
3

x dx dt=

Thus,  3 2
22

2–
3

(30 – )

x dtdx
t

x
=∫ ∫  = 

2 1
3 t
⎡ ⎤
⎢ ⎥⎣ ⎦

 = 3
2

2 1 F ( )
3

(30 – )
x

x

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
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Therefore, by the second fundamental theorem of calculus, we have

I =

9

3
2

4

2 1F(9) – F(4)
3

(30 – )x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

=
2 1 1
3 (30 – 27) 30 – 8
⎡ ⎤

−⎢ ⎥
⎣ ⎦

 = 
2 1 1 19
3 3 22 99
⎡ ⎤− =⎢ ⎥⎣ ⎦

(iii) Let 
2

1
I

( 1) ( 2)
x dx

x x
=

+ +∫

Using partial fraction, we get  
–1 2

( 1) ( 2) 1 2
x

x x x x
= +

+ + + +

So
( 1) ( 2)

x dx
x x+ +∫  = – log 1 2log 2 F( )x x x+ + + =

Therefore, by the second fundamental theorem of calculus, we have
I = F(2) – F(1) = [– log 3 + 2 log 4] – [– log 2 + 2 log 3]

= – 3 log 3 + log 2 + 2 log 4 = 
32log
27

⎛ ⎞
⎜ ⎟
⎝ ⎠

(iv) Let 34
0

I sin 2 cos2t t dt
π

= ∫ . Consider 3sin 2 cos2t t dt∫

Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = 
1
2

 du

So 3sin 2 cos2t t dt∫  = 31
2

u du∫

= 4 41 1[ ] sin 2 F ( ) say
8 8

u t t= =

Therefore, by the second fundamental theorem of integral calculus

I = 4 41 1F ( ) – F (0) [sin – sin 0]
4 8 2 8
π π

= =
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EXERCISE 7.9
Evaluate the definite integrals in Exercises 1 to 20.

1.
1

1
( 1)x dx

−
+∫ 2.

3

2

1 dx
x∫ 3.

2 3 2
1

(4 – 5 6 9)x x x dx+ +∫

4. 4

0
sin 2x dx

π

∫ 5. 2

0
cos 2x dx

π

∫ 6.
5

4
xe dx∫ 7. 4

0
tan x dx

π

∫

8. 4

6

cosec x dx
π

π∫ 9.
1

0 21 –

dx

x
∫ 10.

1

201
dx

x+∫ 11.
3

22 1
dx

x −∫

12. 22
0

cos x dx
π

∫ 13.
3

22 1
x dx

x +∫ 14.
1

20

2 3
5 1

x dx
x
+
+∫ 15.

21

0
xx e dx∫

16.
22

21

5
4 3
x

x x+ +∫ 17. 2 34
0

(2sec 2)x x dx
π

+ +∫ 18. 2 2
0

(sin – cos )
2 2
x x dx

π

∫

19.
2

20

6 3
4

x dx
x

+
+∫ 20.

1

0
( sin )

4
x xx e dxπ
+∫

Choose the correct answer in Exercises 21 and 22.

21.
3

21 1
dx

x+∫  equals

(A)
3
π

(B)
2
3
π

(C)
6
π

(D)
12
π

22.
2
3

20 4 9
dx

x+∫  equals

(A)
6
π

(B)
12
π

(C)
24
π

(D)
4
π

7.9  Evaluation of Definite Integrals by Substitution
In the previous sections, we have discussed several methods for finding the indefinite
integral. One of the important methods for finding the indefinite integral is the method
of substitution.
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To evaluate ( )
b

a
f x dx∫ , by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce
the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning
the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original
variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find
the difference of the values at the upper and lower limits.

Note In order to quicken this method, we can proceed as follows: After
performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,
so that we can perform the last step.

Let us illustrate this by examples.

Example 28 Evaluate 
1 4 5
1
5 1x x dx

−
+∫ .

Solution Put  t = x5 + 1, then dt = 5x4 dx.

Therefore, 4 55 1x x dx+∫  = t dt∫  = 
3
22

3
t  = 

3
5 22 ( 1)

3
x +

Hence,
1 4 5
1
5 1x x dx

−
+∫  =

13
5 2

– 1

2 ( 1)
3

x
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦

= ( )
3 3

5 52 22 (1 1) – (– 1) 1
3
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

=
3 3
2 22 2 0

3
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
2 4 2(2 2)
3 3

=

Alternatively, first we transform the integral and then evaluate the transformed integral
with new limits.
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Let t = x5 + 1. Then dt = 5 x4 dx.
Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus,  as x varies from – 1 to 1, t varies from 0 to 2

Therefore
1 4 5
1
5 1x x dx

−
+∫  =

2

0
t dt∫

=

23 3 3
2 2 2

0

2 2 2 – 0
3 3

t
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 = 
2 4 2(2 2)
3 3

=

Example 29 Evaluate 
– 11

20

tan
1

x dx
x+∫

Solution Let t = tan – 1x, then 2
1

1
dt dx

x
=

+
. The new limits are, when x = 0, t = 0 and

when x = 1, 
4

t π
= . Thus, as x varies from 0 to 1, t varies from 0 to 

4
π .

Therefore
–11

20

tan
1

x dx
x+∫ =

2 4
4

0
0

2
tt dt

π
π ⎡ ⎤

⎢ ⎥
⎣ ⎦

∫  = 
2 21 – 0

2 16 32
⎡ ⎤π π

=⎢ ⎥
⎣ ⎦

EXERCISE 7.10
Evaluate the integrals in Exercises 1 to 8 using substitution.

1.
1

20 1
x dx

x +∫ 2. 52
0

sin cos d
π

φ φ φ∫ 3.
1 – 1

20

2sin
1

x dx
x

⎛ ⎞
⎜ ⎟+⎝ ⎠∫

4.
2

0
2x x +∫  (Put x + 2 = t2) 5. 2

20

sin
1 cos

x dx
x

π

+∫

6.
2

20 4 –
dx

x x+∫ 7.
1

21 2 5
dx

x x− + +∫ 8.
2 2

21

1 1–
2

xe dx
x x

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

Choose the correct answer in Exercises 9 and 10.

9. The value of the integral 

1
3 31

1 4
3

( )x x dx
x
−

∫  is

(A) 6 (B) 0 (C) 3 (D) 4

10. If f (x) = 
0

sin
x
t t dt∫ , then f ′(x) is

(A) cosx + x sin x (B) x sinx
(C) x cosx (D) sinx + x cosx
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7.10  Some Properties of Definite Integrals
We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P0 : ( ) ( )
b b

a a
f x dx f t dt=∫ ∫

P1 : ( ) – ( )
b a

a b
f x dx f x dx=∫ ∫ . In particular, ( ) 0

a

a
f x dx =∫

P2 : ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫

P3 : ( ) ( )
b b

a a
f x dx f a b x dx= + −∫ ∫

P4 : 0 0
( ) ( )

a a
f x dx f a x dx= −∫ ∫

(Note that P4 is a particular case of P3)

P5 :
2

0 0 0
( ) ( ) (2 )

a a a
f x dx f x dx f a x dx= + −∫ ∫ ∫

P6 :
2

0 0
( ) 2 ( ) , if (2 ) ( )

a a
f x dx f x dx f a x f x= − =∫ ∫   and

                 0 if f (2a – x) = – f (x)

P7 : (i)  
0

( ) 2 ( )
a a

a
f x dx f x dx

−
=∫ ∫ , if f is an even function, i.e., if f (– x) = f (x).

(ii)  ( ) 0
a

a
f x dx

−
=∫ , if f is an odd function, i.e., if f (– x) = – f (x).

We give the proofs of these properties one by one.
Proof of P0 It follows directly by making the substitution x = t.
Proof of P1 Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have ( ) F ( ) – F ( ) – [F ( ) F ( )] ( )
b a

a b
f x dx b a a b f x dx= = − = −∫ ∫

Here, we observe that, if a = b, then ( ) 0
a

a
f x dx =∫ .

Proof of P2 Let F be anti derivative of f. Then

( )
b

a
f x dx∫  = F(b) – F(a) ... (1)

( )
c

a
f x dx∫  = F(c) – F(a) ... (2)

and ( )
b

c
f x dx∫  = F(b) – F(c) ... (3)
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Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( )
c b b

a c a
f x dx f x dx b a f x dx+ = =∫ ∫ ∫

This proves the property P2.
Proof of P3  Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.
Therefore

( )
b

a
f x dx∫  = ( – )

a

b
f a b t dt− +∫

= ( – )
b

a
f a b t dt+∫  (by P1)

= ( – )
b

a
f a b x+∫ dx by P0

Proof of P4 Put t = a – x. Then dt = – dx. When x = 0, t = a and when x = a, t = 0. Now
proceed as in P3.

Proof of P5 Using P2, we have 
2 2

0 0
( ) ( ) ( )

a a a

a
f x dx f x dx f x dx= +∫ ∫ ∫ .

Let t = 2a – x in the second integral on the right hand side. Then
dt = – dx. When x = a, t = a and when x = 2a, t = 0. Also x = 2a – t.

Therefore, the second integral becomes
2

( )
a

a
f x dx∫  =

0
– (2 – )

a
f a t dt∫  = 

0
(2 – )

a
f a t dt∫  = 

0
(2 – )

a
f a x dx∫

Hence
2

0
( )

a
f x dx∫  =

0 0
( ) (2 )

a a
f x dx f a x dx+ −∫ ∫

Proof of P6 Using P5, we have 
2

0 0 0
( ) ( ) (2 )

a a a
f x dx f x dx f a x dx= + −∫ ∫ ∫        ... (1)

Now, if f (2a – x) = f (x), then (1) becomes
2

0
( )

a
f x dx∫  = 0 0 0

( ) ( ) 2 ( ) ,
a a a

f x dx f x dx f x dx+ =∫ ∫ ∫
and if f (2a – x) = – f (x), then (1) becomes

2

0
( )

a
f x dx∫  =  

0 0
( ) ( ) 0

a a
f x dx f x dx− =∫ ∫

Proof of P7 Using P2, we have

( )
a

a
f x dx

−∫  =
0

0
( ) ( )

a

a
f x dx f x dx

−
+∫ ∫ . Then

Let t = – x in the first integral on the right hand side.
dt = – dx. When x = – a, t = a and when
x = 0, t = 0. Also x = – t.



INTEGRALS         343

Therefore ( )
a

a
f x dx

−∫  =
0

0
– (– ) ( )

a

a
f t dt f x dx+∫ ∫

=
0 0

(– ) ( )
a a

f x dx f x dx+∫ ∫        (by P0)  ... (1)

(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes

0 0 0
( ) ( ) ( ) 2 ( )

a a a a

a
f x dx f x dx f x dx f x dx

−
= + =∫ ∫ ∫ ∫

(ii) If f is an odd function, then f (–x) = – f (x) and so (1) becomes

0 0
( ) ( ) ( ) 0

a a a

a
f x dx f x dx f x dx

−
= − + =∫ ∫ ∫

Example 30 Evaluate 
2 3
1

–x x dx
−∫

Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that
x3 – x ≥ 0 on [1, 2]. So by P2 we write

2 3
1

–x x dx
−∫  =

0 1 23 3 3
1 0 1
( – ) – ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 23 3 3
1 0 1
( – ) ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 24 2 2 4 4 2

– 1 0 1

– – –
4 2 2 4 4 2
x x x x x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ( )1 1 1 1 1 1– – – 4 – 2 – –
4 2 2 4 4 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
1 1 1 1 1 1– 2
4 2 2 4 4 2
+ + − + − +  = 

3 3 112
2 4 4
− + =

Example 31 Evaluate 24
–
4

sin x dx
π

π∫
Solution We observe that sin2 x is an even function. Therefore, by P7 (i), we get

24
–
4

sin x dx
π

π∫  = 24
0

2 sin x dx
π

∫
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= 4
0

(1 cos 2 )2
2

x dx
π −
∫  = 4

0
(1 cos 2 )x dx

π

−∫

=
4

0

1– sin 2
2

x x
π

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 
1 1– sin – 0 –

4 2 2 4 2
π π π⎛ ⎞ =⎜ ⎟

⎝ ⎠

Example 32 Evaluate 20

sin
1 cos

x x dx
x

π

+∫

Solution Let I = 20

sin
1 cos

x x dx
x

π

+∫ . Then, by P4, we have

I =  20

( ) sin ( )
1 cos ( )

x x dx
x

π π − π −
+ π −∫

= 20

( ) sin
1 cos

x x dx
x

π π −
+∫  = 20

sin I
1 cos

x dx
x

π
π −

+∫

or 2 I = 20

sin
1 cos

x dx
x

π
π

+∫

or I = 20

sin
2 1 cos

x dx
x

ππ
+∫

Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.
Therefore, (by P1) we get

I =
1

21

–
2 1

dt
t

−π
+∫ = 

1

212 1
dt

t−

π
+∫

=
1

20 1
dt

t
π

+∫  (by P7, 2
1since

1 t+  is even function)

=
21– 1 – 1 1

0
tan tan 1 – tan 0 – 0

4 4
t − π π⎡ ⎤⎡ ⎤ ⎡ ⎤π = π = π =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Example 33 Evaluate 
1 5 4
1

sin cosx x dx
−∫

Solution Let I = 
1 5 4
1
sin cosx x dx

−∫ . Let f(x) = sin5 x cos4 x. Then

f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i.e., f is an odd function.
Therefore, by P7 (ii), I = 0
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Example 34 Evaluate 
4

2
4 40

sin
sin cos

x dx
x x

π

+∫

Solution Let I = 
4

2
4 40

sin
sin cos

x dx
x x

π

+∫ ... (1)

Then, by P4

I =

4

2
0 4 4

sin ( )
2

sin ( ) cos ( )
2 2

x
dx

x x

π
π
−

π π
− + −

∫  = 
4

2
4 40

cos
cos sin

x dx
x x

π

+∫       ... (2)

Adding (1) and (2), we get

2I =
4 4

22 2
4 40 0 0

sin cos [ ]
2sin cos

x x dx dx x
x x

ππ π
+ π

= = =
+∫ ∫

Hence I =
4
π

Example 35 Evaluate 3

6
1 tan

dx
x

π

π +∫

Solution  Let I = 3 3

6 6

cos
1 tan cos sin

x dxdx
x x x

π π

π π
=

+ +∫ ∫ ... (1)

Then, by P3 I = 3

6

cos
3 6

cos sin
3 6 3 6

x dx

x x

π

π

π π⎛ ⎞+ −⎜ ⎟
⎝ ⎠

π π π π⎛ ⎞ ⎛ ⎞+ − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

= 3

6

sin
sin cos

x dx
x x

π

π +∫ ... (2)

Adding (1) and (2), we get

2I = [ ]3 3

6 6
3 6 6

dx x
π π

π π

π π π
= = − =∫ . Hence I

12
π

=
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Example 36 Evaluate 2
0

log sin x dx
π

∫

Solution Let I = 2
0

log sin x dx
π

∫
Then, by P4

I = 2 2
0 0

log sin log cos
2

x dx x dx
π π

π⎛ ⎞− =⎜ ⎟
⎝ ⎠∫ ∫

Adding the two values of I, we get

2I = ( )2
0

log sin logcosx x dx
π

+∫

= ( )2
0

log sin cos log 2 log 2x x dx
π

+ −∫ (by adding and subtracting log2)

= 2 2
0 0

log sin 2 log 2x dx dx
π π

−∫ ∫ (Why?)

Put 2x = t in the first integral. Then 2 dx = dt, when x = 0, t = 0 and when 
2

x π
= ,

t = π.

Therefore 2I =
0

1 log sin log 2
2 2

t dt
π π

−∫

= 2
0

2 log sin log 2
2 2

t dt
π

π
−∫  [by P6 as sin (π – t) = sin t)

= 2
0

log sin log 2
2

x dx
π

π
−∫  (by changing variable t to x)

= I log 2
2
π

−

Hence 2
0

log sin x dx
π

∫  =
– log 2
2
π

.
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EXERCISE 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. 22
0

cos x dx
π

∫ 2. 2
0

sin
sin cos

x dx
x x

π

+∫ 3.

3
2

2
3 30
2 2

sin

sin cos

x dx

x x

π

+
∫

4.
5

2
5 50

cos
sin cos

x dx
x x

π

+∫ 5.
5

5
| 2 |x dx

−
+∫ 6.

8

2
5x dx−∫

7.
1

0
(1 )nx x dx−∫ 8. 4

0
log (1 tan )x dx

π

+∫ 9.
2

0
2x x dx−∫

10. 2
0

(2log sin log sin 2 )x x dx
π

−∫ 11. 22
–
2

sin x dx
π

π∫

12.
0 1 sin

x dx
x

π

+∫ 13. 72
–
2

sin x dx
π

π∫ 14.
2 5
0

cos x dx
π

∫

15. 2
0

sin cos
1 sin cos

x x dx
x x

π
−

+∫ 16.
0

log (1 cos )x dx
π

+∫ 17. 0

a x dx
x a x+ −∫

18.
4

0
1x dx−∫

19. Show that 
0 0

( ) ( ) 2 ( )
a a

f x g x dx f x dx=∫ ∫ , if f and g are defined as f (x) = f(a – x)

and g(x) + g(a – x) = 4
Choose the correct answer in Exercises 20 and 21.

20. The value of 3 52

2

( cos tan 1)x x x x dx
π

−π
+ + +∫  is

(A) 0 (B) 2 (C) π (D) 1

21. The value of 2
0

4 3 sinlog
4 3 cos

x dx
x

π
⎛ ⎞+
⎜ ⎟+⎝ ⎠

∫  is

(A) 2 (B)
3
4

(C) 0 (D) –2
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Miscellaneous Examples

Example 37 Find cos 6 1 sin 6x x dx+∫
Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

Therefore
1
21cos 6 1 sin 6

6
x x dx t dt+ =∫ ∫

=
3 3
2 21 2 1( ) C = (1 sin 6 ) C

6 3 9
t x× + + +

Example 38 Find 

1
4 4

5
( )x x dx

x
−

∫

Solution We have 

1
1 4

4 4 3

5 4

1(1 )( )x x xdx dx
x x

−−
=∫ ∫

Put – 3
3 4

1 31 1– , so thatx t dx dt
x x

− = = =

Therefore 

1
14 4
4

5
( ) 1

3
x x dx t dt

x
−

=∫ ∫  = 
55
44

3
1 4 4 1C = 1 C
3 5 15

t
x

⎛ ⎞× + − +⎜ ⎟
⎝ ⎠

Example 39 Find 
4

2( 1) ( 1)
x dx

x x− +∫

Solution We have

4

2( 1)( 1)
x

x x− +
 = 3 2

1( 1)
1

x
x x x

+ +
− + −

= 2
1( 1)

( 1) ( 1)
x

x x
+ +

− +
... (1)

Now express 2
1

( 1)( 1)x x− +
 = 2

A B C
( 1) ( 1)

x
x x

+
+

− +
... (2)
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So 1 = A (x2 + 1) + (Bx + C) (x – 1)
= (A + B) x2 + (C – B) x + A – C

Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,

which give 1 1A , B C –
2 2

= = = . Substituting values of A, B and C in (2), we get

2
1

( 1) ( 1)x x− +
 = 2 2

1 1 1
2( 1) 2 ( 1) 2( 1)

x
x x x

− −
− + +

... (3)

Again, substituting (3) in (1), we have
4

2( 1) ( 1)
x

x x x− + +
 = 2 2

1 1 1( 1)
2( 1) 2 ( 1) 2( 1)

xx
x x x

+ + − −
− + +

Therefore
4 2

2 – 1
2

1 1 1log 1 – log ( 1) – tan C
2 2 4 2( 1) ( 1)

x xdx x x x x
x x x

= + + − + +
− + +∫

Example 40 Find 2
1log (log )

(log )
x dx

x
⎡ ⎤

+⎢ ⎥
⎣ ⎦
∫

Solution Let 2
1I log (log )

(log )
x dx

x
⎡ ⎤

= +⎢ ⎥
⎣ ⎦
∫

= 2
1log (log )

(log )
x dx dx

x
+∫ ∫

In the first integral, let us take 1 as the second function. Then integrating it by
parts, we get

I = 2
1log (log )

log (log )
dxx x x dx

x x x
− +∫ ∫

= 2log (log )
log (log )
dx dxx x

x x
− +∫ ∫ ... (1)

Again, consider 
log
dx

x∫ , take 1 as the second function and integrate it by parts,

we have 2
1 1– –

log log (log )
dx x x dx

x x xx
⎡ ⎤⎧ ⎫⎛ ⎞= ⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦
∫ ∫         ... (2)



350 MATHEMATICS

Putting (2) in (1), we get

2 2I log (log )
log (log ) (log )

x dx dxx x
x x x

= − − +∫ ∫  = log (log ) C
log

xx x
x

− +

Example 41 Find cot tanx x dx⎡ ⎤+⎣ ⎦∫
Solution We have

I = cot tanx x dx⎡ ⎤+⎣ ⎦∫ tan (1 cot )x x dx= +∫
Put tan x = t2, so that sec2 x dx = 2t dt

or dx =  4
2
1

t dt
t+

Then I = 2 4
1 21

(1 )
tt dt

t t
⎛ ⎞+⎜ ⎟ +⎝ ⎠∫

=
2 2 2

4 2
2

2

1 11 1
( 1)2 = 2 = 2

11 1 2

dt dt
t t tdt
t t tt t

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
⎛ ⎞+ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

Put 
1t
t

−  = y, so that 2
11
t

⎛ ⎞+⎜ ⎟
⎝ ⎠

 dt = dy. Then

I =
( )

– 1 – 1
22

1

2 2 tan C = 2 tan C
2 22

t
dy y t

y

⎛ ⎞−⎜ ⎟
⎝ ⎠= + +

+
∫

=
2

– 1 – 11 tan 12 tan C = 2 tan C
2 2 tan

t x
t x

⎛ ⎞− −⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Example 42 Find 
4

sin 2 cos 2

9 – cos (2 )

x x dx

x
∫

Solution Let 
4

sin 2 cos 2I
9 – cos 2

x x dx
x

= ∫
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Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt

Therefore –1 1 2
2

1 1 1 1I – – sin C sin cos 2 C
4 4 3 4 39 –

dt t x
t

−⎛ ⎞ ⎡ ⎤= = + = − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫

Example 43 Evaluate 
3
2
1

sin ( )x x dx
−

π∫

Solution Here f (x) = | x sin πx | = 
sin for 1 1

3sin for 1
2

x x x

x x x

π − ≤ ≤⎧
⎪
⎨
− π ≤ ≤⎪⎩

Therefore
3
2
1
| sin |x x dx

−
π∫  =

3
1 2
1 1

sin sinx x dx x x dx
−

π + − π∫ ∫

=
31
2

1 1
sin sinx x dx x x dx

−
π − π∫ ∫

Integrating both integrals on righthand side, we get

3
2
1
| sin |x x dx

−
π∫  =

31
2

2 2
1 1

– cos sin cos sinx x x x x x

−

π π − π π⎡ ⎤ ⎡ ⎤+ − +⎢ ⎥ ⎢ ⎥π ππ π⎣ ⎦ ⎣ ⎦

= 2 2
2 1 1 3 1⎡ ⎤− − − = +⎢ ⎥π π ππ π⎣ ⎦

Example 44 Evaluate 2 2 2 20 cos sin
x dx

a x b x
π

+∫

Solution Let I = 2 2 2 2 2 2 2 20 0

( )
cos sin cos ( ) sin ( )

x dx x dx
a x b x a x b x

π π π −
=

+ π − + π −∫ ∫ (using P4)

= 2 2 2 2 2 2 2 20 0cos sin cos sin
dx x dx

a x b x a x b x
π π

π −
+ +∫ ∫

= 2 2 2 20
I

cos sin
dx

a x b x
π

π −
+∫

Thus 2I = 2 2 2 20 cos sin
dx

a x b x
π

π
+∫
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or I = 2
2 2 2 2 2 2 2 20 0

2
2 2cos sin cos sin

dx dx
a x b x a x b x

π
ππ π

= ⋅
+ +∫ ∫

  (using P6)

=
2

2
2 2 20

sec
tan
x dx

a b x

π

π
+∫      (dividing numerator and denominator by cos2 x).

Put b tan x = t, so that b sec2 x dx = dt. Also, when x = 0, t = 0, and when 
2

x π
= ,

t → ∞.

Therefore,  
2

–1
2 20

0

1I tan 0
2 2

dt t
b b a a ab aba t

∞
∞π π π π π⎡ ⎤ ⎡ ⎤= = ⋅ = − =⎢ ⎥ ⎢ ⎥⎣ ⎦+ ⎣ ⎦∫ .

Miscellaneous Exercise on Chapter 7
Integrate the functions in Exercises 1 to 24.

1. 3
1

x x−
2.

1
x a x b+ + +

3.
2

1

x ax x−
 [Hint: Put x = 

a
t

]

4. 3
2 4 4

1

( 1)x x +
5. 11

32

1

x x+
      [Hint: 11 1 1

32 3 6

1 1

1x x x x
=

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

, put x = t6]

6. 2
5

( 1) ( 9)
x

x x+ +
7.

sin
sin ( )

x
x a− 8.

5 log 4 log

3 log 2 log

x x

x x
e e
e e

−
−

9. 2

cos

4 sin

x

x−
10.

8 8

2 2
sin cos

1 2sin cos
x

x x
−

−
11.

1
cos ( ) cos ( )x a x b+ +

12.
3

81

x

x−
13.

(1 ) (2 )

x

x x
e

e e+ +
14. 2 2

1
( 1) ( 4)x x+ +

15. cos3 x elog sinx 16. e3 logx (x4 + 1)– 1 17.  f ′ (ax + b) [f (ax + b)]n

18. 3

1

sin sin ( )x x + α 19.
1 1

1 1
sin cos
sin cos

x x
x x

− −

− −

−
+

, x ∈ [0, 1]

20.
1
1

x
x

−
+

21.
2 sin 2
1 cos2

xx e
x

+
+

22.
2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
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23. – 1 1tan
1

x
x

−
+

24.
2 2

4

1 log ( 1) 2 logx x x

x

⎡ ⎤+ + −⎣ ⎦

Evaluate the definite integrals in Exercises 25 to 33.

25.
2

1 sin
1 cos

x xe dx
x

π

π
−⎛ ⎞

⎜ ⎟+⎝ ⎠∫ 26. 4
4 40

sin cos
cos sin

x x dx
x x

π

+∫ 27.
2

2
2 20

cos
cos 4 sin

x dx
x x

π

+∫

28. 3

6

sin cos
sin 2
x x dx

x

π

π

+
∫ 29.

1

0 1
dx
x x+ −∫ 30. 4

0

sin cos
9 16 sin 2

x x dx
x

π
+

+∫

31. 12
0

sin 2 tan (sin )x x dx
π

−∫ 32.
0

tan
sec tan

x x dx
x x

π

+∫

33.
4

1
[ 1| | 2 | | 3 |]x x x dx− + − + −∫

Prove the following (Exercises 34 to 39)

34.
3

21

2 2log
3 3( 1)

dx
x x

= +
+∫ 35.

1

0
1xx e dx =∫

36.
1 17 4
1

cos 0x x dx
−

=∫ 37. 32
0

2sin
3

x dx
π

=∫

38. 34
0

2 tan 1 log 2x dx
π

= −∫ 39.
1 1
0
sin 1

2
x dx− π

= −∫
40. Evaluate 

1 2 3
0

xe dx−∫  as a limit of a sum.

Choose the correct answers in Exercises 41 to 44.

41.
x x

dx
e e−+∫  is equal to

(A) tan–1 (ex) + C (B) tan–1 (e–x) + C
(C) log (ex – e–x) + C (D) log (ex + e–x) + C

42. 2
cos2

(sin cos )
x dx

x x+∫  is equal to

(A)
–1 C

sin cosx x
+

+
(B) log |sin cos | Cx x+ +

(C) log |sin cos | Cx x− + (D) 2
1

(sin cos )x x+
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43. If f (a + b – x) = f (x), then ( )
b

a
x f x dx∫  is equal to

(A) ( )
2

b

a

a b f b x dx+
−∫ (B) ( )

2
b

a

a b f b x dx+
+∫

(C) ( )
2

b

a

b a f x dx−
∫ (D) ( )

2
b

a

a b f x dx+
∫

44. The value of 
1 1

20

2 1tan
1

x dx
x x

− −⎛ ⎞
⎜ ⎟
+ −⎝ ⎠∫  is

(A) 1 (B) 0 (C) –1 (D)
4
π

Summary
Integration is the inverse process of differentiation. In the differential calculus,
we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

Let F( ) ( )d x f x
dx

= . Then we write ( ) F ( ) Cf x dx x= +∫ . These integrals

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.
From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the y-axis.
Some properties of indefinite integrals are as follows:

1. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫
2. For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
More generally, if f1, f2, f3, ... , fn are functions and k1, k2, ... ,kn are real
numbers. Then

1 1 2 2[ ( ) ( ) ... ( )]n nk f x k f x k f x dx+ + +∫
= 1 1 2 2( ) ( ) ... ( )n nk f x dx k f x dx k f x dx+ + +∫ ∫ ∫
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Some standard integrals

(i)
1

C
1

n
n xx dx

n

+

= +
+∫ , n ≠ – 1. Particularly, Cdx x= +∫

(ii) cos sin Cx dx x= +∫ (iii) sin – cos Cx dx x= +∫
(iv) 2sec tan Cx dx x= +∫ (v) 2cosec – cot Cx dx x= +∫
(vi) sec tan sec Cx x dx x= +∫

(vii) cosec cot – cosec Cx x dx x= +∫ (viii)
1

2
sin C

1

dx x
x

−= +
−

∫

(ix)
1

2
cos C

1

dx x
x

−= − +
−

∫ (x) 1
2 tan C

1
dx x

x
−= +

+∫

(xi) 1
2 cot C

1
dx x

x
−= − +

+∫ (xii) Cx xe dx e= +∫

(xiii) C
log

x
x aa dx

a
= +∫ (xiv) 1

2
sec C

1

dx x
x x

−= +
−

∫

(xv) 1
2

cosec C
1

dx x
x x

−= − +
−

∫ (xvi)
1 log | | Cdx x
x

= +∫

Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form P( )
Q( )

x
x

,

where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0. If degree of the
polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that 1P ( )P( ) T ( )
Q( ) Q( )

xx x
x x
= + , where T(x) is a

polynomial in x and degree of P1 (x) is less than the degree of Q(x). T(x)

being polynomial can be easily integrated. 1P ( )
Q( )

x
x

 can be integrated by
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expressing 1P ( )
Q( )

x
x

 as the sum of partial fractions of the following type:

1.
( ) ( )

px q
x a x b

+
− −

=
A B

x a x b
+

− −
, a ≠ b

2. 2( )
px q
x a

+
− = 2

A B
( )x a x a

+
− −

3.
2

( ) ( ) ( )
px qx r

x a x b x c
+ +

− − − =
A B C

x a x b x c
+ +

− − −

4.
2

2( ) ( )
px qx r

x a x b
+ +

− − = 2
A B C

( )x a x bx a
+ +

− −−

5.
2

2( ) ( )
px qx r

x a x bx c
+ +

− + + = 2
A B + Cx

x a x bx c
+

− + +

where x2 + bx + c can not be factorised further.
Integration by substitution
A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. When the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. Using substitution technique, we obtain the following standard
integrals.

(i) tan log sec Cx dx x= +∫ (ii) cot log sin Cx dx x= +∫
(iii) sec log sec tan Cx dx x x= + +∫
(iv) cosec log cosec cot Cx dx x x= − +∫

Integrals of some special functions

(i) 2 2
1 log C

2
dx x a

a x ax a
−

= +
+−∫

(ii) 2 2
1 log C

2
dx a x

a a xa x
+

= +
−−∫ (iii) 1

2 2
1 tan Cdx x
a ax a

−= +
+∫
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(iv) 2 2
2 2

log Cdx x x a
x a

= + − +
−

∫ (v)
1

2 2
sin Cdx x

aa x
−= +

−
∫

(vi)
2 2

2 2
log | | Cdx x x a

x a
= + + +

+
∫

Integration by parts
For given functions f1 and  f2, we have

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )df x f x dx f x f x dx f x f x dx dx
dx
⎡ ⎤⋅ = − ⋅⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ , i.e., the

integral of the product of two functions = first function × integral of the
second function – integral of {differential coefficient of the first function ×
integral of the second function}. Care must be taken in choosing the first
function and the second function. Obviously, we must take that function as
the second function whose integral is well known to us.

[ ( ) ( )] ( ) Cx xe f x f x dx e f x dx′+ = +∫ ∫
Some special types of integrals

(i)
2

2 2 2 2 2 2log C
2 2
x ax a dx x a x x a− = − − + − +∫

(ii)
2

2 2 2 2 2 2log C
2 2
x ax a dx x a x x a+ = + + + + +∫

(iii)
2

2 2 2 2 1sin C
2 2
x a xa x dx a x

a
−− = − + +∫

(iv) Integrals of the types 2 2
ordx dx

ax bx c ax bx c+ + + +
∫ ∫ can be

transformed into standard form by expressing

ax2 + bx + c = 
2 2

2
22 4

b c b c ba x x a x
a a a a a

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞+ + = + + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

(v) Integrals of the types 2 2
orpx q dx px q dx

ax bx c ax bx c

+ +
+ + + +

∫ ∫ can be
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transformed into standard form by expressing

2A ( ) B A (2 ) Bdpx q ax bx c ax b
dx

+ = + + + = + + , where A and B are

determined by comparing coefficients on both sides.

We have defined ( )
b

a
f x dx∫  as the area of the region bounded by the curve

y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a

given point in [a, b]. Then ( )
x

a
f x dx∫  represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
First fundamental theorem of integral calculus

Let the area function be defined by A(x) = ( )
x

a
f x dx∫  for all x ≥ a, where

the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all
x ∈ [a, b].
Second fundamental theorem of integral calculus
Let f be a continuous function of x defined on the closed interval [a, b] and

let F be another function such that F( ) ( )d x f x
dx

=  for all x in the domain of

f, then [ ]( ) F( ) C F ( ) F ( )
b b

aa
f x dx x b a= + = −∫ .

This is called the definite integral of f over the range [a, b], where a and b
are called the limits of integration, a being the lower limit and b the
upper limit.

— —
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Fig 8.1

One should study Mathematics because it is only through Mathematics that
nature can be conceived in harmonious form. – BIRKHOFF 

8.1  Introduction
In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f (x), the ordinates x = a,
x = b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves,
area between lines and arcs of circles, parabolas and
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.
8.2 Area under Simple Curves
In the previous chapter, we have studied
definite integral as the limit of a sum and
how to evaluate definite integral using
Fundamental Theorem of Calculus. Now,
we consider the easy and intuitive way of
finding the area bounded by the curve
y = f (x), x-axis and the ordinates x = a and
x = b. From Fig 8.1, we can think of area
under the curve as composed of large
number of very thin vertical strips. Consider
an arbitrary strip of height y and width dx,
then dA (area of the elementary strip)= ydx,
where, y = f (x).

Chapter 8
APPLICATION OF INTEGRALS

A.L. Cauchy
(1789-1857)
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Fig  8.2

This area is called the elementary area which is located at an arbitrary position
within the region which is specified by some value of x between a and b. We can think
of the total area A of the region between x-axis, ordinates x = a, x = b and the curve
y = f (x) as the result of adding up the elementary areas of thin strips across the region
PQRSP. Symbolically, we express

A = A ( )
b b b

a a a
d ydx f x dx= =∫ ∫ ∫

The area A of the region bounded by
the curve x = g (y), y-axis and the lines y  =  c,
y = d is given by

A = ( )
d d

c c
xdy g y dy=∫ ∫

Here, we consider horizontal strips as shown in
the Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since
f (x) < 0 from x = a to x = b, as shown in Fig 8.3, the area bounded by the curve, x-axis
and the ordinates x = a, x = b come out to be negative. But, it is only the numerical
value of the area which is taken into consideration. Thus, if the area is negative, we

take its absolute value, i.e., ( )
b

a
f x dx∫ .

Fig 8.3

Generally, it may happen that some portion of the curve is above x-axis and some is
below the x-axis as shown in the Fig 8.4. Here, A1 < 0 and A2 > 0. Therefore, the area
A bounded by the curve y = f (x), x-axis and the ordinates x = a and x = b is given
by A = |A1| + A2.
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Example 1 Find the area enclosed by the circle x2 + y2 = a2.

Solution From Fig 8.5, the whole area enclosed
by the given circle

= 4 (area of the region AOBA bounded by
the curve, x-axis and the ordinates x = 0 and
x = a) [as the circle is symmetrical about both
x-axis and y-axis]

= 
0

4
a

ydx∫  (taking vertical strips)

= 2 2

0
4

a
a x dx−∫

Since x2 + y2 = a2 gives     y = 2 2a x± −

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get
the whole area enclosed by the given circle

= 
2

2 2 –1

0

4 sin
2 2

a
x a xa x

a
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

= 
2

14 0 sin 1 0
2 2
a a −⎡ ⎤⎛ ⎞
× + −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

 =  
2

24
2 2
a a

⎛ ⎞ π⎛ ⎞=π⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Fig 8.5

Fig  8.4
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the
region enclosed by circle

= 
0

4
a
xdy∫  = 2 2

0
4

a
a y dy−∫ (Why?)

= 
2

2 2 1

0

4 sin
2 2

a
ay ya y

a
−⎡ ⎤

− +⎢ ⎥
⎣ ⎦

= 
2

14 0 sin 1 0
2 2

aa −⎡ ⎤⎛ ⎞
× + −⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

= 
2

24
2 2

a aπ
= π

Example 2 Find the area enclosed by the ellipse 
2 2

2 2 1x y
a b

+ =

Solution From Fig 8.7, the area of the region ABA′B′A bounded by the ellipse

= 
in

4
, 0,

area of the region AOBA the first quadrant bounded
by thecurve x axis and theordinates x x a
⎛ ⎞
⎜ ⎟− = =⎝ ⎠
(as the ellipse is symmetrical about both x-axis and y-axis)

= 
0

4 (taking verticalstrips)
a

ydx∫

Now 
2 2

2 2
x y
a b

+  = 1 gives 2 2by a x
a

=± − , but as the region AOBA lies in the first

quadrant, y is taken as positive. So, the required area is

= 2 2
0

4
a b a x dx

a
−∫

= 
2

2 2 –1

0

4 sin
2 2

a
b x a xa x

a a
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

 (Why?)

= 
2

14 0 sin 1 0
2 2

b a a
a

−⎡ ⎤⎛ ⎞
× + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

= 
24

2 2
b a ab

a
π
=π

Fig 8.6

Fig 8.7
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Alternatively, considering horizontal strips as
shown in the Fig 8.8, the area of the ellipse is

= 
0

4∫
b
xdy  = 2 2

0

4 −∫
ba b y dy

b
 (Why?)

= 
2

2 2 –1

0

4 sin
2 2

b
a y b yb y

b b
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

= 
2

–14 0 sin 1 0
2 2

a b b
b
⎡ ⎤⎛ ⎞

× + −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

= 
24

2 2
a b ab

b
π
=π

8.2.1  The area of the region bounded by a curve and a line
In this subsection, we will find the area of the region bounded by a line and a circle,
a line and a parabola, a line and an ellipse. Equations of above mentioned curves will be
in their standard forms only as the cases in other forms go beyond the scope of this
textbook.

Example 3 Find the area of the region bounded
by the curve y = x2 and the line y = 4.

Solution Since the given curve represented by
the equation y = x2 is a parabola symmetrical
about y-axis only, therefore, from Fig 8.9, the
required area of the region AOBA is given by

4

0
2 xdy∫  =

area of theregion BONBbounded bycurve, axis
2

and thelines 0and = 4
y

y y
−⎛ ⎞

⎜ ⎟=⎝ ⎠

= 
4

0
2 ydy∫  = 

43
2

0

22
3

y
⎡ ⎤

× ⎢ ⎥
⎢ ⎥⎣ ⎦

 
4 328
3 3

= × = (Why?)

Here, we have taken horizontal strips as indicated in the Fig 8.9.

Fig 8.8

Fig 8.9
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Alternatively, we may consider the vertical
strips like PQ as shown in the Fig 8.10 to
obtain the area of the region AOBA. To this
end, we solve the equations x2 = y and y = 4
which gives x = –2 and x = 2.
Thus, the region AOBA may be stated as
the region bounded by the curve y = x2, y = 4
and the ordinates x = –2 and x = 2.
Therefore, the area of the region AOBA

= 
2

2
ydx

−∫
  [ y = ( y-coordinate of Q) – (y-coordinate of P) = 4 – x2 ]

= ( )2 2
0

2 4 x dx−∫ (Why?)

=
23

0

2 4
3
xx

⎡ ⎤
−⎢ ⎥

⎣ ⎦
 

82 4 2
3

⎡ ⎤= × −⎢ ⎥⎣ ⎦
32
3

=

Remark From the above examples, it is inferred that we can consider either vertical
strips or horizontal strips for calculating the area of the region. Henceforth, we shall
consider either of these two, most preferably vertical strips.

Example 4 Find the area of the region in the first quadrant enclosed by the x-axis,
the line y = x, and the circle x2 + y2 = 32.
Solution The given equations are

y = x ... (1)
and x2 + y2 = 32 ... (2)
Solving (1) and (2), we find that the line

and the circle meet at B(4, 4) in the first
quadrant (Fig 8.11). Draw perpendicular
BM to the x-axis.

Therefore, the required area = area of
the region OBMO + area of the region
BMAB.

Now, the area of the region OBMO

= 
4 4

0 0
ydx xdx=∫ ∫    ... (3)

= 
42
0

1
2

x⎡ ⎤⎣ ⎦ = 8

Fig 8.10

Fig 8.11

Y

O

A

y x=

Y'

B

M

(4 4),

XX'

(4 2 0),
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O

F ( o)ae,

B

Y

Y′

B'

S

R

XX′

x ae=

Again, the area of the region BMAB

= 
4 2

4
ydx∫ = 

4 2 2
4

32 x dx−∫

= 
4 2

2 –1

4

1 132 32 sin
2 2 4 2

xx x⎡ ⎤− + × ×⎢ ⎥⎣ ⎦

= –1 –11 1 4 1 14 2 0 32 sin 1 32 16 32 sin
2 2 2 2 2

⎛ ⎞⎛ ⎞× + × × − − + × ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= 8 π – (8 + 4π) = 4π – 8 ... (4)
Adding (3) and (4), we get, the required area = 4π.

Example 5 Find the area bounded by the ellipse 
2 2

2 2 1x y
a b

+ =  and the ordinates x = 0

and x = ae, where, b2 = a2 (1 – e2) and e < 1.

Solution The required area (Fig 8.12) of the region BOB′RFSB is enclosed by the
ellipse and the lines x = 0 and x = ae.

Note that the area of the region BOB′RFSB

= 
0

2
ae

ydx∫  = 2 2
0

2
aeb a x dx

a
−∫

= 
2

2 2 –1

0

2 sin
2 2

ae
b x a xa x

a a
⎡ ⎤

− +⎢ ⎥
⎣ ⎦

= 2 2 2 2 –12 sin
2

b ae a a e a e
a
⎡ ⎤− +⎢ ⎥⎣ ⎦

= 2 –11 sinab e e e⎡ ⎤− +⎢ ⎥⎣ ⎦

EXERCISE 8.1
1. Find the area of the region bounded by the curve y2 = x and the lines x = 1,

x = 4 and the x-axis.
2. Find the area of the region bounded by y2 = 9x, x = 2, x = 4 and the x-axis in the

first quadrant.

Fig 8.12
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3. Find the area of the region bounded by x2 = 4y, y = 2, y = 4 and the y-axis in the
first quadrant.

4. Find the area of the region bounded by the ellipse 
2 2

1
16 9
x y

+ = .

5. Find the area of the region bounded by the ellipse 
2 2

1
4 9
x y

+ = .

6. Find the area of the region in the first quadrant enclosed by x-axis, line x = 3 y
and the circle x2 + y2 = 4.

7. Find the area of the smaller part of the circle x2 + y2 = a2 cut off by the line 
2

ax= .

8. The area between x = y2 and x = 4 is divided into two equal parts by the line
x = a, find the value of a.

9. Find the area of the region bounded by the parabola y = x2 and y = x .

10. Find the area bounded by the curve x2 = 4y and the line x = 4y – 2.
11. Find the area of the region bounded by the curve y2 = 4x and the line x = 3.

Choose the correct answer in the following Exercises 12 and 13.
12. Area lying in the first quadrant and bounded by the circle x2 + y2 = 4 and the lines

x = 0 and x = 2 is

(A) π (B)
2
π

(C)
3
π

(D)
4
π

13. Area of the region bounded by the curve y2 = 4x, y-axis and the line y = 3 is

(A) 2 (B)
9
4

(C)
9
3

(D)
9
2

8.3  Area between Two Curves
Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by
cutting the region into a large number of small strips of elementary area and then
adding up these elementary areas. Suppose we are given two curves represented by
y = f (x), y = g (x), where f (x) ≥ g(x) in [a, b] as shown in Fig 8.13. Here the points of
intersection of these two curves are given by x = a and x = b obtained by taking
common values of y from the given equation of two curves.

For setting up a formula for the integral, it is convenient to take elementary area in
the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height
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y f x= ( )

X

Y

y g x= ( )

x a= x c=

y g x= ( )

y f x= ( )

x b=

A

B R
C

D Q

O

P

X′

Y′

f (x) – g (x) and width dx so that the elementary area

Fig 8.13

Fig 8.14

dA = [f (x) – g(x)] dx, and the total area A can be taken as

A = [ ( ) ( )]
b

a
f x g x dx−∫

Alternatively,
A = [area bounded by y = f (x), x-axis and the lines x = a, x = b]

– [area bounded by y = g (x), x-axis and the lines x = a, x = b]

= ( ) ( )
b b

a a
f x dx g x dx−∫ ∫  = [ ]( ) ( ) ,

b

a
f x g x dx−∫ where f (x) ≥ g (x) in [a, b]

If f (x) ≥ g (x) in [a, c] and f (x) ≤ g (x) in [c, b], where a < c < b as shown in the
Fig 8.14, then the area of the regions bounded by curves can be written as
Total Area = Area of the region ACBDA + Area of the region BPRQB

 = [ ] [ ]( ) ( ) ( ) ( )
c b

a c
f x g x dx g x f x dx− + −∫ ∫
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Y

O

P (4, 4)

C (4, 0)

Y

X X
Q (8, 0)

Fig 8.16

Example 6 Find the area of the region bounded by the two parabolas y = x2 and y2 = x.

Solution The point of intersection of these two
parabolas are O (0, 0) and A (1, 1) as shown in
the Fig 8.15.
Here, we can set y 2 = x or y = x = f(x) and y = x2

= g (x), where, f (x) ≥ g (x) in [0, 1].

Therefore, the required area of the shaded region

= [ ]1

0
( ) ( )f x g x dx−∫

= 
1 2
0

x x dx⎡ ⎤−⎣ ⎦∫
13 3

2

0

2
3 3

xx
⎡ ⎤

= −⎢ ⎥
⎢ ⎥⎣ ⎦

= 
2 1 1
3 3 3
− =

Example 7 Find the area lying above x-axis and included between the circle
x2 + y2 = 8x and the parabola y2 = 4x.

Solution The given equation of the circle x2 + y2 = 8x can be expressed as
(x – 4)2 + y2 = 16. Thus, the centre of the
circle is (4, 0) and radius is 4. Its intersection
with the parabola y2 = 4x gives

x2 + 4x = 8x
or x2 – 4x = 0
or x (x – 4) = 0
or x = 0, x = 4

Thus, the points of intersection of these
two curves are O(0, 0) and P(4,4) above the
x-axis.

From the Fig 8.16, the required area of
the region OPQCO included between these
two curves above x-axis is

= (area of the region OCPO) + (area of the region PCQP)

= 
4 8

0 4
ydx ydx+∫ ∫

= 
4 8 2 2
0 4

2 4 ( 4)x dx x dx+ − −∫ ∫    (Why?)

Fig 8.15
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= 
43 4

2 22

00

22 4 , where, 4
3

x t dt x t
⎡ ⎤

× + − − =⎢ ⎥
⎢ ⎥⎣ ⎦

∫ (Why?)

= 
4

2 2 2 –1

0

32 14 4 sin
3 2 2 4

t tt⎡ ⎤+ − + × ×⎢ ⎥⎣ ⎦

= 2 –132 4 10 4 sin 1
3 2 2

⎡ ⎤+ × + × ×⎢ ⎥⎣ ⎦
32 320 8 4
3 2 3

π⎡ ⎤= + + × = + π⎢ ⎥⎣ ⎦
 = 

4 (8 3 )
3

+ π

Example 8 In Fig 8.17, AOBA is the part of the ellipse 9x2 + y2 = 36 in the first
quadrant such that OA = 2 and OB = 6. Find the area between the arc AB and the
chord AB.

Solution Given equation of the ellipse 9x2 + y2 = 36 can be expressed as 
2 2

1
4 36
x y

+ =  or

2 2

2 2 1
2 6
x y

+ = and hence, its shape is as given in Fig 8.17.

Accordingly, the equation of the chord AB is

y – 0 =
6 0 ( 2)
0 2

x−
−

−
or y = – 3(x – 2)
or y = – 3x + 6
Area of the shaded region as shown in the Fig 8.17.

= 
2 22
0 0

3 4 (6 3 )x dx x dx− − −∫ ∫ (Why?)

= 
22 2

2 –1

0 0

4 33 4 sin 6
2 2 2 2
x x xx x

⎡ ⎤⎡ ⎤− + − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= –12 123 0 2sin (1) 12
2 2
⎡ ⎤ ⎡ ⎤× + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

π3 2 6
2

= × × −  = 3π – 6

Fig 8.17
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Example 9 Using integration find the area of region bounded by the triangle whose
vertices are (1, 0), (2, 2) and (3, 1).

Solution Let A(1, 0), B(2, 2) and C (3, 1) be
the vertices of a triangle ABC (Fig 8.18).
Area of ΔABC

= Area of ΔABD  + Area of trapezium
    BDEC – Area of ΔAEC

Now equation of the sides AB, BC and
CA are given by

y = 2 (x – 1), y = 4 – x, y =
1
2

 (x – 1), respectively.

Hence, area of Δ ABC =
2 3 3

1 2 1

12 ( 1) (4 )
2

xx dx x dx dx−
− + − −∫ ∫ ∫

=
2 3 32 2 2

1 2 1

12 4
2 2 2 2
x x xx x x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

− + − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=
2 2 22 1 3 22 2 1 4 3 4 2

2 2 2 2
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− − − + × − − × −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

–
21 3 13 1

2 2 2
⎡ ⎤⎛ ⎞ ⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

= 
3
2

Example 10 Find the area of the region enclosed between the two circles: x2 + y2  = 4
and (x – 2)2 + y2 = 4.
Solution Equations of the given circles are

x2 + y2 = 4 ... (1)
and (x – 2)2 + y2 = 4 ... (2)

Equation (1) is a circle with centre O at the
origin and radius 2. Equation (2) is a circle with
centre C (2, 0) and radius 2. Solving equations
(1) and (2), we have

(x –2)2 + y2 = x2 + y2

or x2 – 4x + 4 + y2 = x2 + y2

or x = 1 which gives y = 3±
Thus, the points of intersection of the given

circles are A(1, 3 ) and A′(1, – 3 ) as shown in
the Fig 8.19.

Fig 8.18

Fig 8.19
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Required area of the enclosed region OACA′O between circles
= 2 [area of the region ODCAO] (Why?)
= 2 [area of the region ODAO + area of the region DCAD]

= 
1 2

0 1
2 y dx y dx⎡ ⎤+⎢ ⎥⎣ ⎦∫ ∫

= 
1 22 2
0 1

2 4 ( 2) 4x dx x dx⎡ ⎤− − + −⎢ ⎥⎣ ⎦∫ ∫ (Why?)

= 
1

2 –1

0

1 1 22 ( 2) 4 ( 2) 4sin
2 2 2

xx x⎡ ⎤−⎛ ⎞− − − + × ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    + 
2

2 –1

1

1 12 4 4sin
2 2 2

xx x⎡ ⎤− + ×⎢ ⎥⎣ ⎦

= 
1 2

2 –1 2 –1

10

2( 2) 4 ( 2) 4sin 4 4sin
2 2

x xx x x x⎡ ⎤−⎛ ⎞ ⎡ ⎤− − − + + − +⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

= –1 1 –1 11 13 4sin 4sin ( 1) 4sin 1 3 4sin
2 2

− −⎡ ⎤⎛ ⎞−⎛ ⎞ ⎡ ⎤− + − − + − −⎜ ⎟⎢ ⎥⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠⎣ ⎦

= 3 4 4 4 3 4
6 2 2 6

⎡ ⎤π π π π⎛ ⎞ ⎡ ⎤− − × + × + × − − ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

= 2 23 2 2 3
3 3
π π⎛ ⎞ ⎛ ⎞− − + π + π − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= 
8 2 3
3
π
−

EXERCISE 8.2
1. Find the area of the circle 4x2 + 4y2 = 9 which is interior to the parabola x2 = 4y.
2. Find the area bounded by curves (x  – 1)2 + y2 = 1 and  x2 + y2 = 1.
3. Find the area of the region bounded by the curves y = x2 + 2,  y = x, x = 0 and

x = 3.
4. Using integration find the area of region bounded by the triangle whose vertices

are (– 1, 0), (1, 3) and (3, 2).
5. Using integration find the area of the triangular region whose sides have the

equations y = 2x + 1, y = 3x + 1 and x = 4.
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Choose the correct answer in the following exercises 6 and 7.

6. Smaller area enclosed by the circle x2 + y2 = 4 and the line x + y = 2 is
 (A) 2 (π – 2) (B) π – 2 (C) 2π – 1 (D) 2 (π + 2)

7. Area lying between the curves y2 = 4x and y = 2x is

(A)
2
3 (B)

1
3 (C)

1
4 (D)

3
4

Miscellaneous Examples
Example 11 Find the area of the parabola y2 = 4ax bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola
y2 = 4ax is at origin (0, 0). The equation of the
latus rectum LSL′ is x = a. Also, parabola is
symmetrical about the x-axis.
The required area of the region OLL′O

= 2 (area of the region OLSO)

= 
0

2
a

ydx∫  = 
0

2 4
a

ax dx∫

= 
0

2 2
a

a xdx× ∫

= 
3
2

0

24
3

a

a x
⎡ ⎤

× ⎢ ⎥
⎢ ⎥⎣ ⎦

= 
3
28

3
a a
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 = 28
3

a

Example 12 Find the area of the region bounded
by the line y = 3x + 2, the x-axis and the ordinates
x = –1 and x = 1.
Solution As shown in the Fig 8.21, the line

y = 3x + 2 meets x-axis at x = 
2

3
−

 and its graph

lies below x-axis for
21,

3
x −⎛ ⎞∈ −⎜ ⎟⎝ ⎠

and above

x-axis for 
2 ,1

3
x −⎛ ⎞∈⎜ ⎟⎝ ⎠

.
Fig 8.21

X′
O

Y′

X

Y

S

L

L'

( , 0)a

Fig 8.20
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Fig 8.23

The required area = Area of the region ACBA + Area of the region ADEA

=
2 1

3
21

3

(3 2) (3 2)x dx x dx
−

−−
+ + +∫ ∫

=

2 12 23

21
3

3 32 2
2 2
x xx x

−

−−

⎡ ⎤ ⎡ ⎤
+ + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 = 

1 25 13
6 6 3
+ =

Example 13 Find the area bounded by
the curve y = cos x between x = 0 and
x = 2π.

Solution From the Fig 8.22, the required
area = area of the region OABO + area
of the region BCDB + area of the region
DEFD.

Thus, we have the required area

= 
3ππ

2π22
3ππ0
22

cos cos cosxdx xdx xdx+ +∫ ∫ ∫

= [ ] [ ] [ ]
3

22 2
30

2 2

sin sin sinx x x
π π

π

π π
+ +

= 1 + 2 + 1 = 4

Example 13 Prove that the curves y2 = 4x and x2 = 4y
divide the area of the square bounded by x = 0, x = 4,
y = 4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the
parabolas y2 = 4x and x2 = 4y are (0, 0) and (4, 4) as

Fig 8.22
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Y'

R

O
XX'

x = 2

T S

P (0,1) x = 1

Y

Q(1, 2)

shown in the Fig 8.23.
Now, the area of the region OAQBO bounded by curves y2 = 4x and x2 = 4y.

=
24

0
2

4
xx dx

⎛ ⎞
−⎜ ⎟⎝ ⎠∫  = 

43 3
2

0

22
3 12

xx
⎡ ⎤

× −⎢ ⎥
⎢ ⎥⎣ ⎦

=
32 16 16
3 3 3
− = ... (1)

Again, the area of the region OPQAO bounded by the curves x2 = 4y, x = 0, x = 4
and x-axis

=
24 43

0 0

1 16
4 12 3
x dx x⎡ ⎤= =⎣ ⎦∫ ... (2)

Similarly, the area of the region OBQRO bounded by the curve y2 = 4x, y-axis,
y = 0 and y = 4

=
24 4 43

0 0 0

1 16
4 12 3
yxdy dy y⎡ ⎤= = =⎣ ⎦∫ ∫ ... (3)

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area of
the region OPQAO = area of the region OBQRO, i.e., area bounded by parabolas
y2 = 4x and x2 = 4y divides the area of the square in three equal parts.

Example 14 Find the area of the region

{(x, y) : 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 0 ≤ x ≤ 2}

Solution Let us first sketch the region whose area is to
be found out. This region is the intersection of the
following regions.

A1 = {(x, y) : 0 ≤ y ≤ x2 + 1},
A2 = {(x, y) : 0 ≤ y ≤ x + 1}

and A3 = {(x, y) : 0 ≤ x ≤ 2}

The points of intersection of y = x2 + 1 and y = x + 1 are points P(0, 1) and Q(1, 2).
From the Fig 8.24, the required region is the shaded region OPQRSTO whose area

= area of the region OTQPO + area of the region TSRQT

=
1 22
0 1
( 1) ( 1)x dx x dx+ + +∫ ∫ (Why?)

Fig 8.24



APPLICATION OF INTEGRALS         375

=
1 23 2

103 2
x xx x

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
+ + +⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦

= ( )1 11 0 2 2 1
3 2

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + + − +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦⎣ ⎦
 = 

23
6

Miscellaneous Exercise on Chapter 8

1. Find the area under the given curves and given lines:
(i) y = x2, x = 1, x = 2 and x-axis
(ii) y = x4, x = 1, x = 5 and x-axis

2. Find the area between the curves y = x and y = x2.
3. Find the area of the region lying in the first quadrant and bounded by y = 4x2,

x = 0, y = 1 and y = 4.

4. Sketch the graph of y = 3x +  and evaluate 
0

6
3

−
+∫ x dx .

5. Find the area bounded by the curve y = sin x between x = 0 and x = 2π.
6. Find the area enclosed between the parabola y2 = 4ax and the line y = mx.
7. Find the area enclosed by the parabola 4y = 3x2 and the line 2y = 3x + 12.

8. Find the area of the smaller region bounded by the ellipse 
2 2

1
9 4
x y

+ =  and the

line 1
3 2
x y
+ = .

9. Find the area of the smaller region bounded by the ellipse 
2 2

2 2 1x y
a b

+ =  and the

line 1x y
a b
+ = .

10. Find the area of the region enclosed by the parabola x2 = y, the line y = x + 2 and
the x-axis.

11. Using the method of integration find the area bounded by the curve 1x y+ = .

[Hint: The required region is bounded by lines x + y = 1, x– y = 1, – x + y = 1 and
 – x – y = 1].
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12. Find the area bounded by curves {(x, y) : y ≥ x2 and y = | x |}.

13. Using the method of integration find the area of the triangle ABC, coordinates of
whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines:

2x + y = 4, 3x – 2y = 6 and x – 3y + 5 = 0

15. Find the area of the region {(x, y) : y2 ≤ 4x, 4x2 + 4y2 ≤ 9}

Choose the correct answer in the following Exercises from 16 to 20.

16. Area bounded by the curve y = x3, the x-axis and the ordinates x = – 2 and x = 1 is

(A) – 9 (B)
15
4
−

(C)
15
4

(D)
17
4

17. The area bounded by the curve y = x | x | , x-axis and the ordinates x = – 1 and
x = 1 is given by

(A) 0 (B)
1
3

(C)
2
3

(D)
4
3

[Hint : y = x2 if x > 0 and y = – x2 if x < 0].

18. The area of the circle x2 + y2 = 16 exterior to the parabola y2 = 6x is

(A)
4 (4 3)
3

π − (B)
4 (4 3)
3

π + (C)
4 (8 3)
3

π− (D)
4 (8 3)
3

π+

19. The area bounded by the y-axis, y = cos x and y = sin x when 0
2

x π
≤ ≤  is

(A) 2 ( 2 1)− (B) 2 1− (C) 2 1+ (D) 2

Summary
The area of the region bounded by the curve y = f (x), x-axis and the lines

x = a and x = b (b > a) is given by the formula: Area ( )
b b

a a
ydx f x dx= =∫ ∫ .

The area of the region bounded by the curve x = φ (y), y-axis and the lines

y = c, y = d is given by the formula: Area ( )
d d

c c
xdy y dy= = φ∫ ∫ .
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The area of the region enclosed between two curves y = f (x), y = g (x) and
the lines x = a, x = b is given by the formula,

[ ]Area ( ) ( )
b

a
f x g x dx= −∫ , where, f (x) ≥ g (x) in [a, b]

If f (x) ≥ g (x) in [a, c] and f (x) ≤  g (x) in [c, b], a < c < b, then

[ ] [ ]Area ( ) ( ) ( ) ( )
c b

a c
f x g x dx g x f x dx= − + −∫ ∫ .

Historical Note
The origin of the Integral Calculus goes back to the early period of development

of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archimedes
(300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century.
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol ‘∫’.
In 1696, he followed a suggestion made by J. Bernoulli and changed this article to
Calculus integrali. This corresponded to Newton’s inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with Differential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.
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— —

However, this justification by the concept of limit was only developed in the
works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the
following quotation by Lie Sophie’s:

“It may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis .... The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz”.
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He who seeks for methods without having a definite problem in mind
seeks for the most part in vain. – D. HILBERT 

9.1  Introduction
In Class XI and in Chapter 5 of the present book, we
discussed how to differentiate a given function f with respect
to an independent variable, i.e., how to find f ′(x) for a given
function f at each x in its domain of definition. Further, in
the chapter on Integral Calculus, we discussed  how to find
a function f whose derivative is the function g, which may
also be formulated as follows:

For a given function g, find a function f such that

dy
dx

 = g (x), where y = f (x)                   ... (1)

An equation of the form (1) is known as a differential
equation. A formal definition will be given later.

These equations arise in a variety of applications, may it be in Physics, Chemistry,
Biology, Anthropology, Geology,  Economics etc. Hence, an indepth study of differential
equations has assumed prime importance in all modern scientific investigations.

In this chapter, we will study some basic concepts related to differential equation,
general and particular solutions of a differential equation, formation of differential
equations, some methods to solve a first order - first degree differential equation and
some applications of differential equations in different areas.

9.2  Basic Concepts
We are already familiar with the equations of the type:

x2 – 3x + 3 = 0 ... (1)
sin x + cos x = 0 ... (2)

x + y = 7 ... (3)

Chapter 9
DIFFERENTIAL  EQUATIONS

Henri Poincare
(1854-1912 )
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Let us consider the equation:

dyx y
dx

+  = 0 ... (4)

We see that equations (1), (2) and (3) involve independent and/or dependent variable
(variables) only but equation (4) involves variables as well as derivative of the dependent
variable y with respect to the independent variable x. Such an equation is called a
differential equation.

In general, an equation involving  derivative (derivatives) of the dependent variable
with respect to independent variable (variables) is called a differential equation.

A differential equation involving derivatives of the dependent variable with respect
to only one independent variable is called an ordinary differential equation, e.g.,

32

22 d y dy
dxdx

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 = 0  is an ordinary differential equation .... (5)

Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.
Now onward, we will use the term ‘differential equation’ for ‘ordinary differential
equation’.

Note

1. We shall prefer to use the following notations for derivatives:
2 3

2 3, ,dy d y d yy y y
dx dx dx

′ ′′ ′′′= = =

2. For derivatives of higher order, it will be inconvenient  to use so many dashes

as supersuffix therefore, we use the notation yn for nth order derivative 
n

n
d y
dx

.

9.2.1.  Order of a differential equation
Order of a differential equation is defined as the order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.

Consider the following differential equations:

dy
dx

 = ex ... (6)
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2

2
d y y
dx

+  = 0 ... (7)

33 2
2

3 2
d y d yx
dx dx

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
= 0 ... (8)

The equations (6), (7) and (8) involve the highest derivative of first, second and
third order respectively. Therefore, the order of these equations are 1, 2 and 3 respectively.

9.2.2  Degree of a differential equation
To study the degree of a differential equation, the key point is that the differential
equation must be a polynomial equation in derivatives, i.e., y′, y″, y″′ etc. Consider the
following differential equations:

23 2

3 22d y d y dy y
dxdx dx

⎛ ⎞
+ − +⎜ ⎟

⎝ ⎠
 = 0 ... (9)

2
2sindy dy y

dx dx
⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 = 0 ... (10)

sindy dy
dx dx

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 = 0 ... (11)

We observe that equation (9) is a polynomial equation in y″′,  y″ and y′, equation (10)
is a polynomial equation in y′ (not a polynomial in y though). Degree of such differential
equations can be defined. But equation (11) is not a polynomial equation in y′ and
degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral index) of the highest order
derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (6), (7),
(8) and (9) each are of degree one, equation (10) is of degree two while the degree of
differential equation (11) is not defined.

Note   Order and degree (if defined) of a differential equation are always
positive integers.
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Example 1 Find the order and degree, if defined, of each of the following differential
equations:

(i) cos 0dy x
dx

− = (ii)  
22

2 0d y dy dyxy x y
dx dxdx

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

(iii) 2 0yy y e ′′′′ + + =

Solution

(i) The highest order derivative present in the differential equation is 
dy
dx , so its

order is one. It is a polynomial equation in y′ and the highest power raised to 
dy
dx

is one, so its degree is one.

(ii) The highest order derivative present in the given differential equation is 
2

2
d y
dx

, so

its order is two. It is a polynomial equation in 
2

2
d y
dx

 and 
dy
dx

 and the highest

power raised to 
2

2
d y
dx

 is one, so its degree is one.

(iii) The highest order derivative present in the differential equation is y′′′ , so its
order is three. The given differential equation is not a polynomial equation in its
derivatives and so its degree is not defined.

EXERCISE 9.1
Determine order and degree (if defined) of differential equations given in Exercises
1 to 10.

1.
4

4 sin( ) 0d y y
dx

′′′+ = 2.  y′ + 5y = 0 3.
4 2

23 0ds d ss
dt dt

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

4.
22

2 cos 0d y dy
dxdx

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

5.
2

2 cos3 sin3d y x x
dx

= +

6. 2( )y′′′  + (y″)3 + (y′)4 + y5 = 0 7. y′′′  + 2y″ + y′ = 0
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8. y′ + y = ex 9. y″ + (y′)2 + 2y = 0 10. y″ + 2y′ + sin y = 0
11. The degree of the differential equation

3 22

2 sin 1 0d y dy dy
dx dxdx

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 is

(A) 3 (B) 2 (C) 1 (D) not defined
12. The order of the differential equation

2
2

22 3 0d y dyx y
dxdx

− + =  is

(A) 2 (B) 1 (C) 0 (D) not defined

9.3.  General and Particular Solutions of a Differential Equation
In earlier Classes, we have solved the equations of the type:

x2 + 1 = 0 ... (1)
sin2 x – cos x = 0 ... (2)

Solution of equations (1) and (2) are numbers, real or complex, that will satisfy the
given equation i.e., when that number is substituted for the unknown x in the given
equation, L.H.S. becomes equal to the R.H.S..

Now consider the differential equation 
2

2 0d y y
dx

+ = ... (3)

In contrast to the first two equations, the solution of this differential equation is a
function φ that will satisfy it i.e., when the function φ is substituted for the unknown y
(dependent variable) in the given differential equation, L.H.S. becomes equal to R.H.S..

The curve y = φ (x) is called the solution curve (integral curve) of the given
differential equation. Consider the function given by

y = φ (x) = a sin (x + b), ... (4)
where a, b ∈ R. When this function and its derivative are substituted in equation (3),
L.H.S. = R.H.S.. So it is a solution of the differential equation (3).

Let a and b be given some particular values say a = 2 and 
4

b π
= , then we get a

function y = φ1(x) = 2sin
4

x π⎛ ⎞+⎜ ⎟
⎝ ⎠

... (5)

When this function and its derivative are substituted in equation (3) again
L.H.S. = R.H.S.. Therefore φ1 is also a solution of equation (3).
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Function φ  consists of two arbitrary constants (parameters) a, b and it is called
general solution of the given differential equation. Whereas function φ1 contains no
arbitrary constants but only the particular values of the parameters a and b and hence
is called a particular solution of the given differential equation.

The solution which contains  arbitrary constants is called the general solution
(primitive) of the differential equation.

The solution free from arbitrary constants i.e., the solution obtained from the general
solution by giving particular values to the arbitrary constants is called a particular
solution of the differential equation.

Example 2 Verify that the function y = e– 3x is a solution of the differential equation
2

2 6 0d y dy y
dxdx

+ − =

Solution Given function is  y = e– 3x. Differentiating both sides of equation with respect
to x , we get

33 xdy e
dx

−= − ... (1)

Now, differentiating (1) with respect to x, we have
2

2
d y
dx

 = 9 e – 3x

Substituting the values of  
2

2 ,d y dy
dxdx

and y in the given differential equation, we get

L.H.S. = 9 e– 3x + (–3e– 3x) – 6.e– 3x = 9 e– 3x – 9 e– 3x = 0 = R.H.S..
Therefore, the given function is a solution of the given differential equation.

Example 3 Verify that the function y = a cos x + b sin x, where, a, b ∈ R is a solution

of the differential equation 
2

2 0d y y
dx

+ =

Solution The given function is
y = a cos x + b sin x ... (1)

Differentiating both sides of equation (1) with respect to x, successively, we get
dy
dx

 = – a sinx + b cosx

2

2
d y
dx

 = – a cos x – b sinx
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Substituting the values of 
2

2
d y
dx

 and y in the given differential equation, we get

L.H.S. = (– a cos x – b sin x) + (a cos x + b sin x) = 0 = R.H.S..
Therefore, the given function is a solution of the given differential equation.

EXERCISE 9.2
In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) is a
solution of the corresponding differential equation:

1. y = ex + 1 : y″ – y′ = 0
2. y = x2 + 2x + C : y′ – 2x – 2 = 0
3. y = cos x + C : y′ + sin x = 0

4. y = 21 x+ : y′ = 21
xy

x+
5. y = Ax : xy′ = y (x ≠ 0)

6. y = x sin x : xy′ = y + x 2 2x y−  (x ≠ 0 and x > y or x < – y)

7. xy = log y + C : y′ = 
2

1
y

xy−  (xy ≠ 1)

8. y – cos y = x : (y sin y + cos y + x) y′ = y
9. x + y = tan–1y : y2 y′ + y2 + 1 = 0

10. y = 2 2a x− x ∈ (–a, a) : x + y 
dy
dx

 = 0 (y ≠ 0)

11. The number of arbitrary constants in the general solution of a differential equation
of fourth order are:
(A) 0 (B) 2 (C) 3 (D) 4

12. The number of arbitrary constants in the particular solution of a differential equation
of third order are:
(A) 3 (B) 2 (C) 1 (D) 0

9.4  Formation of a Differential Equation whose General Solution is given
We know that the equation

x2 + y2 + 2x – 4y + 4 = 0 ... (1)
represents a circle having centre at (–1, 2) and radius 1 unit.
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Differentiating equation (1) with respect to x, we get

dy
dx

 =
1

2
x

y
+
−

 (y ≠ 2) ... (2)

which is a differential equation. You will find later on [See (example 9 section 9.5.1.)]
that this equation represents the family of circles and one member of the family is the
circle given in equation (1).
Let us consider the equation

x2 + y2 = r2 ... (3)
By giving different values to r, we get different members of the family e.g.
x2 + y2 = 1, x2 + y2 = 4, x2 + y2 = 9 etc. (see Fig 9.1).
Thus, equation (3) represents a family of concentric
circles centered at the origin and having different radii.

We are interested in finding a differential equation
that is satisfied by each member of the family. The
differential equation must be free from r because r is
different for different members of the family. This
equation is obtained by differentiating equation (3) with
respect to x, i.e.,

2x + 2y 
dy
dx

 = 0    or    x + y 
dy
dx

 = 0 ... (4)

which represents the family of concentric circles given by equation (3).
Again, let us consider the equation

y = mx + c ... (5)
By giving different values to the parameters m and c, we get different members of

the family, e.g.,
y = x (m = 1,   c = 0)

y = 3 x (m = 3 ,  c = 0)

y = x + 1 (m = 1,  c = 1)
y = – x (m = – 1,  c = 0)
y = – x – 1 (m = – 1,  c = – 1) etc. ( see Fig 9.2).

Thus, equation (5) represents the family of straight lines, where m, c are parameters.
We are now interested in finding a differential equation that is satisfied by each

member of the family. Further,  the equation must be free from m and c because m and

Fig 9.1
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XX’

Y

Y’

y
=

x+1

y
=

x
y

=
–x

y
=

–x–1

y
=

x3

O

c are different for different members of the family.
This is obtained by differentiating equation (5) with
respect to x, successively we get

dy m
dx

= , and 
2

2 0d y
dx

= ... (6)

The equation (6) represents the family of straight
lines given by equation (5).

Note that equations (3) and (5) are the general
solutions of equations (4) and (6) respectively.

9.4.1  Procedure to form a differential equation that will represent a given
family of curves

(a) If the given family F1 of curves depends on only one parameter then it is
represented by an equation of the form

F1 (x, y, a) = 0 ... (1)
For example, the family of parabolas y2 = ax can be represented by an equation
of the form f (x, y, a) : y2 = ax.
Differentiating equation (1) with respect to x, we get an equation involving
y′, y, x, and a, i.e.,

g (x, y, y′, a) = 0 ... (2)
The required differential equation is then obtained by eliminating a from equations
(1) and (2) as

F(x, y, y′) = 0 ... (3)
(b) If the given family F2 of curves depends on the parameters a, b (say) then it is

represented by an equation of the from
F2 (x, y, a, b) = 0 ... (4)

Differentiating equation (4) with respect to x, we get an equation involving
y′, x, y,  a, b, i.e.,

g (x, y, y′, a, b) = 0 ... (5)
But it is not possible to eliminate two parameters a and b from the two equations
and so, we need a third equation. This equation is obtained by differentiating
equation (5), with respect to x, to obtain a relation of the form

h (x, y, y′, y″, a, b) = 0 ... (6)

Fig 9.2
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The required differential equation is then obtained by eliminating a and b from
equations (4), (5) and (6) as

F (x, y, y′, y″) = 0 ... (7)

Note  The order of a differential equation representing a family of curves is
same as the number of arbitrary constants present in the equation corresponding to
the family of curves.

Example 4 Form the differential equation representing the family of curves y = mx,
where, m is arbitrary constant.

Solution We have
y = mx ... (1)

Differentiating both sides of equation (1) with respect to x, we get
dy
dx  = m

Substituting the value of m in equation (1) we get 
dyy x
dx

= ⋅

or
dyx
dx

 – y = 0

which is free from the parameter m and hence this is the required differential equation.

Example 5 Form the differential equation representing the family of curves
y = a sin (x + b), where a, b are arbitrary constants.

Solution We have
y = a sin (x + b) ... (1)

Differentiating both sides of equation (1) with respect to x, successively we get

dy
dx

 = a cos (x + b) ... (2)

2

2
d y
dx

 = – a sin (x + b) ... (3)

Eliminating a and b from equations (1), (2) and (3), we get
2

2
d y y
dx

+  = 0 ... (4)

which is free from the arbitrary constants a and b and hence this the required differential
equation.
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Example 6 Form the differential equation
representing the family of ellipses having foci on
x-axis and centre at the origin.

Solution We know that the equation of said family
of ellipses (see Fig 9.3) is

2 2

2 2
x y
a b

+  = 1                 ... (1)

Differentiating equation (1) with respect to x, we get 2 2
2 2 0x y dy

dxa b
+ =

or
y dy
x dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

=
2

2
b

a
−

... (2)

Differentiating both sides of equation (2) with respect to x, we get

2

2 2

dyx yy d y dydx
x dxdx x

⎛ ⎞−⎛ ⎞ ⎜ ⎟⎛ ⎞ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠  = 0

or
22

2 –d y dy dyxy x y
dx dxdx

⎛ ⎞+ ⎜ ⎟⎝ ⎠  = 0 ... (3)

which is the required differential equation.

Example 7 Form the differential equation of the family
of circles touching the x-axis at origin.

Solution Let C denote the family of circles touching
x-axis at origin. Let (0, a) be  the coordinates of the
centre of any member of the family (see Fig 9.4).
Therefore, equation of family C is

x2 + (y – a)2 = a2  or x2 + y2 = 2ay ... (1)
where, a is an arbitrary constant. Differentiating both
sides of equation (1) with respect to x,we get

2 2 dyx y
dx

+  = 2 dya
dx

   Fig 9.3

Fig 9.4

XX’

Y’

Y

O
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or
dyx y
dx

+  = 
dya
dx  or a = 

dyx y
dx

dy
dx

+
... (2)

Substituting the value of a from equation (2) in equation (1), we get

x2 + y2 = 2

dyx y
dxy dy

dx

⎡ ⎤+⎢ ⎥⎣ ⎦

or 2 2( )dy x y
dx

+  = 22 2 dyxy y
dx

+

or
dy
dx  = 2 2

2
–
xy

x y
This is the required differential equation of the given family of circles.

Example 8 Form the differential equation representing the family of parabolas having
vertex at origin and axis along positive direction of x-axis.

Solution Let P denote the family of above said parabolas (see Fig 9.5) and let (a, 0) be the
focus of a member of the given family, where a is an arbitrary constant. Therefore, equation
of family P is

y2 = 4ax ... (1)
Differentiating both sides of equation (1) with respect to x, we get

2 dyy
dx

 = 4a ... (2)

Substituting the value of 4a from equation (2)
in equation (1), we get

y2 = 2 ( )dyy x
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

or 2 2 dyy xy
dx

−  = 0

which is the differential equation of the given family
of parabolas. Fig 9.5
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EXERCISE 9.3
In each of the Exercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants a and b.

1. 1x y
a b
+ = 2. y2 = a (b2 – x2) 3. y = a e3x + b e– 2x

4. y = e2x (a + bx) 5. y = ex (a cos x + b sin x)
6. Form the differential equation of the family of circles touching the y-axis at

origin.
7. Form the differential equation of the family of parabolas having vertex at origin

and axis along positive y-axis.
8. Form the differential equation of the family of ellipses having foci on y-axis and

centre at origin.
9. Form the differential equation of the family of  hyperbolas having foci on x-axis

and centre at origin.
10. Form the differential equation of the family of circles having centre on y-axis

and radius 3 units.
11. Which of the following differential equations has y = c1 e

x + c2 e
–x as the general

solution?

(A)
2

2 0d y y
dx

+ = (B)
2

2 0d y y
dx

− = (C)
2

2 1 0d y
dx

+ = (D)
2

2 1 0d y
dx

− =

12. Which of the following differential equations has y = x as one of its particular
solution?

(A)
2

2
2

d y dyx xy x
dxdx

− + = (B)
2

2
d y dyx xy x

dxdx
+ + =

(C)
2

2
2 0d y dyx xy

dxdx
− + = (D)

2

2 0d y dyx xy
dxdx

+ + =

9.5.  Methods of Solving First Order, First Degree Differential Equations
In this section we shall discuss three methods of solving first order first degree differential
equations.

9.5.1  Differential equations with variables separable
A first order-first degree differential equation is of the form

dy
dx

 = F(x, y) ... (1)
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If F (x, y) can be expressed as a product g (x) h(y), where, g(x) is a function of x
and h(y) is a function of y, then the differential equation (1) is said to be of variable
separable type. The differential equation (1) then has the form

dy
dx  = h (y) . g (x) ... (2)

If h (y) ≠ 0, separating the variables, (2) can be rewritten as

1
( )h y

 dy = g (x) dx ... (3)

Integrating both sides of (3), we get

1
( )

dy
h y∫ = ( )g x dx∫ ... (4)

Thus, (4) provides the solutions of given differential equation in the form
H(y) = G(x) + C

Here, H (y) and G (x) are the anti derivatives of 
1
( )h y  and g (x) respectively and

C is the arbitrary constant.

Example 9 Find the general solution of the differential equation 1
2

dy x
dx y

+
=

−
, (y ≠ 2)

Solution We have

dy
dx

 =
1

2
x

y
+
−

... (1)

Separating the variables in equation (1), we get
(2 – y) dy = (x + 1) dx ... (2)

Integrating both sides of equation (2), we get

(2 )y dy−∫ = ( 1)x dx+∫

or
2

2
2
yy −  =

2

1C
2
x x+ +

or x2 + y2 + 2x – 4y + 2 C1 = 0
or x2 + y2 + 2x – 4y + C = 0, where C = 2C1

which is the general solution of equation (1).
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Example 10 Find the general solution of the differential equation 
2

2
1
1

dy y
dx x

+
=

+
.

Solution Since 1 + y2 ≠ 0, therefore separating the variables, the given differential
equation can be written as

21
dy

y+
 = 21

dx
x+

... (1)

Integrating both sides of equation (1), we get

21
dy

y+∫  = 21
dx

x+∫
or tan–1 y = tan–1x + C
which is the general solution of equation (1).

Example 11 Find the particular solution of the differential equation 24dy xy
dx

= −  given

that y = 1, when x = 0.

Solution If y ≠ 0, the given differential equation can be written as

2
dy
y  = – 4x dx ... (1)

Integrating both sides of equation (1), we get

2
dy
y∫  = 4 x dx− ∫

or
1
y

−  = – 2x2 + C

or y = 2
1

2 Cx −
... (2)

Substituting y = 1 and x = 0 in equation (2), we get,  C = – 1.

Now substituting the value of C in equation (2), we get the particular solution of the

given differential equation as 
2
1

2 1
y

x
=

+
.

Example 12 Find the equation of the curve passing through the point (1, 1) whose
differential equation is x dy = (2x2 + 1) dx (x ≠ 0).
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Solution The given differential equation can be expressed as

dy* =
22 1 *x dx
x

⎛ ⎞+
⎜ ⎟⎝ ⎠

or dy =
12x dx
x

⎛ ⎞+⎜ ⎟
⎝ ⎠

... (1)

Integrating both sides of equation (1), we get

dy∫  =
12x dx
x

⎛ ⎞+⎜ ⎟
⎝ ⎠∫

or y = x2 + log |x | + C ... (2)
Equation (2) represents the family of solution curves of the given differential equation

but we are interested in finding the equation of a particular member of the family which
passes through the point (1, 1). Therefore substituting x = 1, y = 1 in equation (2), we
get C = 0.

Now substituting the value of C in equation (2) we get the equation of the required
curve as y = x2 + log | x |.

Example 13 Find the equation of a curve passing through the point (–2, 3), given that

the slope of the tangent to the curve at any point (x, y) is 
2

2x
y

.

Solution We know that the slope of the tangent to a curve is given by dy
dx

.

so,
dy
dx

 = 2
2x
y

... (1)

Separating the variables, equation (1) can be written as
y2 dy = 2x dx ... (2)

Integrating both sides of equation (2), we get
2y dy∫  = 2x dx∫

or
3

3
y

 = x2 + C ... (3)

* The notation
dy

dx
due to Leibnitz is extremely flexible and useful in many calculation and formal

transformations, where, we can deal with symbols dy and dx exactly as if they were ordinary numbers. By
treating dx and dy like separate entities, we can give neater expressions to many calculations.
Refer: Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant,
Fritz John Spinger – Verlog New York.
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Substituting x = –2, y = 3 in equation (3), we get C = 5.
Substituting the value of C in equation (3), we get the equation of the required curve as

3
2 5

3
y x= +    or   

1
2 3(3 15)y x= +

Example 14 In a bank, principal increases continuously at the rate of 5% per year. In
how many years Rs 1000 double itself?

Solution Let P be the principal at any time t. According to the given problem,

dp
dt  =

5 P
100
⎛ ⎞ ×⎜ ⎟
⎝ ⎠

or
dp
dt

 =
P
20

... (1)

separating the variables in equation (1), we get

P
dp

 = 20
dt

... (2)

Integrating both sides of equation (2), we get

log P = 1C
20
t
+

or P = 1C20
t

e e⋅

or P = 20C
t

e  (where 1C Ce = ) ... (3)

Now P = 1000,   when t = 0
Substituting the values of P and t in (3), we get C = 1000. Therefore, equation (3),

gives

P = 1000 20
t

e
Let t years be the time required to double the principal. Then

2000 = 1000 20
t

e     ⇒  t = 20 loge2

EXERCISE 9.4
For each of the differential equations in Exercises 1 to 10, find the general solution:

1.
1 cos
1 cos

dy x
dx x

−
=

+
2. 24 ( 2 2)dy y y

dx
= − − < <
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3. 1 ( 1)dy y y
dx

+ = ≠ 4. sec2 x tan y dx + sec2 y tan x dy = 0

5. (ex + e–x) dy – (ex – e–x) dx = 0 6. 2 2(1 ) (1 )dy x y
dx

= + +

7. y log y dx – x dy = 0 8. 5 5dyx y
dx

= −

9. 1sindy x
dx

−= 10. ex tan y dx + (1 – ex) sec2 y dy = 0

For each of the differential equations in Exercises 11 to 14, find a particular solution
satisfying the given condition:

11. 3 2( 1) dyx x x
dx

+ + +  = 2x2 + x; y = 1 when x = 0

12. 2( 1) 1dyx x
dx

− = ; y = 0 when x = 2

13. cos dy a
dx

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (a ∈ R); y = 1 when x = 0

14. tandy y x
dx

= ; y = 1 when x = 0

15. Find the equation of a curve passing through the point (0, 0) and whose differential
equation is y′ = ex sin x.

16. For the differential equation ( 2) ( 2)dyxy x y
dx

= + + , find the solution curve

passing through the point (1, –1).
17. Find the equation of a curve passing through the point (0, –2) given that at any

point (x, y) on the curve, the product of the slope of its tangent and y coordinate
of the point is equal to the x coordinate of the point.

18. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the
line segment joining the point of contact to the point (– 4, –3). Find the equation
of the curve given that it passes through (–2, 1).

19. The volume of spherical balloon being inflated changes at a constant rate. If
initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of
balloon after t seconds.
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20. In a bank, principal increases continuously at the rate of r% per year. Find the
value of r if Rs 100 double itself in 10 years (loge2 = 0.6931).

21. In a bank, principal increases continuously at the rate of 5% per year. An amount
of Rs 1000 is deposited with this bank, how much will it worth after 10 years
(e0.5 = 1.648).

22. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2
hours. In how many hours will the count reach 2,00,000, if the rate of growth of
bacteria is proportional to the number present?

23. The general solution of the differential equation x ydy e
dx

+=  is

(A) ex + e–y = C (B) ex + ey = C
(C) e–x + ey = C (D) e–x + e–y = C

9.5.2  Homogeneous differential equations
Consider the following functions in x and y

F1 (x, y) = y2 + 2xy, F2 (x, y) = 2x – 3y,

F3 (x, y) = cos y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

, F4 (x, y) = sin x + cos y

If we replace x and y by λx and λy respectively in the above functions, for any nonzero
constant λ, we get

F1 (λx, λy) = λ2 (y2 + 2xy) = λ2 F1 (x, y)
F2 (λx, λy) = λ (2x – 3y) = λ F2 (x, y)

F3 (λx, λy) = cos cosy y
x x

λ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
λ⎝ ⎠ ⎝ ⎠

 = λ0  F3 (x, y)

F4 (λx, λy) = sin λx + cos λy ≠ λn F4 (x, y), for any n ∈ N
Here, we observe that the functions F1, F2, F3 can be written in the form

F(λx, λy) = λn F (x, y) but F4 can not be written in this form. This leads to the following
definition:

A function F(x, y) is said to be homogeneous function of degree n if
F(λx, λy) = λn F(x, y) for any nonzero constant λ.
We note that in the above examples, F1, F2, F3 are homogeneous functions of

degree 2, 1, 0 respectively but F4 is not a homogeneous function.
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We also observe that

F1(x, y) =
2

2 2
12

2y y yx x h
x xx

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

or F1(x, y) = 2 2
2

21 x xy y h
y y

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F2(x, y) = 1 1
3

32 y yx x h
x x

⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

or  F2(x, y) = 1 1
42 3x xy y h

y y
⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F3(x, y) = 0 0
5cos y yx x h

x x
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

F4(x, y) ≠ 6
n yx h

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

, for any n ∈ N

or F4 (x, y) ≠ 7
n xy h

y
⎛ ⎞
⎜ ⎟
⎝ ⎠

, for any n ∈ N

Therefore, a function F (x, y) is a homogeneous function of degree n if

F (x, y) = orn ny xx g y h
x y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

A differential equation of the form 
dy
dx = F (x, y)  is said to be homogenous if

F(x, y) is a homogenous function of degree zero.
To solve a homogeneous differential equation of the type

( )F ,dy x y
dx

=  =
yg
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

... (1)

We make the substitution     y = v .x  ... (2)
Differentiating equation (2) with respect to x, we get

dy
dx

 =
dvv x
dx

+ ... (3)

Substituting the value of 
dy
dx  from equation (3) in equation (1), we get
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dvv x
dx

+  = g (v)

or
dvx
dx

 = g (v) – v ... (4)

Separating the variables in equation (4), we get

( )
dv

g v v−
 =

dx
x

... (5)

Integrating both sides of equation (5), we get

( )
dv

g v v−∫  =
1 Cdx
x

+∫ ... (6)

Equation (6) gives general solution (primitive) of the differential equation (1) when

we replace v by y
x

.

Note  If the homogeneous differential equation is in the form F( , )dx x y
dy

=

where, F (x, y) is homogenous function of  degree zero, then we make substitution

x v
y
=  i.e., x = vy and we proceed further to find the general solution as discussed

above by writing F( , ) .dx xx y h
dy y

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

Example 15  Show that the differential equation (x – y) 
dy
dx

 = x + 2y is homogeneous

and solve it.
Solution The given differential equation can be expressed as

dy
dx

 =
2x y

x y
+
−

... (1)

Let F (x, y) =
2x y

x y
+
−

Now F(λx, λy) = 0( 2 ) ( , )
( )
x y f x y
x y

λ +
= λ ⋅

λ −
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Therefore, F(x, y) is a homogenous function of degree zero. So, the given differential
equation is a homogenous differential equation.
Alternatively,

21

1

y
dy x

ydx
x

⎛ ⎞+⎜ ⎟
= ⎜ ⎟
⎜ ⎟−
⎝ ⎠

 =
yg
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

... (2)

R.H.S. of differential equation (2) is of the form 
yg
x

⎛ ⎞
⎜ ⎟⎝ ⎠

 and so it is a homogeneous

function of degree zero. Therefore, equation (1) is a homogeneous differential equation.
To solve it we make the substitution

y = vx ... (3)
Differentiating equation (3) with respect to, x we get

dy
dx  =

dvv x
dx

+ ... (4)

Substituting the value of y  and 
dy
dx

in equation (1) we get

dvv x
dx

+  =
1 2
1

v
v

+
−

or
dvx
dx

 =
1 2
1

v v
v

+
−

−

or
dvx
dx  =

2 1
1

v v
v

+ +
−

or 2
1

1
v dv

v v
−
+ +

 =
dx
x

−

Integrating both sides of equation (5), we get

2
1

1
v dv

v v
−
+ +∫  =

dx
x

− ∫

or 2
1 2 1 3
2 1

v dv
v v

+ −
+ +∫  = – log | x | + C1
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or 12 2
1 2 1 3 1 log C
2 21 1

+
− = − +

+ + + +∫ ∫
v dv dv x

v v v v

or
2

122

1 3 1log 1 log C
2 2 1 3

2 2

+ + − = − +
⎛ ⎞⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫v v dv x

v

or
2 1

1
1 3 2 2 1log 1 . tan log C
2 2 3 3

− +⎛ ⎞+ + − = − +⎜ ⎟⎝ ⎠
vv v x

or 2 2 1
1

1 1 2 1log 1 log 3 tan C
2 2 3

− +⎛ ⎞+ + + = +⎜ ⎟⎝ ⎠
vv v x (Why?)

Replacing v by 
y
x

, we get

or
2

2 1
12

1 1 2log 1 log 3 tan C
2 2 3

− +⎛ ⎞+ + + = +⎜ ⎟⎝ ⎠
y y y xx

xx x

or
2

2 1
12

1 2log 1 3 tan C
2 3

y y y xx
xx x

−⎛ ⎞ +⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

or
2 2 1

1
2log ( ) 2 3 tan 2C

3
y xy xy x

x
− +⎛ ⎞+ + = +⎜ ⎟
⎝ ⎠

or
2 2 1 2log ( ) 2 3 tan C

3
− +⎛ ⎞+ + = +⎜ ⎟
⎝ ⎠

x yx xy y
x

which is the general solution of the differential equation (1)

Example 16 Show that the differential equation cos cosy dy yx y x
x dx x

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 is

homogeneous and solve it.

Solution The given differential equation can be written as

dy
dx

 =
cos

cos

yy x
x

yx
x

⎛ ⎞ +⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

... (1)
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It is a differential equation of the form F( , )dy x y
dx

= .

Here F(x, y) =
cos

cos

yy x
x

yx
x

⎛ ⎞ +⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

Replacing x by λx and y by λy, we get

F (λx, λy) = 0
[ cos ]

[F( , )]
cos

yy x
x x y

yx
x

⎛ ⎞λ +⎜ ⎟
⎝ ⎠ = λ

⎛ ⎞λ⎜ ⎟
⎝ ⎠

Thus, F(x, y) is a homogeneous function of degree zero.
Therefore, the given differential equation is a homogeneous differential equation.

To solve it we make the substitution
y = vx ... (2)

Differentiating equation (2) with respect to x, we get

dy
dx

 =
dvv x
dx

+ ... (3)

Substituting the value of y and 
dy
dx

 in equation (1), we get

dvv x
dx

+  =
cos 1
cos

v v
v
+

or
dvx
dx

 =
cos 1
cos

v v v
v
+

−

or
dvx
dx

 =
1

cosv

or cosv dv =
dx
x

Therefore cosv dv∫  =
1 dx
x∫
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or sin v = log | x | + log |C |
or sin v = log | Cx |

Replacing v by 
y
x

, we get

sin y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = log | Cx |

which is the general solution of the differential equation (1).

Example 17 Show that the differential equation 2 2 0
x x
y yy e dx y x e dy

⎛ ⎞⎜ ⎟+ − =⎝ ⎠ is
homogeneous and find its particular solution, given that, x = 0 when y = 1.

Solution The given differential equation can be written as

dx
dy

 =
2

2

x
y

x
y

x e y

y e

−
... (1)

Let F(x, y) = 2

2

x
y

x
y

xe y

ye

−

Then F(λx, λy) = 0

2

[F( , )]

2

x
y

x
y

xe y

x y

ye

⎛ ⎞
⎜ ⎟λ −
⎜ ⎟
⎝ ⎠ =λ
⎛ ⎞
⎜ ⎟λ
⎜ ⎟
⎝ ⎠

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given
differential equation is a homogeneous differential equation.
To solve it, we make the substitution

x = vy ... (2)
Differentiating equation (2) with respect to y, we get

dx
dy

 = + dvv y
dy
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Substituting the value of and dxx
dy

 in equation (1), we get

dvv y
dy

+  =
2 1

2

v

v
v e

e
−

or
dvy
dy

 =
2 1

2

v

v
v e v

e
−

−

or
dvy
dy

 =
1

2 ve
−

or 2ev dv =
dy
y

−

or 2 ve dv⋅∫  =
dy
y

−∫
or 2 ev = – log |y| + C

and replacing v by 
x
y  , we get

2
x
ye  + log | y | = C ... (3)

Substituting x = 0 and y = 1 in equation (3), we get
2 e0 + log |1| = C ⇒ C = 2

Substituting the value of C in equation (3), we get

2
x
ye  + log | y | = 2

which is the particular solution of the given differential equation.

Example 18 Show that the family of curves for which the slope of the tangent at any

point (x, y) on it is  
2 2

2
x y

xy
+ , is given by x2 – y2 = cx.

Solution We know that the slope of the tangent at any point on a curve is 
dy
dx

.

Therefore,
dy
dx

 =
2 2

2
x y

xy
+
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or
dy
dx

 =

2

21

2

y
x
y

x

+
... (1)

Clearly, (1) is a homogenous differential equation. To solve it we make substitution
y = vx

Differentiating y = vx with respect to x, we get

dy
dx  =

dvv x
dx

+

or
dvv x
dx

+  =
21

2
v
v

+

or
dvx
dx

=
21

2
v
v

−

2
2

1
v dv
v−

 =
dx
x

or 2
2

1
v dv

v −
 =

dx
x

−

Therefore 2
2

1
v dv

v −∫  =
1 dx
x

−∫
or log | v2 – 1 | = – log | x | + log | C1|
or log | (v2 – 1) (x) | = log |C1|
or (v2 – 1) x = ± C1

Replacing v by 
y
x  , we get

2

2 1y x
x

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 = ± C1

or (y2 – x2) = ± C1 x or x2 – y2 = Cx



MATHEMATICS406

EXERCISE 9.5

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous
and solve each of them.

1. (x2 + xy) dy = (x2 + y2) dx 2.
x yy

x
+′ =

3. (x – y) dy – (x + y) dx = 0 4. (x2 – y2) dx + 2xy dy = 0

5. 2 2 22dyx x y xy
dx

= − + 6. x dy – y dx = 2 2x y dx+

7. cos sin sin cosy y y yx y y dx y x x dy
x x x x

⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ = −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎩ ⎭

8. sin 0dy yx y x
dx x

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

9. log 2 0yy dx x dy x dy
x

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

10. 1 1 0
x x
y y xe dx e dy

y

⎛ ⎞ ⎛ ⎞
+ + − =⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠

For each of the differential equations in Exercises from 11 to 15, find the particular
solution satisfying the given condition:
11. (x + y) dy + (x – y) dx = 0; y = 1 when x = 1
12. x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

13. 2sin 0;
4

⎡ ⎤ π⎛ ⎞ − + = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

yx y dx x dy y
x  when x = 1

14. cosec 0dy y y
dx x x

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

;  y = 0 when x = 1

15. 2 22 2 0dyxy y x
dx

+ − = ;  y = 2 when x = 1

16. A homogeneous differential equation of the from 
dx xh
dy y

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 can be solved by

making the substitution.
(A) y = vx (B) v = yx (C) x = vy (D) x = v
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17. Which of the following is a homogeneous differential equation?
(A) (4x + 6y + 5) dy – (3y + 2x + 4) dx = 0
(B) (xy) dx – (x3 + y3) dy = 0
(C) (x3 + 2y2) dx + 2xy dy = 0
(D) y2 dx + (x2 – xy – y2) dy = 0

9.5.3  Linear differential equations
A differential equation of the from

Pdy y
dx

+  = Q

where, P and Q are constants or functions of x only, is known as a first order linear
differential equation. Some examples of the first order linear differential equation are

dy y
dx

+  = sin x

1dy y
dx x

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 = ex

log
dy y
dx x x

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 =
1
x

Another form of first order linear differential equation is

1Pdx x
dy

+  = Q1

where, P1 and Q1 are constants or functions of y only. Some examples of this type of
differential equation are

dx x
dy

+ = cos y

2dx x
dy y

−
+  = y2e – y

To solve the first order linear differential equation of the type

Pdy y
dx

+  = Q ... (1)

Multiply both sides of the equation by a function of x say g (x) to get

g (x) 
dy
dx

 + P. (g (x)) y = Q . g (x) ... (2)
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Choose g (x) in such a way that R.H.S. becomes a derivative of y . g (x).

i.e. g (x) 
dy
dx  + P. g (x) y =

d
dx  [y . g (x)]

or g (x) 
dy
dx

 + P. g (x) y = g (x) 
dy
dx

 + y g′ (x)

⇒ P. g (x) = g′ (x)

or P =
( )
( )

g x
g x
′

Integrating both sides with respect to x, we get

Pdx∫  =
( )
( )

g x dx
g x
′

∫

or P dx⋅∫  = log (g (x))

or g (x) = P dxe∫

On multiplying the equation (1) by g(x) = 
P dxe∫ , the L.H.S. becomes the derivative

of some function of x and y. This function g(x) = P dxe∫  is called Integrating Factor
(I.F.)  of the given differential equation.
Substituting the value of g (x) in equation (2), we get

P PPdx dxdye e y
dx

∫ ∫+  = PQ dxe ∫⋅

or ( )Pdxd y e
dx

∫  = PQ dxe ∫

Integrating both sides with respect to x, we get

P dxy e ∫⋅  = ( )PQ dxe dx∫⋅∫

or y = ( )P PQ Cdx dxe e dx−∫ ∫⋅ ⋅ +∫
which is the general solution of the differential equation.
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Steps involved to solve first order linear differential equation:

(i) Write the given differential equation in the form P Qdy y
dx

+ =  where P, Q are

constants or functions of x only.

(ii) Find the Integrating Factor (I.F) = Pdxe ∫ .
(iii) Write the solution of the given differential equation as

y (I.F) = ( )Q × I.F C+∫ dx

In case, the first order linear differential equation is in the form 1 1P Qdx x
dy

+ = ,

where, P1 and Q1 are constants or functions of y only. Then I.F = 1P dye ∫  and the
solution of the differential equation is given by

x . (I.F) = ( )1Q × I.F Cdy +∫

Example 19 Find the general solution of the differential equation cosdy y x
dx

− = .

Solution Given differential equation is of the form

P Qdy y
dx

+ = , where P = –1 and Q  =  cos x

Therefore I . F =
1 dx xe e− −∫ =

Multiplying both sides of equation by I.F, we get

x xdye e y
dx

− −−  = e–x cos x

or ( )xdy ye
dx

− = e–x cos x

On integrating both sides with respect to x, we get

ye– x = cos Cxe x dx− +∫ ... (1)

Let I = cosxe x dx−∫

= cos ( sin ) ( )
1

x
xex x e dx

−
−⎛ ⎞

− − −⎜ ⎟
−⎝ ⎠ ∫
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= cos sinx xx e x e dx− −− − ∫
= cos sin (– ) cos ( )x x xx e x e x e dx− − −⎡ ⎤− − − −⎣ ⎦∫
= cos sin cosx x xx e x e x e dx− − −− + − ∫

or I = – e–x cos x + sin x e–x – I
or 2I = (sin x – cos x) e–x

or I =
(sin cos )

2

xx x e−−

Substituting the value of I in equation (1), we get

ye– x = sin cos C
2

xx x e−−⎛ ⎞ +⎜ ⎟
⎝ ⎠

or y = sin cos C
2

xx x e−⎛ ⎞ +⎜ ⎟
⎝ ⎠

which is the general solution of the given differential equation.

Example 20  Find the general solution of the differential equation 22 ( 0)dyx y x x
dx

+ = ≠ .

Solution The given differential equation is

2dyx y
dx

+  = x2 ... (1)

Dividing both sides of equation (1) by x, we get

2dy y
dx x

+  = x

which is a linear differential equation of the type P Qdy y
dx

+ = , where 
2P
x

=  and Q = x.

So I.F =
2 dx
xe∫ = e2 log x = 

2log 2xe x= log ( )[ ( )]f xas e f x=

Therefore, solution of the given equation is given by

y . x2 = 2( ) ( ) Cx x dx +∫  = 3 Cx dx +∫

or y =
2

2C
4
x x−+

which is the general solution of the given differential equation.
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Example 21 Find the general solution of the differential equation y dx – (x + 2y2) dy = 0.

Solution The given differential equation can be written as

dx x
dy y

−  = 2y

This is a linear differential equation of the type 1 1P Qdx x
dy

+ = , where 1
1P
y

= −  and

Q1 = 2y. Therefore 
1

1
log log( ) 1I.F

dy
y yye e e

y
−−

−∫
= = = =

Hence, the solution of the given differential equation is

1x
y

  =
1(2 ) Cy dy
y

⎛ ⎞ +⎜ ⎟
⎝ ⎠

∫

or
x
y

 = (2 ) Cdy +∫

or
x
y  = 2y + C

or x = 2y2 + Cy
which is a general solution of the given differential equation.

Example 22 Find the particular solution of the differential equation

cot dx y x
dy

+  = 2x + x2 cot x (x ≠ 0)

given that y = 0 when 
2

x π
= .

Solution The given equation is a linear differential equation of the type P Qdy y
dx

+ = ,

where P = cot x and Q = 2x + x2 cot x. Therefore

I.F = cot log sin sinx dx xe e x∫ = =

Hence, the solution of the differential equation is given by
y . sin x = ∫ (2x + x2 cot x) sin x dx + C
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or y sin x = ∫ 2x sin x dx + ∫ x2 cos x dx + C

or y sin x =
2 2

22 2sin cos cos C
2 2
x xx x dx x x dx

⎛ ⎞ ⎛ ⎞
− + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∫ ∫

or y sin x = 2 2 2sin cos cos Cx x x x dx x x dx− + +∫ ∫
or y sin x = x2 sin x + C ... (1)

Substituting y = 0 and 
2

x π
=  in equation (1), we get

0 =
2

sin C
2 2
π π⎛ ⎞ ⎛ ⎞ +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

or C =
2

4
−π

Substituting the value of C in equation (1), we get

y sin x =
2

2 sin
4

x x π
−

or y =
2

2 (sin 0)
4 sin

x x
x

π
− ≠

which is the particular solution of the given differential equation.

Example 23 Find the equation of a curve passing through the point (0, 1). If the slope
of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate
(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

Solution We know that the slope of the tangent to the curve is 
dy
dx

.

Therefore,
dy
dx

 = x + xy

or
dy xy
dx

−  = x ... (1)

This is a linear differential equation of the type P Qdy y
dx

+ = , where P = – x and Q = x.

Therefore, I . F =
2

2
x

x dxe e
−

−∫ =
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Hence, the solution of equation is given by
2

2
x

y e
−

⋅  = ( )2

2( ) C
x

x dxe
−

+∫ ... (2)

Let I =
2

2( )
x

x dxe
−

∫

Let 
2

2
x t−

= , then – x dx = dt or x dx = – dt.

      Therefore,       I =
2

2–
x

t te dt e e
−

− = − =∫
Substituting the value of I in equation (2), we get

2

2
x

y e
−

 =
2

2 + C
−

−
x

e

or y =
2

21 C
x

e− + ... (3)
Now (3) represents the equation of family of curves. But we are interested in

finding a particular member of the family passing through (0, 1). Substituting x = 0 and
y = 1 in equation (3) we get

1 = – 1 + C . e0   or   C = 2
Substituting the value of C in equation (3), we get

y =
2

21 2
x

e− +
which  is the equation of the required curve.

EXERCISE 9.6
For each of the differential equations given in Exercises 1 to 12, find the general solution:

1. 2 sindy y x
dx

+ = 2. 23 xdy y e
dx

−+ = 3. 2dy y x
dx x

+ =

4. sec tan 0
2
π⎛ ⎞+ = ≤ <⎜ ⎟

⎝ ⎠
dy xy x x
dx 5. 2cos tandyx y x

dx
+ =  0

2
x π⎛ ⎞≤ <⎜ ⎟

⎝ ⎠

6. 22 logdyx y x x
dx

+ = 7.
2log logdyx x y x

dx x
+ =

8. (1 + x2) dy + 2xy dx = cot x dx (x ≠ 0)
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9. cot 0 ( 0)dyx y x xy x x
dx

+ − + = ≠ 10. ( ) 1dyx y
dx

+ =

11. y dx + (x – y2) dy = 0 12. 2( 3 ) ( 0)dyx y y y
dx

+ = > .

For each of the differential equations given in Exercises 13 to 15, find a particular
solution satisfying the given condition:

13. 2 tan sin ; 0 when
3

dy y x x y x
dx

π
+ = = =

14. 2
2

1(1 ) 2 ; 0 when 1
1

dyx xy y x
dx x

+ + = = =
+

15. 3 cot sin 2 ; 2 when
2

dy y x x y x
dx

π
− = = =

16. Find the equation of a curve passing through the origin given that the slope of the
tangent to the curve at any point (x, y) is equal to the sum of the coordinates of
the point.

17. Find the equation of a curve passing through the point (0, 2) given that the sum of
the coordinates of any point on the curve exceeds the magnitude of the slope of
the tangent to the curve at that point by 5.

18. The Integrating Factor of the differential equation 22dyx y x
dx

− =  is

(A) e–x (B) e–y (C)
1
x (D) x

19. The Integrating Factor of the differential equation

2(1 ) dxy yx
dy

− +  = ( 1 1)− < <ay y  is

(A) 2
1

1y − (B) 2

1

1y − (C) 2
1

1 y− (D) 2

1

1 y−

Miscellaneous Examples
Example 24 Verify that the function y = c1 e

ax cos bx + c2 e
ax sin bx, where c1, c2 are

arbitrary constants is a solution of the differential equation

( )
2

2 2
2 2 0d y dya a b y

dxdx
− + + =
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Solution The given function is
y = eax [c1 cosbx + c2 sinbx] ... (1)

Differentiating both sides of equation (1) with respect to x, we get

dy
dx

 = [ ] [ ]1 2 1 2– sin cos cos sinax axe bc bx bc bx c bx c bx e a+ + + ⋅

or
dy
dx

 = 2 1 2 1[( )cos ( )sin ]axe bc ac bx ac bc bx+ + − ... (2)

Differentiating both sides of equation (2) with respect to x, we get

2

2
d y
dx

 = 2 1 2 1[( ) ( sin ) ( ) ( cos )]axe bc ac b bx a c bc b bx+ − + −

+ 2 1 2 1[( ) cos ( ) sin ] .axbc ac bx ac bc bx e a+ + −

= 2 2 2 2
2 1 2 1 2 1[( 2 ) sin ( 2 ) cos ]axe a c abc b c bx a c abc b c bx− − + + −

Substituting the values of 
2

2 ,d y dy
dxdx

 and y in the given differential equation, we get

L.H.S.  = 2 2 2 2
2 1 2 1 2 1[ 2 )sin ( 2 )cos ]axe a c abc b c bx a c abc b c bx− − + + −

2 1 2 12 [( )cos ( )sin ]axae bc ac bx ac bc bx− + + −

2 2
1 2( ) [ cos sin ]axa b e c bx c bx+ + +

=
( )2 2 2 2 2

2 1 2 2 1 2 2

2 2 2 2 2
1 2 1 2 1 1 1

2 2 2 sin

( 2 2 2 )cos
ax a c abc b c a c abc a c b c bx

e
a c abc b c abc a c a c b c bx

⎡ ⎤− − − + + +
⎢ ⎥
⎢ ⎥+ + − − − + +⎣ ⎦

= [0 sin 0cos ]axe bx bx× + = eax × 0 = 0  = R.H.S.
Hence, the given function is a solution of the given differential equation.

Example 25 Form the differential equation of the family of circles in the second
quadrant and touching the coordinate axes.

Solution Let C denote the family of circles in the second quadrant and touching the
coordinate axes. Let (–a, a) be the coordinate of the centre of any member of
this family (see Fig 9.6).
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XX’

Y

Y’

(– , )a a

O

Equation representing the family C is
(x + a)2 + (y – a)2 = a2                             ... (1)

or x2 + y2 + 2ax – 2ay + a2 = 0                ... (2)
Differentiating equation (2) with respect to x, we get

2 2 2 2dy dyx y a a
dx dx

+ + −  = 0

or
dyx y
dx

+  = 1dya
dx

⎛ ⎞−⎜ ⎟
⎝ ⎠

or a = 1
x y y

y
′+

′ −

Substituting the value of a in equation (1), we get
2 2

1 1
x y y x y yx y

y y
′ ′+ +⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎢ ⎥′ ′− −⎣ ⎦ ⎣ ⎦

 = 
2

1
x y y

y
′+⎡ ⎤

⎢ ⎥′ −⎣ ⎦
or [xy′ – x + x + y y′]2 + [y y′ – y – x – y y′]2 = [x + y y′]2

or (x + y)2 y′2 + [x + y]2 = [x + y y′]2

or (x + y)2 [(y′)2 + 1] = [x + y y′]2

which is the differential equation representing the given family of circles.

Example 26 Find the particular solution of the differential equation log 3 4dy x y
dx

⎛ ⎞ = +⎜ ⎟
⎝ ⎠

given that y = 0 when x = 0.

Solution The given differential equation can be written as

dy
dx  = e(3x + 4y)

or
dy
dx

 = e3x . e4y ... (1)

Separating the variables, we get

4 y
dy
e

= e3x dx

Therefore 4 ye dy−∫ = 3xe dx∫

Fig 9.6
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or
4

4

ye−

−  =
3

C
3

xe
+

or 4 e3x + 3 e– 4y + 12 C = 0 ... (2)
Substituting x = 0 and y = 0 in (2), we get

4 + 3 + 12 C = 0 or C = 
7

12
−

Substituting the value of C in equation (2), we get
4 e3x + 3 e– 4y – 7 = 0,

which is a particular solution of the given differential equation.

Example 27 Solve the differential equation

(x dy – y dx) y sin 
y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = (y dx + x dy) x cos 
y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

Solution The given differential equation can be written as

2 2sin cos cos siny y y yx y x dy xy y dx
x x x x

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

or
dy
dx  =

2

2

cos sin

sin cos

y yxy y
x x
y yxy x
x x

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Dividing numerator and denominator on RHS by x2, we get

dy
dx

 =

2

2cos sin

sin cos

y y y y
x x xx

y y y
x x x

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

... (1)

Clearly, equation (1) is a homogeneous differential equation of the form 
dy yg
dx x

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.

To solve it, we make the substitution
y = vx ... (2)

or
dy
dx  = dvv x

dx
+
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or dvv x
dx

+  =
2cos sin

sin cos
v v v v

v v v
+
−

(using (1) and (2))

or
dvx
dx  =

2 cos
sin cos

v v
v v v−

or sin cos
cos

v v v dv
v v

−⎛ ⎞
⎜ ⎟
⎝ ⎠

 =
2 dx

x

Therefore
sin cos

cos
v v v dv

v v
−⎛ ⎞

⎜ ⎟
⎝ ⎠∫  =

12 dx
x∫

or
1tan v dv dv
v

−∫ ∫  =
12 dx
x∫

or log sec log | |v v−  = 12log | | log | C |x +

or 2
seclog v
v x  = log | C1|

or 2
secv
v x

 = ± C1 ... (3)

Replacing v by 
y
x

 in equation (3), we get

2

sec

( )

y
x

y x
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = C where, C = ± C1

or sec y
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = C xy

which is the general solution of the given differential equation.

Example 28 Solve the differential equation
(tan–1y  – x) dy = (1 + y2) dx.

Solution The given differential equation can be written as

21
dx x
dy y

+
+

 =
1

2
tan
1

y
y

−

+
... (1)
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Now (1) is a linear differential equation of the form 1Pdx
dy

+  x = Q1,

where, P1 = 2
1

1 y+
 and 

1

1 2
tanQ
1

y
y

−

=
+

.

Therefore, I .F = 12
1

tan1
dy

yye e
−+∫ =

Thus, the solution of the given differential equation is

1tan yxe
−  =

1
1

tan
2

tan C
1

yy e dy
y

−
−⎛ ⎞

+⎜ ⎟
+⎝ ⎠

∫ ... (2)

Let I =
1

1
tan

2
tan
1

yy e dy
y

−
−⎛ ⎞

⎜ ⎟
+⎝ ⎠

∫

Substituting tan–1 y = t so that 2
1

1
dy dt

y
⎛ ⎞ =⎜ ⎟+⎝ ⎠

, we get

I = tt e dt∫ = t et – ∫1 . et dt = t et – et = et (t – 1)

or I = 1tan ye
− (tan–1y –1)

Substituting the value of I in equation (2), we get
1 1tan tan 1. (tan 1) Cy yx e e y
− − −= − +

or x =
11 tan(tan 1) C yy e

−− −− +

which is the general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9
1. For each of the differential equations given below, indicate its order and degree

(if defined).

(i)
22

2 5 6 logd y dyx y x
dxdx

⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

         (ii)  
3 2

4 7 sindy dy y x
dx dx

⎛ ⎞ ⎛ ⎞− + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(iii)
4 3

4 3sin 0d y d y
dx dx

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
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2. For each of the exercises given below, verify that the given function (implicit or
explicit) is a solution of the corresponding differential equation.

(i) y = a ex + b e–x + x2 :
2

2
2 2 2 0d y dyx xy x

dxdx
+ − + − =

(ii) y = ex (a cos x + b sin x) :
2

2 2 2 0d y dy y
dxdx

− + =

(iii) y = x sin 3x :
2

2 9 6cos3 0d y y x
dx

+ − =

(iv) x2 = 2y2 log y : 2 2( ) 0dyx y xy
dx

+ − =

3. Form the differential equation representing the family of curves given by
(x – a)2 + 2y2 = a2, where a is an arbitrary constant.

4. Prove that x2 – y2 = c (x2 + y2)2 is the general solution of differential equation
(x3 – 3x y2) dx = (y3 – 3x2y) dy, where c is a parameter.

5. Form the differential equation of the family of circles in the first quadrant which
touch the coordinate axes.

6. Find the general solution of the differential equation 
2

2
1 0
1

dy y
dx x

−
+ =

−
.

7. Show that the general solution of the differential equation 
2

2
1 0
1

dy y y
dx x x

+ +
+ =

+ +
 is

given by (x + y + 1) = A (1 – x – y – 2xy), where A is parameter.

8. Find the equation of the curve passing through the point 0,
4
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 whose differential

equation is sin x cos y dx + cos x sin y dy = 0.
9. Find the particular solution of the differential equation

(1 + e2x) dy + (1 + y2) ex dx = 0, given that y = 1 when x = 0.

10. Solve the differential equation 2 ( 0)
x x
y yy e dx x e y dy y

⎛ ⎞⎜ ⎟= + ≠⎝ ⎠ .

11. Find a particular solution of the differential equation  (x – y) (dx + dy) = dx – dy,
given that y = –1, when x = 0. (Hint: put x – y = t)
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12. Solve the differential equation 
2

1( 0)
xe y dx x

dyx x

−⎡ ⎤
− = ≠⎢ ⎥

⎣ ⎦
.

13. Find a particular solution of the differential equation cotdy y x
dx

+  = 4x cosec x

(x ≠ 0), given that y = 0 when 
2

x π
= .

14. Find a particular solution of the differential equation (x + 1) 
dy
dx

 = 2 e–y – 1,  given

that y = 0 when x = 0.
15. The population of a village increases continuously at the rate proportional to the

number of its inhabitants present at any time. If the population of the village was
20, 000 in 1999 and 25000 in the year 2004, what will be the population of the
village in 2009?

16. The general solution of the differential equation 0y dx x dy
y
−

=  is

(A) xy = C (B) x = Cy2 (C) y = Cx (D) y = Cx2

17. The general solution of a differential equation of the type 1 1P Qdx x
dy

+ =  is

(A) ( )1 1P P
1Q Cdy dyy e e dy∫ ∫= +∫

(B) ( )1 1P P
1. Q Cdx dxy e e dx∫ ∫= +∫

(C) ( )1 1P P
1Q Cdy dyx e e dy∫ ∫= +∫

(D) ( )1 1P P
1Q Cdx dxx e e dx∫ ∫= +∫

18. The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
(A) x ey + x2 = C (B) x ey + y2 = C
(C) y ex + x2 = C (D) y ey + x2 = C
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Summary
An equation involving derivatives of the dependent variable with respect to
independent variable (variables) is known as a differential equation.
Order of a differential equation is the order of the highest order derivative
occurring in the differential equation.
Degree of a differential equation is defined if it is a polynomial equation in its
derivatives.
Degree (when defined) of a differential equation is the highest power (positive
integer only) of the highest order derivative in it.
A function which satisfies the given differential equation is called its solution.
The solution which contains as many arbitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constants is called particular solution.
To form a differential equation from a given function we differentiate the
function successively as many times as the number of arbitrary constants in
the given function and then eliminate the arbitrary constants.
Variable separable method is used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing x should remain with dx.
A differential equation which can be expressed in the form

( , ) or ( , )dy dxf x y g x y
dx dy

= = where, f (x, y) and g(x, y) are homogenous

functions of degree zero is called a homogeneous differential equation.

A differential equation of the form +P Qdy y
dx

= , where P and Q are  constants

or functions of x only  is called a first order linear differential equation.

Historical Note
One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equations is taken to be November,
11,1675, when Gottfried Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and white the identity 21
2

y dy y=∫ , thereby introducing both the symbols ∫ and dy.
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Leibnitz was actually interested in the problem of finding a curve whose tangents
were prescribed. This led him to discover the ‘method of separation of variables’
1691. A year later he formulated the ‘method of solving the homogeneous
differential equations of the first order’. He went further in a very short time
to the discovery of the ‘method of solving a linear differential equation of the
first-order’. How surprising is it that all these methods came from a single man
and that too within 25 years of the birth of differential equations!

In the old days, what we now call the ‘solution’ of a differential equation,
was used to be referred to as ‘integral’ of the differential equation, the word
being coined by James Bernoulli (1654 - 1705) in 1690. The word ‘solution was
first used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost
hundred years since the birth of differential equations. It was Jules Henri Poincare
(1854 - 1912) who strongly advocated the use of the word ‘solution’ and thus the
word ‘solution’ has found its deserved place in modern terminology. The name of
the ‘method of separation of variables’ is due to John Bernoulli (1667 - 1748),
a younger brother of James Bernoulli.

Application to geometric problems were also considered. It was again John
Bernoulli who first brought into light the intricate nature of differential equations.
In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the
differential equation

x2 y″ = 2y,
which led to three types of curves, viz., parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn to the investigation of this complicated nature of the solutions of
differential equations, under the heading ‘qualitative analysis of differential
equations’. Now-a-days, this has acquired prime importance being absolutely
necessary in almost all investigations.

— —
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In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation

builds a new story to the old structure. – HERMAN HANKEL 

10.1  Introduction
In our day to day life, we come across many queries such
as – What is your height? How should a football player hit
the ball to give a pass to another player of his team? Observe
that a possible answer to the first query may be 1.6 meters,
a quantity that involves only one value (magnitude) which
is a real number. Such quantities are called scalars.
However, an answer to the second query is a quantity (called
force) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
quantities are called vectors. In mathematics, physics and
engineering, we frequently come across with both types of
quantities, namely, scalar quantities such as length, mass,
time, distance, speed, area, volume, temperature, work,
money, voltage, density, resistance etc. and vector quantities like displacement, velocity,
acceleration,  force, weight, momentum, electric field intensity etc.

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebraic and geometric properties. These two type of
properties, when considered together give a full realisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

10.2  Some Basic Concepts
Let ‘l’ be any straight line in plane or three dimensional space. This line can be given
two directions by means of arrowheads. A line with one of these directions prescribed
is called a directed line (Fig 10.1 (i), (ii)).

Chapter 10
VECTOR ALGEBRA

W.R. Hamilton
(1805-1865)
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Now observe that if we restrict the line l to the line segment AB, then a magnitude
is prescribed on the line l with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.
Definition 1 A quantity that has magnitude as well as direction is called a vector.

Notice that a directed line segment is a vector (Fig 10.1(iii)), denoted as AB  or
simply as a , and read as ‘vector AB ’ or ‘vector a ’.

The point A from where the vector AB  starts is called its initial point, and the
point B where it ends is called its terminal point. The distance between initial and
terminal points of a vector is called the magnitude (or length) of the vector, denoted as

| AB |, or | a |, or a. The arrow indicates the direction of the vector.

Note   Since the length is never negative, the notation | a | < 0 has no meaning.

Position Vector
From Class XI, recall the three dimensional right handed rectangular coordinate

system (Fig 10.2(i)). Consider a point P in space, having coordinates (x, y, z) with

respect to the origin O(0, 0, 0). Then, the vector OP  having O and P as its initial and
terminal points, respectively, is called the position vector of the point P with respect
to O. Using distance formula (from Class XI), the magnitude of OP  (or r ) is given by

| OP |  = 2 2 2x y z+ +
In practice, the position vectors of points A, B, C, etc., with respect to the origin O

are denoted by a , ,b c , etc., respectively (Fig 10.2 (ii)).

Fig 10.1
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A

O

P

90°

X

Y

Z

X

A

O
B

P( )x,y,z

C

P( )x,y,z

r

x

y

z

Direction Cosines
Consider the position vector ( )or OP r  of a point P(x, y, z) as in Fig 10.3. The angles α,
β, γ made by the vector r  with the positive directions of x, y and z-axes respectively,
are called its direction angles. The cosine values of these angles, i.e., cos α, cosβ and
cos γ are called direction cosines of the vector r , and usually denoted by l, m and n,
respectively.

Fig 10.3
From  Fig 10.3, one may note that the triangle OAP is right angled, and in it, we

have ( )cos   stands for | |x r r
r

α = . Similarly, from the right angled triangles OBP and

OCP, we may write cos  and cosy z
r r

β = γ = . Thus, the coordinates of the point P may

also be expressed as (lr, mr,nr).  The numbers lr, mr and nr, proportional to the direction
cosines are called as direction ratios of vector r , and denoted as a, b and c, respectively.

Fig 10.2
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Note   One may note that l2 + m2 + n2 = 1 but a2 + b2 + c2 ≠ 1, in general.

10.3  Types of Vectors
Zero Vector A vector whose initial and terminal points coincide, is called a zero
vector (or null vector), and denoted as 0 . Zero vector can not be assigned a definite
direction as it has zero magnitude. Or, alternatively otherwise, it may be regarded as
having any direction. The vectors AA, BB  represent the zero vector,

Unit Vector A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. The
unit vector in the direction of a given vector a  is denoted by â .

Coinitial Vectors Two or more vectors having the same initial point are called coinitial
vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel to
the same line, irrespective of their magnitudes and directions.

Equal Vectors Two vectors  and a b  are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written
as  =a b .

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, AB ), but direction is opposite to that of it, is called negative of the given vector.
For example, vector BA  is negative of the vector AB , and written as BA AB= − .

Remark The vectors defined above are such that any of them may be subject to its
parallel displacement without changing its magnitude and direction. Such vectors are
called free vectors. Throughout this chapter, we will be dealing with free vectors only.

Example 1 Represent graphically a displacement
of 40 km, 30° west of south.

Solution The vector OP  represents the required
displacement (Fig 10.4).

Example 2 Classify the following measures as
scalars and vectors.

(i) 5 seconds
(ii) 1000 cm3

Fig 10.4
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Fig 10.5

(iii) 10 Newton (iv) 30 km/hr (v) 10 g/cm3

(vi) 20 m/s towards north

Solution
(i) Time-scalar (ii) Volume-scalar (iii) Force-vector

(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector

Example 3 In Fig 10.5, which of the vectors are:
(i) Collinear (ii) Equal (iii) Coinitial

Solution

(i) Collinear vectors : , anda c d .

(ii) Equal vectors : and .a c

(iii) Coinitial vectors : , and .b c d

EXERCISE 10.1
1. Represent graphically a displacement of 40 km, 30° east of north.
2. Classify the following measures as scalars and vectors.

(i) 10 kg (ii) 2 meters north-west (iii) 40°
(iv) 40 watt (v) 10–19 coulomb (vi) 20 m/s2

3. Classify the following as scalar and vector quantities.
(i) time period (ii) distance (iii) force

(iv) velocity (v) work done
4. In Fig 10.6 (a square),  identify the following vectors.

(i) Coinitial (ii) Equal
(iii) Collinear but not equal

5. Answer the following as true or false.

(i) a  and a−  are collinear.

(ii) Two collinear vectors are always equal in
magnitude.

(iii) Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.

Fig 10.6
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10.4  Addition of Vectors

A vector AB  simply means the displacement from a
point A to the point B. Now consider a situation that a
girl moves from A to B and then from B to C
(Fig 10.7). The net displacement made by the girl from

point A to the point C, is given by the vector AC  and
expressed as

AC  = AB BC+

This is known as the triangle law of vector addition.

In general, if we have two vectors a  and b  (Fig 10.8 (i)), then to add them, they
are positioned so that the initial point of one coincides with the terminal point of the
other (Fig 10.8(ii)).

Fig 10.8

For example, in Fig 10.8 (ii), we have shifted vector b  without changing its magnitude
and direction, so that it’s initial point coincides with the terminal point of a . Then, the

vector a b+ , represented by the third side AC of the triangle ABC, gives us the sum

(or resultant) of the vectors a  and b i.e., in triangle ABC (Fig 10.8 (ii)), we have

AB BC+  = AC

Now again, since AC CA= − , from the above equation, we have

AB BC CA+ +  = AA 0=
This means that when the sides of a triangle are taken in order, it leads to zero

resultant as the initial and terminal points get coincided (Fig 10.8(iii)).

Fig 10.7

a

b

a

b

(i) (iii)

A

C

a

b

(ii)

a
b+

A

C

B B

a
b

–

–b

C’
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Now, construct a vector BC′  so that its magnitude is same as the vector BC , but
the direction opposite to that of it (Fig 10.8 (iii)), i.e.,

BC′  = BC−

Then, on applying triangle law from the Fig 10.8 (iii), we have

AC AB BC′ ′= +  = AB ( BC)+ − a b= −

The vector AC′  is said to represent the difference of anda b .
Now, consider a boat in a river going from one bank of the river to the other in a

direction perpendicular to the flow of the river. Then, it is acted upon by two velocity
vectors–one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. Under the simultaneous influence of these two
velocities, the boat in actual starts travelling with a different velocity. To have a precise
idea about the effective speed and direction
(i.e., the resultant velocity) of the boat, we have
the following law of vector addition.

If we have two vectors anda b represented
by the two adjacent sides of a parallelogram in
magnitude and direction (Fig 10.9), then their

sum +a b  is represented in magnitude and
direction by the diagonal of the parallelogram
through their common point. This is known as
the parallelogram law of vector addition.

Note    From Fig 10.9, using the triangle law, one may note that

OA AC+  = OC

or OA OB+  = OC                                 (since AC OB= )

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

Properties of vector addition

Property 1 For any two vectors anda b ,

a b+  = b a+ (Commutative property)

Fig 10.9
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Proof Consider the parallelogram ABCD

(Fig 10.10). Let AB and BC ,a b= =  then using
the triangle law, from triangle ABC, we have

AC  = +a b
Now, since the opposite sides of a

parallelogram are equal and parallel, from

Fig 10.10, we have, AD = BC = b  and

DC = AB = a  . Again using triangle law, from
triangle ADC, we have

AC  = AD + DC = +b a

Hence a b+  = b a+

Property 2 For any three vectors , anda b c

( )a b c+ +  = ( )a b c+ + (Associative property)

Proof Let the vectors , anda b c be represented by PQ,  QR  and  RS , respectively,
as shown in Fig 10.11(i) and (ii).

Fig 10.11

Then a b+  = PQ + QR = PR

and b c+  = QR + RS = QS

So ( )  a b c+ +  = PR + RS = PS

Fig 10.10
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a a1
2

1
2

a
–
2

a

a
2

and ( )a b c+ +  = PQ + QS = PS

Hence ( )a b c+ +  = ( )a b c+ +

Remark The associative property of vector addition enables us to write the sum of

three vectors , ,   as a b c a b c+ +  without using brackets.

Note that for any vector a , we have

0a +  = 0 a a+ =

Here, the zero vector 0  is called the additive identity for the vector addition.

10.5  Multiplication of a Vector by a Scalar
Let a  be a given vector and λ a scalar. Then the product of the vector a  by the scalar
λ, denoted as λ a , is called the multiplication of vector a  by the scalar λ. Note that,
λ a  is also a vector, collinear to the vector a . The vector λ a  has the direction same
(or opposite) to that of vector a  according as the value of λ is positive (or negative).
Also, the magnitude of vector λ a  is | λ | times the magnitude of the vector a , i.e.,

| |aλ  = | | | |aλ
A geometric visualisation of multiplication of a vector by a scalar is given

in Fig 10.12.

Fig 10.12

When λ = –1, then a aλ = − , which is a vector having magnitude equal to the

magnitude of a  and direction opposite to that of the direction of a . The vector – a  is
called the negative (or additive inverse) of vector a  and we always have

(– )a a+  = (– ) 0a a+ =

Also, if 1=
| |a

λ , provided 0,   i.e.  ≠a a  is not a null vector, then

| | | | | |a aλ = λ  =
1 | | 1

| |
a

a
=
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So, λ a  represents the unit vector in the direction of a . We write it as

â  =
1

| |
a

a

Note  For any scalar k, 0 = 0.k

10.5.1  Components of a vector
Let us take the points A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and
z-axis, respectively. Then, clearly

| OA | 1, | OB |=  = 1 and | OC | 1=

The vectors OA,   OB and OC , each having magnitude 1,
are called unit vectors along the axes OX, OY and OZ,

respectively, and denoted by ˆˆ ˆ,    and  i j k , respectively
(Fig 10.13).

Now, consider the position vector OP  of a point P (x, y, z) as in Fig 10.14. Let P1
be the foot of the perpendicular from P on the plane XOY. We, thus, see that P1 P is

parallel to z-axis. As ˆˆ ˆ,  and i j k  are the unit vectors along the x, y and z-axes,

respectively, and by the definition of the coordinates of P, we have 1
ˆP P OR zk= = .

Similarly, 1
ˆQP OS yj= =  and ˆOQ xi= .

Fig 10.13

Fig 10.14
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Therefore, it follows that 1OP  = 1
ˆ ˆOQ + QP xi yj= +

and OP  = 1 1
ˆˆ ˆOP + P P xi yj zk= + +

Hence, the position vector of P with reference to O is given by

OP (or )r  = ˆˆ ˆxi yj zk+ +

This form of any vector is called its component form. Here, x, y and z are called

as the scalar components of r , and ˆˆ ˆ,   andxi yj zk  are called the vector components
of r along the respective axes. Sometimes x, y and z are also termed as rectangular
components.

The length of any vector ˆˆ ˆr xi yj zk= + + , is readily determined by applying the
Pythagoras theorem twice. We note that in the right angle triangle OQP1 (Fig 10.14)

1| OP |  = 2 2 2 2
1| OQ | +|QP | x y= + ,

and in the right angle triangle OP1P, we have

1| OP |  = 2 2 2 2 2
1 1| OP | | P P | ( )x y z+ = + +

Hence, the length of any vector ˆˆ ˆ +r xi yj zk= +  is given by

| |r  = 2 2 2ˆˆ ˆ| | =xi yj zk x y z+ + + +

If  and a b  are any two vectors given in the component form 1 2 3
ˆˆ ˆ +a i a j a k+  and

1 2 3
ˆˆ ˆb i b j b k+ + , respectively, then

(i) the sum (or resultant) of the vectors  and a b  is given by

a b+  = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k+ + + + +

(ii) the difference of the vector  and a b  is given by

a b− = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k− + − + −

(iii) the vectors  and a b  are equal if and only if
a1 = b1, a2 = b2   and   a3 = b3

(iv) the multiplication of vector a  by any scalar λ is given by

aλ  = 1 2 3
ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ
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The addition of vectors and the multiplication of a vector by a scalar together give
the following distributive laws:

Let  and a b  be any two vectors, and k and m be any scalars. Then
(i) ( )ka ma k m a+ = +

(ii) ( ) ( )k ma km a=

(iii) ( )k a b ka kb+ = +

Remarks

(i) One may observe that whatever be the value of λ, the vector aλ  is always

collinear to the vector a . In fact, two vectors  and a b  are collinear if and only

if there exists a nonzero scalar λ such that b a= λ . If the vectors  and a b  are

given in the component form, i.e. 1 2 3
ˆˆ ˆa a i a j a k= + +  and 1 2 3

ˆˆ ˆb b i b j b k= + + ,
then the two vectors are collinear if and only if

1 2 3
ˆˆ ˆb i b j b k+ +  = 1 2 3

ˆˆ ˆ( )a i a j a kλ + +

⇔ 1 2 3
ˆˆ ˆb i b j b k+ +  = 1 2 3

ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ

⇔ 1 1b a= λ , 2 2 3 3,b a b a= λ = λ

⇔ 1

1

b
a

 = 32

2 3

bb
a a

= = λ

(ii) If 1 2 3
ˆˆ ˆa a i a j a k= + + , then a1, a2, a3 are also called direction ratios of a .

(iii) In case if it is given that  l, m, n are direction cosines of a vector, then ˆˆ ˆli mj nk+ +

= ˆˆ ˆ(cos ) (cos ) (cos )i j kα + β + γ  is the unit vector in the direction of that vector,
where α, β and γ are the angles which the vector makes with x, y and z axes
respectively.

Example 4 Find the values of x, y and z so that the vectors ˆˆ ˆ2a xi j zk= + +  and

ˆˆ ˆ2b i yj k= + +  are equal.

Solution Note that two vectors are equal if and only if their corresponding components

are equal. Thus, the given vectors  and a b  will be equal if and only if
x = 2, y = 2, z = 1
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Example 5 Let ˆ ˆ2a i j= +  and ˆ ˆ2b i j= + . Is | | | |a b= ? Are the vectors  and a b
equal?

Solution We have 2 2| | 1 2 5a = + =  and 2 2| | 2 1 5b = + =

So, | | | |a b= . But, the two vectors are not equal since their corresponding components
are distinct.

Example 6 Find unit vector in the direction of vector ˆˆ ˆ2 3a i j k= + +

Solution The unit vector in the direction of a vector a  is given by 1ˆ
| |

a a
a

= .

Now | |a  = 2 2 22 3 1 14+ + =

Therefore
1 ˆˆ ˆˆ (2 3 )
14

a i j k= + +  =
2 3 1 ˆˆ ˆ
14 14 14

i j k+ +

Example 7 Find a vector in the direction of vector ˆ ˆ2a i j= −  that has magnitude
7 units.

Solution The unit vector in the direction of the given vector a  is

1ˆ
| |

a a
a

=  =
1 1 2ˆ ˆ ˆ ˆ( 2 )
5 5 5

i j i j− = −

Therefore, the vector having magnitude equal to 7 and in the direction of a is

7a∧  = 1 27
5 5

i j∧ ∧⎛ ⎞−⎜ ⎟
⎝ ⎠

 = 
7 14ˆ ˆ
5 5

i j−

Example 8 Find the unit vector in the direction of the sum of the vectors,
ˆˆ ˆ2 2 – 5a i j k= +  and ˆˆ ˆ2 3b i j k= + + .

Solution The sum of the given vectors is

ˆˆ ˆ( , say) = 4 3 2+ = + −a b c i j k

and | |c  = 2 2 24 3 ( 2) 29+ + − =



VECTOR ALGEBRA 437

Thus, the required unit vector is

1 1 4 3 2ˆ ˆˆ ˆ ˆ ˆˆ (4 3 2 )
| | 29 29 29 29

c c i j k i j k
c

= = + − = + −

Example 9  Write the direction ratio’s of the vector ˆˆ ˆ 2a i j k= + −  and hence calculate
its direction cosines.

Solution Note that the direction ratio’s a, b, c of a vector ˆˆ ˆr xi yj zk= + +  are just
the respective components x, y and z of the vector. So, for the given vector, we have
a = 1, b = 1 and c = –2. Further, if l, m and n are the direction cosines of the given
vector, then

1 1 2, ,   as  | | 6
| | | | | |6 6 6
a b cl m n r
r r r

−
= = = = = = =

Thus, the direction cosines are 
1 1 2, , –
6 6 6

⎛ ⎞
⎜ ⎟
⎝ ⎠

.

10.5.2  Vector joining two points
If P1(x1, y1, z1) and P2(x2, y2, z2) are any two points, then the vector joining P1 and P2

is the vector 1 2P P  (Fig 10.15).

Joining the points P1 and P2 with the origin
O, and applying triangle law, from the triangle
OP1P2, we have

1 1 2OP P P+  = 2OP .

Using the properties of vector addition, the
above equation becomes

1 2P P  = 2 1OP OP−

i.e.   1 2P P  = 2 2 2 1 1 1
ˆ ˆˆ ˆ ˆ ˆ( ) ( )x i y j z k x i y j z k+ + − + +

= 2 1 2 1 2 1
ˆˆ ˆ( ) ( ) ( )x x i y y j z z k− + − + −

The magnitude of vector 1 2P P  is given by

1 2P P  = 2 2 2
2 1 2 1 2 1( ) ( ) ( )x x y y z z− + − + −

Fig 10.15
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Example 10 Find the vector joining the points P(2, 3, 0) and Q(– 1, – 2, – 4) directed
from P to Q.

Solution Since the vector is to be directed from P to Q, clearly P is the initial point

and Q is the terminal point. So, the required vector joining P and Q is the vector PQ ,
given by

PQ  = ˆˆ ˆ( 1 2) ( 2 3) ( 4 0)i j k− − + − − + − −

i.e. PQ  = ˆˆ ˆ3 5 4 .i j k− − −

10.5.3  Section formula
Let P and Q be two points represented by the position vectors OP and OQ , respectively,
with respect to the origin O. Then the line segment
joining the points P and Q may be divided by a third
point, say R, in two ways – internally (Fig 10.16)
and externally (Fig 10.17). Here, we intend to find
the position vector OR for the point R with respect
to the origin O. We take the two cases one by one.

Case I When R divides PQ internally (Fig 10.16).

If R divides PQ  such that RQm  = PRn ,

where m and n are positive scalars, we say that the point R divides PQ  internally in the
ratio of m : n. Now  from triangles ORQ and OPR, we have

RQ  = OQ OR b r− = −

and PR  = OR OP r a− = − ,

Therefore, we have ( )m b r−  = ( )n r a−     (Why?)

or r  =
mb na

m n
+
+

(on simplification)

Hence, the position vector of the point R which divides P and Q internally in the
ratio of m : n is given by

OR  =
mb na

m n
+
+

Fig 10.16
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Case II When R divides PQ externally (Fig 10.17).
We leave it to the reader as an exercise to verify
that the position vector of the point R which divides
the line segment PQ externally in the ratio

m : n 
PRi.e.  
QR

⎛ ⎞
=⎜ ⎟

⎝ ⎠

m
n

 is given by

OR  =
mb na

m n
−
−

Remark If R is the midpoint of PQ , then m = n. And therefore, from Case I, the

midpoint R of  PQ , will have its position vector as

OR  =
2

a b+

Example 11 Consider two points P and Q with position vectors OP 3 2a b= −  and

OQ a b= + . Find the position vector of a point R which divides the line joining P and Q
in the ratio 2:1, (i) internally, and (ii) externally.

Solution
(i) The position vector of the point R dividing the join of P and Q internally in the

ratio 2:1 is

OR  =
2( ) (3 2 ) 5

2 1 3
a b a b a+ + −

=
+

(ii) The position vector of the point R dividing the join of P and Q externally in the
ratio 2:1 is

OR  =
2( ) (3 2 ) 4

2 1
a b a b b a+ − −

= −
−

Example 12 Show that the points ˆ ˆ ˆˆ ˆ ˆ ˆ ˆA(2 ), B( 3 5 ), C(3 4 4 )i j k i j k i j k− + − − − −  are
the vertices of a right angled triangle.

Solution We have
 AB  = ˆˆ ˆ(1 2) ( 3 1) ( 5 1)i j k− + − + + − − ˆˆ ˆ2 6i j k= − − −

  BC  = ˆˆ ˆ(3 1) ( 4 3) ( 4 5)i j k− + − + + − + ˆˆ ˆ2i j k= − +

and CA  = ˆˆ ˆ(2 3) ( 1 4) (1 4)i j k− + − + + +  ˆˆ ˆ3 5i j k= − + +

Fig 10.17
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Further, note that
2| AB |  = 2 241 6 35 | BC | | CA |= + = +

Hence, the triangle is a right angled triangle.

EXERCISE 10.2
1. Compute the magnitude of the following vectors:

1 1 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ; 2 7 3 ;    
3 3 3

a i j k b i j k c i j k= + + = − − = + −

2. Write two different vectors having same magnitude.
3. Write two different vectors having same direction.

4. Find the values of x and y so that the vectors ˆ ˆ ˆ ˆ2 3   and  i j xi yj+ +  are equal.

5. Find the scalar and vector components of the vector with initial point (2, 1) and
terminal point (– 5, 7).

6. Find the sum of the vectors ˆ ˆˆ ˆ ˆ ˆ2 , 2 4 5a i j k b i j k= − + = − + + and ˆˆ ˆ6  – 7c i j k= − .

7. Find the unit vector in the direction of the vector ˆˆ ˆ 2a i j k= + + .

8. Find the unit vector in the direction of vector PQ,  where P and Q are the points
(1, 2, 3) and (4, 5, 6), respectively.

9. For given vectors, ˆ ˆˆ ˆ ˆ ˆ2 2   anda i j k b i j k= − + = − + − , find the unit vector in the

direction of the vector a b+ .

10. Find a vector  in the direction of vector ˆˆ ˆ5 2i j k− +  which has magnitude 8 units.

11. Show that the vectors ˆ ˆˆ ˆ ˆ ˆ2 3 4   and 4 6 8i j k i j k− + − + −  are collinear.

12. Find the direction cosines of the vector ˆˆ ˆ2 3i j k+ + .

13. Find the direction cosines of the vector joining the points A (1, 2, –3) and
B(–1, –2, 1), directed from A to B.

14. Show that the vector ˆˆ ˆi j k+ +  is equally inclined to the axes OX, OY and OZ.
15. Find the position vector of a point R which divides the line joining two points  P

and Q whose position vectors are ˆ ˆˆ ˆ ˆ ˆ2   and –i j k i j k+ − + +  respectively, in the
ratio 2 : 1

(i) internally (ii) externally



VECTOR ALGEBRA 441

16. Find the position vector of the mid point of the vector joining the points  P(2, 3, 4)
and Q(4, 1, –2).

17. Show that the points A, B and C with position vectors, ˆˆ ˆ3 4 4 ,a i j k= − −

ˆˆ ˆ2b i j k= − +  and ˆˆ ˆ3 5c i j k= − − , respectively form the vertices of a right angled
triangle.

18. In triangle ABC (Fig 10.18), which of the following is not true:

(A) AB + BC + CA = 0

(B) AB BC AC 0+ − =

(C) AB BC CA 0+ − =

(D) AB CB CA 0− + =

19. If anda b  are two collinear vectors, then which of the following are incorrect:

(A) ,   for  some scalar b a= λ λ

(B) a b= ±

(C) the respective components of anda b  are proportional

(D) both the vectors anda b  have same direction, but different magnitudes.

10.6  Product of Two Vectors
So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectors is their product. We may
recall that product of two numbers is a number, product of two matrices is again a
matrix. But in case of functions, we may multiply them in two ways, namely,
multiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectors is also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. Based upon these two types of products for vectors, they have
found various applications in geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1  Scalar (or dot) product of two vectors
Definition 2 The scalar product of two nonzero vectors anda b , denoted by a b⋅ , is

Fig 10.18
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defined as a b⋅  = | | | | cos ,a b θ

where, θ is the angle between and , 0a b ≤ θ ≤ π  (Fig 10.19).

If either 0 or 0,a b= =  then θ is not defined, and in this case,

we define 0a b⋅ =

Observations
1. a b⋅  is a real number.

2. Let anda b be two nonzero vectors, then 0a b⋅ =  if and only if anda b  are
perpendicular to each other. i.e.

0  a b a b⋅ = ⇔ ⊥

3. If θ = 0, then | | | |a b a b⋅ =

In particular, 2| | ,a a a⋅ =  as θ in this case is 0.

4. If θ = π, then | | | |a b a b⋅ = −

In particular, 2( ) | |a a a⋅ − = − , as θ in this case is π.
5. In view of the Observations 2 and 3, for mutually perpendicular unit vectors

ˆˆ ˆ, and ,i j k  we have

ˆ ˆ ˆ ˆi i j j⋅ = ⋅  = ˆ ˆ 1,k k⋅ =

ˆˆ ˆ ˆi j j k⋅ = ⋅  = ˆ ˆ 0k i⋅ =

6. The angle between two nonzero vectors a  and b is given by

cos ,
| || |

a b
a b
⋅

θ =  or –1 . cos
| || |

a b
a b

⎛ ⎞
θ = ⎜ ⎟

⎝ ⎠
7. The scalar product is commutative. i.e.

a b⋅ = b a⋅           (Why?)
Two important properties of scalar product

Property 1 (Distributivity of scalar product over addition) Let ,    and  a b c  be
any three vectors, then

( )a b c⋅ +  =   a b a c⋅ + ⋅

Fig 10.19
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(i)

B

CA

l

B

l
AC

(ii)

A

B

C l

(iv)

lC

B

A

(iii)

θ θ

θθ
p p

p p

a

aa

a

(90 < < 180 )
0 0θ(0 < < 90 )

0 0θ

(270 < < 360 )
0 0θ(180 < < 270 )

0 0θ

Property 2 Let   and a b  be any two vectors, and λ be any scalar. Then

( )a bλ ⋅  = ( ) ( ) ( )a b a b a bλ ⋅ = λ ⋅ = ⋅ λ

If two vectors  and a b  are given in component form as 1 2 3
ˆˆ ˆa i a j a k+ +  and

1 2 3
ˆˆ ˆb i b j b k+ + , then their scalar product is given as

a b⋅  = 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )a i a j a k b i b j b k+ + ⋅ + +

= 1 1 2 3 2 1 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( ) ( )a i b i b j b k a j b i b j b k⋅ + + + ⋅ + +  + 3 1 2 3

ˆ ˆˆ ˆ( )a k b i b j b k⋅ + +

= 1 1 1 2 1 3 2 1 2 2 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i a b j j a b j k⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

 + 3 1 3 2 3 3
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )a b k i a b k j a b k k⋅ + ⋅ + ⋅ (Using the above Properties 1 and 2)

= a1b1 + a2b2 + a3b3 (Using Observation 5)

Thus a b⋅  =  1 1 2 2 3 3a b a b a b+ +

10.6.2  Projection of a vector on a line

Suppose a vector AB  makes an angle θ with a given directed line l (say), in the

anticlockwise direction  (Fig 10.20). Then the projection of AB  on l is a vector p

(say) with magnitude | AB | cosθ , and the direction of p  being the same (or opposite)

to that of the line l, depending upon whether cos θ is positive or negative. The vector p

Fig 10.20
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is called the projection vector, and its magnitude | p | is simply called as the projection

of the vector AB  on the directed line l.
For example, in each of the following figures (Fig 10.20(i) to (iv)), projection vector

of AB  along the line l is vector AC .
Observations

1. If p̂  is the unit vector along a line l, then the projection of a vector a  on the line
l is given by ˆa p⋅ .

2. Projection of a vector a  on other vector b , is given by

ˆ,a b⋅    or   
1 ,   or  ( )

| | | |
ba a b
b b

⎛ ⎞
⋅ ⋅⎜ ⎟
⎝ ⎠

3. If  θ = 0, then the projection vector of AB  will be AB  itself and if θ = π, then the

projection vector of AB  will be BA .

4. If =
2
π

θ  or 
3=
2
π

θ , then the projection vector of AB  will be zero vector.

Remark If α, β and γ are the direction angles of vector 1 2 3
ˆˆ ˆa a i a j a k= + + , then its

direction cosines may be given as

31 2
ˆ

cos , cos ,   and  cosˆ | | | | | || || |
aa aa i

a a aa i
⋅

α = = β = γ =

Also, note that | | cos ,   | |cos  and | |cosa a aα β γ  are respectively the projections of
a  along OX, OY and OZ. i.e., the scalar components a1, a2 and a3 of the vector a ,
are precisely the projections of a  along x-axis, y-axis and z-axis, respectively. Further,
if a  is a unit vector, then it may be expressed in terms of its direction cosines as

ˆˆ ˆcos cos cosa i j k= α + β + γ

Example 13 Find the angle between two vectors  and a b  with magnitudes 1 and 2

respectively and  when  1a b⋅ = .

Solution Given 1, | | 1and | | 2a b a b⋅ = = = . We have

1 1 1cos cos
2 3| || |

a b
a b

− −⎛ ⎞⋅ π⎛ ⎞θ = = =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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Example 14 Find angle ‘θ’ between the vectors ˆ ˆˆ ˆ ˆ ˆ   and  a i j k b i j k= + − = − + .

Solution The angle θ between two vectors  and a b   is given by

cosθ =
| || |
a b
a b
⋅

Now a b⋅  = ˆ ˆˆ ˆ ˆ ˆ( ) ( ) 1 1 1 1i j k i j k+ − ⋅ − + = − − = − .

Therefore, we have   cosθ =
1

3
−

hence the required angle is θ = 1 1cos
3

− ⎛ ⎞−⎜ ⎟⎝ ⎠

Example 15 If ˆ ˆˆ ˆ ˆ ˆ5 3   and  3 5a i j k b i j k= − − = + − , then show that the vectors

 and  a b a b+ −  are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product
is zero.

Here a b+  = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(5 3 ) ( 3 5 ) 6 2 8i j k i j k i j k− − + + − = + −

and a b−  = ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(5 3 ) ( 3 5 ) 4 4 2i j k i j k i j k− − − + − = − +

So       ˆ ˆˆ ˆ ˆ ˆ( ) ( ) (6 2 8 ) (4 4 2 ) 24 8 16 0.a b a b i j k i j k+ ⋅ − = + − ⋅ − + = − − =

Hence   and  a b a b+ −  are perpendicular vectors.

Example 16 Find the projection of the vector ˆˆ ˆ2 3 2a i j k= + +  on the vector

ˆˆ ˆ2b i j k= + + .

Solution The projection of vector a  on  the vector b  is given by

1 ( )
| |

a b
b

⋅  = 2 2 2

(2 1 3 2 2 1) 10 5 6
36(1) (2) (1)

× + × + ×
= =

+ +

Example 17 Find | |a b− , if two vectors anda b  are such that | | 2, | | 3a b= =

and 4a b⋅ = .

Solution We have
2| |a b−  = ( ) ( )a b a b− ⋅ −

= .a a a b b a b b− ⋅ − ⋅ + ⋅
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B

C

A

a
b+

a

b

= 2 2| | 2( ) | |a a b b− ⋅ +

= 2 2(2) 2(4) (3)− +

Therefore | |a b−  = 5

Example 18 If a  is a unit vector and ( ) ( ) 8x a x a− ⋅ + = , then find | |x .

Solution Since a  is a unit vector, | | 1a = . Also,
( ) ( )x a x a− ⋅ +  = 8

or x x x a a x a a⋅ + ⋅ − ⋅ − ⋅  = 8

or 2| | 1−x  = 8  i.e. | x |2 = 9

Therefore | |x  = 3 (as magnitude of a vector is non negative).

Example 19 For any two vectors anda b , we always have | | | | | |a b a b⋅ ≤   (Cauchy-
Schwartz inequality).
Solution The inequality holds trivially when either 0  or  0a b= = . Actually, in such a
situation we have | | 0 | | | |a b a b⋅ = = . So, let us assume that | | 0 | |a b≠ ≠ .
Then, we have

| |
| || |

a b
a b
⋅

 = | cos | 1θ ≤

Therefore | |a b⋅ ≤ | | | |a b

Example 20 For any two vectors anda b, we always

have | | | | | |a b a b+ ≤ + (triangle inequality).

Solution The inequality holds trivially in case either

0 or 0a b= =  (How?). So, let | | 0 | |a b≠ ≠ . Then,
2| |a b+  = 2( ) ( ) ( )a b a b a b+ = + ⋅ +

= a a a b b a b b⋅ + ⋅ + ⋅ + ⋅

= 2 2| | 2 | |a a b b+ ⋅ +  (scalar product is commutative)

≤ 2 2| | 2 | | | |a a b b+ ⋅ + (since | |x x x≤ ∀ ∈ R )

≤ 2 2| | 2 | || | | |a a b b+ + (from Example 19)

= 2(| | | |)a b+

Fig 10.21
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Hence | |a b+ ≤ | | | |a b+

Remark If the equality holds in triangle inequality (in the above Example 20), i.e.

| |a b+  = | | | |a b+ ,

then | AC |  = | AB | | BC |+
showing that the points A, B and C are collinear.

Example 21 Show that the points ˆ ˆˆ ˆ ˆ ˆA( 2 3 5 ),  B( 2 3 )i j k i j k− + + + +  and ˆˆC(7 )i k−
are collinear.

Solution We have

 AB  = ˆ ˆˆ ˆ ˆ ˆ(1 2) (2 3) (3 5) 3 2i j k i j k+ + − + − = − − ,

BC  = ˆ ˆˆ ˆ ˆ ˆ(7 1) (0 2) ( 1 3) 6 2 4i j k i j k− + − + − − = − − ,

AC  = ˆ ˆˆ ˆ ˆ ˆ(7 2) (0 3) ( 1 5) 9 3 6i j k i j k+ + − + − − = − −

| AB |  = 14, | BC | 2 14   and  | AC | 3 14= =

Therefore AC  = | AB | | BC |+

Hence the points A, B and C are collinear.

Note   In Example 21, one may note that although AB BC CA 0+ + =  but the
points A, B and C do not form the vertices of a triangle.

EXERCISE 10.3

1. Find the angle between two vectors  and a b with magnitudes 3  and 2 ,

respectively having 6a b⋅ = .

2. Find the angle between the vectors ˆˆ ˆ2 3  i j k− +  and ˆˆ ˆ3 2i j k− +

3. Find the projection of the vector ˆ ˆi j−  on the vector ˆ ˆi j+ .

4. Find the projection of the vector ˆˆ ˆ3 7i j k+ +  on the vector ˆˆ ˆ7 8i j k− + .
5. Show that each of the given three vectors is a unit vector:

1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 3 6 ),  (3 6 2 ),   (6 2 3 )
7 7 7

i j k i j k i j k+ + − + + −

Also, show that they are mutually perpendicular to each other.
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6. Find | |  and | |a b , if ( ) ( ) 8  and | | 8 | |a b a b a b+ ⋅ − = = .

7. Evaluate the product (3 5 ) (2 7 )a b a b− ⋅ + .

8. Find the magnitude of two vectors  and a b , having the same magnitude and

such that the angle between them is 60o and their scalar product is 1
2

.

9. Find | |x , if for a unit vector a , ( ) ( ) 12x a x a− ⋅ + = .

10. If ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 3 , 2 and 3a i j k b i j k c i j= + + = − + + = + are such that a b+ λ  is
perpendicular to c , then find the value of λ.

11. Show that | | | |a b b a+  is perpendicular to | | | |a b b a− , for any two nonzero

vectors  and a b .

12. If 0  and  0a a a b⋅ = ⋅ = , then what can be concluded about the vector b ?

13. If , ,a b c  are unit vectors such that 0a b c+ + = , find the value of

a b b c c a⋅ + ⋅ + ⋅ .

14. If either vector 0  or 0,   then  0a b a b= = ⋅ = . But the converse need not be
true. Justify your answer with an example.

15. If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2),

respectively, then find ∠ABC. [∠ABC is the angle between the vectors BA
and BC ].

16. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

17. Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 , 3 5 and 3 4 4i j k i j k i j k− + − − − −  form the vertices
of a right angled triangle.

18. If a  is a nonzero vector of magnitude ‘a’ and λ a nonzero scalar, then λ a  is unit
vector if
(A) λ = 1 (B) λ = – 1 (C) a = |λ | (D) a = 1/| λ |

10.6.3  Vector (or cross) product of two vectors
In Section 10.2, we have discussed on the three dimensional right handed rectangular
coordinate system. In this system, when the positive x-axis is rotated counterclockwise
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into the positive y-axis, a right handed (standard) screw would advance in the direction
of the positive z-axis (Fig 10.22(i)).

In a right handed coordinate system, the thumb of the right hand points in the
direction of the positive z-axis when the fingers are curled in the direction away from
the positive x-axis toward the positive y-axis (Fig 10.22(ii)).

Fig 10.22 (i), (ii)

Definition 3 The vector product of two nonzero vectors anda b , is denoted by a b×
and defined as

a b×  = ˆ| || | sina b nθ ,

where, θ is the angle between  anda b , 0 ≤ θ ≤ π  and n̂  is

a unit vector perpendicular to both   and  a b , such that

ˆ,  and  a b n  form a right handed system (Fig 10.23). i.e., the

right handed system rotated from toa b  moves in the

direction of n̂ .

If either 0 or 0a b= = , then θ is not defined and in this case, we define 0a b× = .

Observations

1. a b×  is a vector.

2. Let anda b  be two nonzero vectors. Then 0a b× =  if and only if   and  a b
are parallel (or collinear) to each other, i.e.,

a b×  = 0 a b⇔

Fig 10.23
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In particular, 0a a× =   and ( ) 0a a× − = , since in the first situation, θ = 0
and in the second one, θ = π, making the value of sin θ to be 0.

3. If 
2
π

θ =  then | || |a b a b× = .

4. In view of the Observations 2 and 3, for mutually perpendicular

unit vectors ˆˆ ˆ, andi j k  (Fig 10.24), we have

ˆ ˆi i×  = ˆ ˆˆ ˆ 0j j k k× = × =

ˆ ˆi j× = ˆ ˆ ˆˆ ˆ ˆ ˆ, ,   k j k i k i j× = × =

5. In terms of vector product, the angle between two vectors   and  a b   may be
given as

sin θ =
| |
| || |
a b
a b
×

6. It is always true that the vector product is not commutative, as a b×  = b a− × .

Indeed, ˆ| || | sina b a b n× = θ , where ˆ,  and  a b n  form a right handed system,

i.e., θ is traversed from toa b , Fig 10.25 (i). While, 1̂| || | sinb a a b n× = θ , where

1̂, andb a n  form a right handed system i.e. θ is traversed from tob a ,
Fig 10.25(ii).

Fig 10.25 (i), (ii)

Thus, if we assume anda b  to lie in the plane of the paper, then 1ˆ ˆ and n n  both

will be perpendicular to the plane of the paper. But, n̂  being directed above the
paper while 1n̂  directed below the paper. i.e. 1̂ ˆn n= − .

Fig 10.24
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Hence a b×  = ˆ| || | sina b nθ

= 1̂| || | sina b n− θ b a= − ×
7. In view of the Observations 4 and 6, we have

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,  and   .j i k k j i i k j× = − × = − × = −

8. If anda b represent the adjacent sides of a triangle then its area is given as

1 | |
2

a b× .

By definition of the area of a triangle, we have from
Fig 10.26,

Area of triangle ABC = 
1 AB CD.
2

⋅

But AB | |b=  (as given), and CD = | |a sinθ.

Thus,  Area of triangle ABC = 
1 | || | sin
2

b a θ  
1 | | .
2

a b= ×

9. If   and  a b  represent the adjacent sides of a  parallelogram, then its area is

given by | |a b× .

From Fig 10.27, we have
Area of parallelogram ABCD = AB. DE.

But AB | |b=  (as given), and

DE | | sina= θ .

Thus,

Area of parallelogram ABCD =  | || | sinb a θ  | | .a b= ×

We now state two important properties of vector product.

Property 3 (Distributivity of vector product over addition): If , anda b c
are any three vectors and λ be a scalar, then

(i) ( )a b c× +  = a b a c× + ×

(ii) ( )a bλ ×  = ( ) ( )a b a bλ × = × λ

Fig 10.26

 Fig 10.27
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Let anda b  be two vectors given in component form as 1 2 3
ˆˆ ˆa i a j a k+ + and

1 2 3
ˆˆ ˆb i b j b k+ + , respectively. Then their cross product may be given by

a b×  = 1 2 3

1 2 3

ˆˆ ˆi j k
a a a
b b b

Explanation We have

a b×  = 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ( ) ( )a i a j a k b i b j b k+ + × + +

= 1 1 1 2 1 3 2 1
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )a b i i a b i j a b i k a b j i× + × + × + ×

+ 2 2 2 3
ˆˆ ˆ ˆ( ) ( )a b j j a b j k× + ×

+  3 1 3 2 3 3
ˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )a b k i a b k j a b k k× + × + × (by Property 1)

= 1 2 1 3 2 1
ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )a b i j a b k i a b i j× − × − ×

+  2 3 3 1 3 2
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )a b j k a b k i a b j k× + × − ×

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(as 0  and  ,   and  )i i j j k k i k k i j i i j k j j k× = × = × = × = − × × = − × × = − ×

= 1 2 1 3 2 1 2 3 3 1 3 2
ˆ ˆˆ ˆ ˆ ˆa b k a b j a b k a b i a b j a b i− − + + −

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(as ,   and  )i j k j k i k i j× = × = × =

= 2 3 3 2 1 3 3 1 1 2 2 1
ˆˆ ˆ( ) ( ) ( )a b a b i a b a b j a b a b k− − − + −

= 1 2 3

1 2 3

ˆˆ ˆi j k
a a a
b b b

Example 22 Find ˆ ˆˆ ˆ ˆ ˆ| |,   if  2 3   and  3 5 2a b a i j k b i j k× = + + = + −

Solution We have

a b×  =

ˆˆ ˆ

2 1 3
3 5 2

i j k

−

= ˆˆ ˆ( 2 15) ( 4 9) (10 – 3)i j k− − − − − + ˆˆ ˆ17 13 7i j k= − + +

Hence | |×a b  = 2 2 2( 17) (13) (7) 507− + + =
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Example 23 Find a unit vector perpendicular to each of the vectors ( )a b+  and

( ),a b− where ˆ ˆˆ ˆ ˆ ˆ, 2 3a i j k b i j k= + + = + + .

Solution We have ˆ ˆˆ ˆ ˆ2 3 4 and 2a b i j k a b j k+ = + + − = − −

A vector which is perpendicular to both anda b a b+ −  is given by

( ) ( )a b a b+ × −  =

ˆˆ ˆ
ˆˆ ˆ2 3 4 2 4 2 ( ,  say)

0 1 2

i j k
i j k c= − + − =

− −

Now | |c  = 4 16 4 24 2 6+ + = =
Therefore, the required unit vector is

| |
c
c  =

1 2 1 ˆˆ ˆ
6 6 6

i j k−
+ −

Note   There are two perpendicular directions to any plane. Thus, another unit

vector perpendicular to anda b a b+ −  will be 1 2 1 ˆˆ ˆ .
6 6 6

i j k− +  But that will

be a consequence of ( ) ( )a b a b− × + .

Example 24 Find the area of a triangle having the points A(1, 1, 1), B(1, 2, 3)
and C(2, 3, 1) as its vertices.

Solution We have ˆˆ ˆ ˆAB 2 and AC 2j k i j= + = + . The area of the given triangle

is 
1 | AB AC |
2

× .

Now, AB AC×  =

ˆˆ ˆ
ˆˆ ˆ0 1 2 4 2

1 2 0

i j k
i j k= − + −

Therefore | AB AC |×  = 16 4 1 21+ + =

Thus, the required area is 
1

21
2
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Example 25 Find the area of a parallelogram whose adjacent sides are given

by the vectors ˆ ˆˆ ˆ ˆ ˆ3 4 anda i j k b i j k= + + = − +

Solution The area of a parallelogram with anda b  as its adjacent sides is given

by | |a b× .

Now a b×  =

ˆˆ ˆ
ˆˆ ˆ3 1 4 5 4

1 1 1

i j k
i j k= + −

−

Therefore | |a b×  = 25 1 16 42+ + =

and hence, the required area is 42 .

EXERCISE 10.4

1. Find ˆ ˆˆ ˆ ˆ ˆ| |,   if  7 7 and 3 2 2a b a i j k b i j k× = − + = − + .

2. Find a unit vector perpendicular to each of the vector anda b a b+ − , where
ˆ ˆˆ ˆ ˆ ˆ3 2 2 and 2 2a i j k b i j k= + + = + − .

3. If a unit vector a  makes angles ˆ ˆwith , with
3 4

i jπ π  and an acute angle θ with

k̂ , then find θ and hence, the components of a .
4. Show that

( ) ( )a b a b− × +  = 2( )a b×

5. Find λ and μ if ˆ ˆˆ ˆ ˆ ˆ(2 6 27 ) ( ) 0i j k i j k+ + × + λ + μ = .

6. Given that 0a b⋅ =  and 0a b× = . What can you conclude about the vectors

anda b ?

7. Let the vectors , ,a b c  be given as 1 2 3 1 2 3
ˆ ˆˆ ˆ ˆ ˆ, ,a i a j a k b i b j b k+ + + +

1 2 3
ˆˆ ˆc i c j c k+ + . Then show that ( )a b c a b a c× + = × + × .

8. If either 0  or  0,a b= =  then 0a b× = . Is the converse true? Justify your
answer with an example.

9. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
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10. Find the area of the parallelogram whose adjacent sides are determined by the
vectors ˆˆ ˆ 3a i j k= − + and ˆˆ ˆ2 7b i j k= − + .

11. Let the vectors   and  a b  be such that 2| | 3  and | |
3

a b= = , then a b×  is a

unit vector, if the angle between   and  a b  is
(A) π/6 (B) π/4 (C) π/3 (D) π/2

12. Area of a rectangle having vertices A, B, C and D with position vectors
1 1ˆ ˆˆ ˆ ˆ ˆ– 4 , 4
2 2

i j k i j k+ + + + , 1 ˆˆ ˆ 4
2

i j k− +  and 1 ˆˆ ˆ– 4
2

i j k− + , respectively is

(A) 1
2

(B) 1

(C) 2 (D) 4

Miscellaneous Examples
Example 26 Write all the unit vectors in XY-plane.

Solution Let r x i y j
∧ ∧

= +  be a unit vector in XY-plane (Fig 10.28). Then, from the
figure, we have x = cos θ and y = sin θ (since | r | = 1). So, we may write the vector r as

( )OPr = = ˆ ˆcos sini jθ + θ ... (1)

Clearly, | |r  = 2 2cos sin 1θ + θ =

Fig 10.28

Also, as θ varies from 0 to 2π, the point P (Fig 10.28) traces the circle x2 + y2 = 1
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector
in the XY-plane.
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Example 27 If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, 2 5 , 3 2 3   and  6+ + + + − − −i j k i j i j k i j k  are the position

vectors of points A, B, C and D respectively, then find the angle between AB  and

CD . Deduce that AB  and CD  are collinear.

Solution Note that if θ is the angle between AB and CD, then θ is also the angle

between AB  and  CD .

Now AB  = Position vector of B – Position vector of A

= ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(2 5 ) ( ) 4i j i j k i j k+ − + + = + −

Therefore | AB |  = 2 2 2(1) (4) ( 1) 3 2+ + − =

Similarly CD  = ˆˆ ˆ2 8 2   and  |CD | 6 2i j k− − + =

Thus cos θ =
AB CD
|AB||CD|

⋅

=
1( 2) 4( 8) ( 1)(2) 36 1

36(3 2)(6 2)
− + − + − −

= = −

Since 0 ≤ θ ≤ π, it follows that θ = π. This shows that AB  and CD  are collinear.

Alternatively, 1AB CD
2

= −  which implies that AB and CD  are collinear vectors.

Example 28 Let , anda b c  be three vectors such that | | 3, | | 4, | | 5a b c= = =  and

each one of them being perpendicular to the sum of the other two, find | |a b c+ + .

Solution Given ( )a b c⋅ +  = 0, ( ) 0, ( ) 0.b c a c a b⋅ + = ⋅ + =

Now 2| |a b c+ +  = 2( ) ( ) ( )a b c a b c a b c+ + = + + ⋅ + +

= ( ) ( )a a a b c b b b a c⋅ + ⋅ + + ⋅ + ⋅ +

+ .( ) .c a b c c+ +

= 2 2 2| | | | | |a b c+ +
= 9 + 16 + 25 = 50

Therefore | |a b c+ +  = 50 5 2=
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Example 29 Three vectors ,     and  a b c  satisfy the condition 0a b c+ + = . Evaluate

the quantity ,   if  | | 1, | | 4  and | | 2a b b c c a a b cμ = ⋅ + ⋅ + ⋅ = = = .

Solution Since 0a b c+ + = , we have

( )a a b c⋅ + +  = 0

or a a a b a c⋅ + ⋅ + ⋅  = 0

Therefore a b a c⋅ + ⋅  =
2 1a− = −                                        ... (1)

Again, ( )b a b c⋅ + +  = 0

or a b b c⋅ + ⋅  =
2

16b− = −                                        ... (2)

Similarly a c b c⋅ + ⋅  = – 4. ... (3)

Adding (1), (2) and (3), we have

2 ( )a b b ac c⋅ + ⋅ + ⋅  = – 21

or 2μ = – 21, i.e., μ =
21
2
−

Example 30 If with reference to the right handed system of mutually perpendicular

unit vectors ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,  and , 3 ,   2 – 3i j k i j i j kα = − β = + , then express β  in the form

1 2 1, where  β = β + β β is parallel to 2  and α β  is perpendicular to α .

Solution Let 1 ,   β = λα λ  is a scalar, i.e., 1
ˆ ˆ3 i jβ = λ − λ .

Now 2 1β = β −β  = ˆˆ ˆ(2 3 ) (1 ) 3i j k− λ + + λ − .

Now, since 2β  is to be perpendicular to α , we should have 2 0α ⋅β = . i.e.,

3(2 3 ) (1 )− λ − + λ  = 0

or λ =
1
2

Therefore 1β  =
3 1ˆ ˆ
2 2

i j−   and 2
1 3 ˆˆ ˆ – 3
2 2

i j kβ = +
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Miscellaneous Exercise on Chapter 10
1. Write down a unit vector in XY-plane, making an angle of 30° with the positive

direction of x-axis.
2. Find the scalar components and magnitude of the vector joining the points

P(x1, y1, z1) and Q (x2, y2, z2).
3. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of

north and stops. Determine the girl’s displacement from her initial point of
departure.

4. If a b c= + , then is it true that | | | | | |a b c= + ? Justify your answer.

5. Find the value of x for which ˆˆ ˆ( )x i j k+ +  is a unit vector.
6. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

ˆ ˆˆ ˆ ˆ ˆ2 3   and  2a i j k b i j k= + − = − + .

7. If ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,   2 3 and   2a i j k b i j k c i j k= + + = − + = − + , find a unit vector parallel

to the vector 2 –  3a b c+ .
8. Show that the points A (1, – 2, – 8), B(5, 0, –2) and C(11, 3, 7) are collinear, and

find the ratio in which B divides AC.
9. Find the position vector of a point R which divides the line joining two points

P and Q whose position vectors are (2 ) and ( – 3 )a b a b+  externally in the ratio
1 : 2. Also, show that P is the mid point of the line segment RQ.

10. The two adjacent sides of a parallelogram are ˆ ˆˆ ˆ ˆ ˆ2 4 5  and  2 3i j k i j k− + − − .
Find the unit vector parallel to its diagonal. Also, find its area.

11. Show that the direction cosines of a vector equally inclined to the axes OX, OY

and OZ are 
1 1 1, , .
3 3 3

12. Let ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ4 2 , 3 2 7   and  2 4a i j k b i j k c i j k= + + = − + = − + . Find a vector d

which is perpendicular to both   and a b , and 15c d⋅ = .

13. The scalar product of the vector ˆˆ ˆi j k+ +  with a unit vector along the sum of

vectors ˆˆ ˆ2 4 5i j k+ −  and ˆˆ ˆ2 3i j kλ + +  is equal to one. Find the value of λ.

14. If , , ca b  are mutually perpendicular vectors of equal magnitudes, show that

the vector a b c+ +  is equally inclined to , anda b c .
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15. Prove that  2 2( ) ( ) | | | |a b a b a b+ ⋅ + = + , if and only if ,a b  are perpendicular,

given 0, 0a b≠ ≠ .
Choose the correct answer in Exercises 16 to 19.

16. If θ is the angle between two vectors   and a b , then 0a b⋅ ≥  only when

(A) 0
2
π

< θ < (B) 0
2
π

≤ θ ≤

(C) 0 < θ < π (D) 0 ≤ θ ≤ π

17. Let   and a b  be two unit vectors and θ is the angle between them. Then a b+
is a unit vector if

(A)
4
π

θ = (B)
3
π

θ = (C)
2
π

θ = (D) 2
3
π

θ =

18. The value of ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ.( ) ( ) ( )i j k j i k k i j× + ⋅ × + ⋅ ×  is
(A) 0 (B) –1 (C) 1 (D) 3

19. If θ is the angle between any two vectors   and a b , then | | | |a b a b⋅ = ×  when
θ is equal to

(A) 0 (B)
4
π

(C)
2
π

(D) π

Summary

Position vector of a point P(x, y, z) is given as ˆˆ ˆOP( )r xi yj zk= = + + , and its

magnitude by 2 2 2x y z+ + .

The scalar components of a vector are its direction ratios, and represent its
projections along the respective axes.
The magnitude (r), direction ratios (a, b, c) and direction cosines (l, m, n) of
any vector are related as:

, ,a b cl m n
r r r

= = =

The vector sum of the three sides of a triangle taken in order is 0 .
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The vector sum of two coinitial vectors is given by the diagonal of the
parallelogram whose adjacent sides are the given vectors.
The multiplication of a given vector by a scalar λ, changes the magnitude of
the vector by the multiple |λ |, and keeps the direction same (or makes it
opposite) according as the value of λ is positive (or negative).

For a given vector a , the vector ˆ
| |
aa
a

=  gives the unit vector in the direction

of a .
The position vector of a point R dividing a line segment joining the points

P and Q whose position vectors are anda b  respectively, in the ratio m : n

(i) internally, is given by na mb
m n
+
+

.

(ii) externally, is given by mb na
m n
−
−

.

The scalar product of two given vectors anda b  having angle θ between
them is defined as

| || | cosa b a b⋅ = θ .

Also, when a b⋅  is given, the angle ‘θ’ between the vectors anda b  may be
determined by

cosθ =
| || |
a b
a b
⋅

If θ is the angle between two vectors anda b , then their cross product is
given as

a b× = ˆ| || | sina b nθ

where n̂  is a unit vector perpendicular to the plane containing anda b . Such

that ˆ, ,a b n form right handed system of coordinate axes.

If we have two vectors anda b , given in component form as

1 2 3
ˆˆ ˆa a i a j a k= + +  and 1 2 3

ˆˆ ˆb b i b j b k= + +  and λ any scalar,
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then a b+  = 1 1 2 2 3 3
ˆˆ ˆ( ) ( ) ( )a b i a b j a b k+ + + + + ;

aλ  = 1 2 3
ˆˆ ˆ( ) ( ) ( )a i a j a kλ + λ + λ ;

.a b  = 1 1 2 2 3 3a b a b a b+ + ;

and a b×  = 1 1 1

2 2 2

ˆˆ ˆ

.
i j k
a b c
a b c

Historical Note
The word vector has been derived from a Latin word vectus, which means

“to carry”. The germinal ideas of modern vector theory date from around 1800
when Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822) described
that how a complex number a + ib could be given a geometric interpretation with
the help of a directed line segment in a coordinate plane. William Rowen Hamilton
(1805-1865) an Irish mathematician was the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1853). Hamilton’s
method of quaternions (an ordered set of four real numbers given as:

ˆ ˆˆ ˆ ˆ ˆ, , ,a bi cj dk i j k+ + +  following certain algebraic rules) was a solution to the
problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek
philosopher, and pupil of Plato (427-348 B.C.). That time it was supposed to be
known that the combined action of two or more forces could be seen by adding
them according to parallelogram law. The correct law for the composition of
forces, that forces add vectorially, had been discovered in the case of perpendicular
forces by Stevin-Simon (1548-1620). In 1586 A.D., he analysed the principle of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
(“Principles of the Art of Weighing”), which caused a major breakthrough in the
development of mechanics. But it took another 200 years for the general concept
of vectors to form.

In the 1880, Josaih Willard Gibbs (1839-1903), an American physicist
and mathematician, and Oliver Heaviside (1850-1925), an English engineer, created
what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs
printed a treatise entitled Element of Vector Analysis. This book gave a systematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectors is due to the D. Heaviside and P.G. Tait (1831-1901)
who contributed significantly to this subject.

— —
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� The moving power of mathematical invention is not
reasoning but imagination. – A.DEMORGAN �

11.1  Introduction
In Class XI, while studying Analytical Geometry in two
dimensions, and the introduction to three dimensional
geometry, we confined to the Cartesian methods only. In
the previous chapter of this book, we have studied some
basic concepts of vectors. We will now use vector algebra
to three dimensional geometry. The purpose of this
approach to 3-dimensional geometry is that it makes the
study simple and elegant*.

In this chapter, we shall study the direction cosines
and direction ratios of a line joining two points and also
discuss about the equations of lines and planes in space
under different conditions, angle between two lines, two
planes, a line and a plane, shortest distance between two
skew lines and distance of a point from a plane. Most of
the above results are obtained in vector form. Nevertheless, we shall also translate
these results in the Cartesian form which, at times, presents a more clear geometric
and analytic picture of the situation.

11.2  Direction Cosines and Direction Ratios of a Line
From Chapter 10, recall that if a directed line L passing through the origin makes
angles α, β and γ with x, y and z-axes, respectively, called direction angles, then cosine
of these angles, namely, cos α, cos β and cos γ are called direction cosines of the
directed line L.

If we reverse the direction of L, then the direction angles are replaced by their supplements,

i.e., π α− , π β−  and π γ− . Thus, the signs of the direction cosines are reversed.

Chapter 11

THREE DIMENSIONAL GEOMETRY

* For various activities in three dimensional geometry, one may refer to the Book

“A Hand Book for designing Mathematics Laboratory in Schools”, NCERT, 2005

Leonhard Euler
(1707-1783)
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Note that a given line in space can be extended in two opposite directions and so it
has two sets of direction cosines. In order to have a unique set of direction cosines for
a given line in space, we must take the given line as a directed line. These unique
direction cosines are denoted by l, m and n.

Remark If the given line in space does not pass through the origin, then, in order to find
its direction cosines, we draw a line through the origin and parallel to the given line.
Now take one of the directed lines from the origin and find its direction cosines as two
parallel line have same set of direction cosines.

Any three numbers which are proportional to the direction cosines of a line are
called the direction ratios of the line. If l, m, n are direction cosines and a, b, c are
direction ratios of a line, then a = λl, b=λm and c = λn, for any nonzero λ ∈ R.

�Note   Some authors also call direction ratios as direction numbers.

Let a, b, c be direction ratios of a line and let l, m and n be the direction cosines
(d.c’s) of the line. Then

l

a
 = 

m

b
 =

n
k

c
=  (say), k being a constant.

Therefore l = ak, m = bk, n = ck ... (1)
But l2 + m2 + n2 = 1
Therefore k2 (a2 + b2 + c2) = 1

or k =
2 2 2

1

a b c
±

+ +

Fig 11.1
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Hence, from (1), the d.c.’s of the line are

2 2 2 2 2 2 2 2 2
, ,

a b c
l m n

a b c a b c a b c
=± = ± = ±

+ + + + + +
where, depending on the desired sign of k, either a positive or a negative sign is to be
taken for l, m and n.

For any line, if a, b, c are direction ratios of a line, then ka, kb, kc; k ≠ 0 is also a
set of direction ratios. So, any two sets of direction ratios of a line are also proportional.
Also, for any line there are infinitely many sets of direction ratios.

11.2.1  Relation between the direction cosines of a line

Consider a line RS with direction cosines l, m, n. Through
the origin draw a line parallel to the given line and take a
point P(x, y, z) on this line. From P draw a perpendicular
PA on the x-axis (Fig. 11.2).

Let OP = r. Then
OA

cos
OP

α = x

r
= . This gives x = lr.

Similarly, y = mr and z = nr

Thus x2 + y2 + z2 = r2 (l2 + m2 + n2)

But x2 + y2 + z2 = r2

Hence l2 + m2 + n2 = 1

11.2.2  Direction cosines of a line passing through two points

Since one and only one line passes through two given points, we can determine the
direction cosines of a line passing through the given points P(x

1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
)

as follows (Fig 11.3 (a)).

Fig 11.3

r

Z

X

Y

R

S

P ( , , )x y z

A

O
�

AO

P

x
�

�

Fig 11.2
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Let l, m, n be the direction cosines of the line PQ and let it makes angles α, β and  γ
with the x, y and z-axis, respectively.

Draw perpendiculars from P and Q to XY-plane to meet at R and S. Draw a
perpendicular from P to QS to meet at N. Now, in right angle triangle PNQ, ∠PQN=
γ  (Fig 11.3 (b).

Therefore, cosγ = 2 1NQ

PQ PQ

z z−=

Similarly cosα = 2 1 2 1and cos
PQ PQ

x x y y− −β=

Hence, the direction cosines of the line segment joining the points P(x
1
, y

1
, z

1
) and

Q(x
2
, y

2
, z

2
) are

2 1

PQ

x x−
, 2 1

PQ

y y−
, 2 1

PQ

z z−

where PQ = ( )22 2
2 1 2 1 2 1( ) ( )x x y y z z− + − + −

�Note   The direction ratios of the line segment joining P(x
1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
)

may be taken as
x

2 
– x

1
, y

2 
– y

1
, z

2 
– z

1
 or x

1 
– x

2
, y

1 
– y

2
, z

1 
– z

2

Example 1 If a line makes angle 90°, 60° and 30° with the positive direction of x, y and
z-axis respectively, find its direction cosines.

Solution Let the d .c . 's of the lines be l , m, n. Then l = cos 900 = 0, m = cos 600 = 
1

2
,

n = cos 300 = 
2

3
.

Example 2 If a line has direction ratios 2, – 1, – 2, determine its direction cosines.

Solution Direction cosines are

222 )2()1(2

2

−+−+
,  

222 )2()1(2

1

−+−+

−
,  

( ) 222 )2(12

2

−+−+

−

or  
2 1 2,,
3 3 3

− −

Example 3 Find the direction cosines of the line passing through  the two points
(– 2, 4, – 5) and (1, 2, 3).
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Solution We know the direction cosines of the line passing through  two points
P(x

1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
) are given by

2 1 2 1 2 1,,
PQ PQ PQ

x x y y z z− − −

where PQ = ( )2
12

2
12

2
12 )()( zzyyxx −+−+−

Here P is (– 2, 4, – 5) and Q is (1, 2, 3).

So PQ = 2 2 2(1 ( 2)) (2 4) (3 ( 5))− − + − + − −  = 77
Thus, the direction cosines of the line joining two points is

3 2 8, ,
77 77 77

−

Example 4 Find the direction cosines of x, y and z-axis.

Solution The x-axis makes angles 0°, 90° and 90° respectively with x, y and z-axis.
Therefore, the direction cosines of x-axis are cos 0°, cos 90°, cos 90° i.e., 1,0,0.
Similarly, direction cosines of y-axis and z-axis are 0, 1, 0 and 0, 0, 1 respectively.

Example 5 Show that the points A (2, 3, – 4), B (1, – 2, 3) and C (3, 8, – 11) are
collinear.

Solution Direction ratios of line joining A and B are
1 – 2, – 2 – 3, 3 + 4 i.e., – 1, – 5, 7.
The direction ratios of line joining B and C are
3 –1, 8 + 2, – 11 – 3, i.e., 2, 10, – 14.
It is clear that direction ratios of AB and BC are proportional, hence, AB is parallel

to BC. But point B is common to both AB and BC. Therefore, A, B, C are
collinear points.

EXERCISE 11.1

1. If a line makes angles 90°, 135°, 45° with the x, y and z-axes respectively, find its
direction cosines.

2. Find the direction cosines of a line which makes equal angles with the coordinate
axes.

3. If a line has the direction ratios –18, 12, – 4, then what are its direction cosines ?

4. Show that the points (2, 3, 4), (– 1, – 2, 1), (5, 8, 7) are collinear.

5. Find the direction cosines of the sides of the triangle whose vertices are
(3, 5, – 4), (– 1, 1, 2) and (– 5, – 5, – 2).
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11.3 Equation of a Line in Space
We have studied equation of  lines in two dimensions in Class XI, we shall now study
the vector and cartesian equations of a line in space.

A line is uniquely determined if

(i) it passes through a given point and has given direction, or

(ii) it passes through two given points.

11.3.1Equation of a line through a given point and parallel to a given vector 
�
b

Let a
�

 be the position vector of the given point
A with respect to the origin O of the
rectangular coordinate system. Let l be the
line which passes through the point A and is

parallel to a given vector b
�

. Let  r
�

 be the
position vector of an arbitrary point P on the
line (Fig 11.4).

Then AP
����

 is parallel to the vector b
�

,  i.e.,

AP
����

= λb
�

,  where λ is some real number.

But AP
����

 = OP – OA
���� ����

i.e. λb
�

 = r a−� �

Conversely, for each value of the parameter λ, this equation gives the position
vector of a point P on the line.  Hence, the vector equation of the line is given by

�
r  = �

��
a + b ... (1)

Remark If ˆˆ ˆb ai bj ck= + +
�

, then a, b, c are direction ratios of the line and conversely,

if a, b, c are direction ratios of a line, then ˆˆ ˆ= + +
�
b ai bj ck will be the parallel to

the line. Here, b should not be confused with |
�
b |.

Derivation of cartesian form from vector form
Let the coordinates of the given point A be (x

1
, y

1
, z

1
) and the direction  ratios of

the line be a, b, c. Consider the coordinates of any point P be (x, y, z). Then

kzjyixr ˆˆˆ ++=
� ; kzjyixa ˆˆˆ

111 ++=
�

and ˆˆ ˆb a i b j c k= + +
�

Substituting these values in (1) and equating the coefficients of ˆ ˆ,i j  and k̂ , we get
x = x

1
 + λ a;  y = y

1
 + λ b;  z = z

1
+ λ c ... (2)

Fig 11.4
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These are parametric equations of the line. Eliminating the parameter λ from (2),
we get

1x – x
a

 = 1 1y – y z – z
=

b c
... (3)

This is the Cartesian equation of the line.

�Note   If l, m, n are the direction cosines of the line, the equation of the line is

1x – x

l
 = 1 1y – y z – z

=
m n

Example 6 Find the vector and the Cartesian equations of the line through the point

(5, 2, – 4) and which is parallel to the vector ˆˆ ˆ3 2 8i j k+ − .
Solution We have

a
�

 = ˆ ˆˆ ˆ ˆ ˆ5 2 4 and 3 2 8i j k b i j k+ − = + −
�

Therefore, the vector equation of the line is

r
�

= ˆ ˆˆ ˆ ˆ ˆ5 2 4 ( 3 2 8 )i j k i j k+ − + λ + −
Now, r

�
 is the position vector of any point P(x, y, z) on the line.

Therefore, ˆˆ ˆxi y j z k+ +  = ˆ ˆˆ ˆ ˆ ˆ5 2 4 ( 3 2 8 )i j k i j k+ − + λ + −

= � �(5 3 ) (2 2 ) ( 4 8 )i j k+ λ + + λ + − − λ�

Eliminating λ , we get

5

3

x−
 =

2 4

2 8

y z− +=
−

which is the equation of the line in Cartesian form.

11.3.2 Equation of a line passing through two given points

Let a
�  and b

�
 be the position vectors of two

points A (x
1
, y

1
, z

1
) and B (x

2
, y

2
, z

2
),

respectively that are lying on a line (Fig 11.5).

Let r
�

 be the position vector of an
arbitrary point P(x, y, z), then P is a point on

the line if and only if AP r a= −
���� � �

 and

AB b a= −
���� � �

 are collinear vectors. Therefore,
P is on the line if and only if

( )r a b a− = λ −
�� � � Fig 11.5
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or ( )r a b a= + λ −
�

� � �

, λ ∈λ ∈λ ∈λ ∈λ ∈ R. ... (1)
This is the vector equation of the line.

Derivation of cartesian form from vector form

We have

1 1 1
ˆ ˆˆ ˆ ˆ ˆ,r xi y j z k a x i y j z k= + + = + +� �

and 2 2 2
ˆˆ ˆ ,b x i y j z k= + +

�

Substituting these values in (1), we get

� � � � � �
1 1 1 2 1 2 1 2 1[( ) ( ) ( ) ]x i y j z k x i y j z k x x i y y j z z k+ + = + + + λ − + − + −� � �

Equating the like coefficients of kji ˆ,ˆ,ˆ , we get

x = x
1
 + λ (x

2
 – x

1
); y = y

1
 + λ (y

2
 – y

1
); z = z

1
 + λ (z

2
 – z

1
)

On eliminating  λ , we obtain

1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

− − −
= =

− − −
which is the equation of the line in Cartesian form.

Example 7 Find the vector equation for the line passing through the points (–1, 0, 2)
and (3, 4, 6).

Solution Let  a
�

 and  b
�

 be the position vectors of the point A(– 1, 0, 2) and B(3, 4, 6).

Then ˆˆ 2a i k= − +�

and ˆˆ ˆ3 4 6b i j k= + +
�

Therefore ˆˆ ˆ4 4 4b a i j k− = + +
� �

Let r
�

 be the position vector of any point on the line.  Then the vector equation of
the line is

ˆ ˆˆ ˆ ˆ2 (4 4 4 )r i k i j k= − + + λ + +�

Example 8 The Cartesian equation of a line is

3 5 6

2 4 2

x y z+ − += =

Find the vector equation for the line.

Solution Comparing the given equation with the standard form

1 1 1x x y y z z

a b c

− − −= =

We observe that x
1
 = – 3, y

1
 = 5, z

1
 = – 6; a = 2, b = 4, c = 2.
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Thus, the required line passes through the point (– 3, 5, – 6) and is parallel to the

vector ˆˆ ˆ2 4 2i j k+ + . Let r
�

 be the position vector of any point on the line, then the

vector equation of the line is given by

ˆˆ ˆ( 3 5 6 )r i j k= − + −� + λ ˆˆ ˆ(2 4 2 )i j k+ +

11.4  Angle between Two Lines
Let L

1
 and L

2
 be two lines passing through the origin

and with direction ratios a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
,

respectively. Let P be a point on L
1
 and Q be a point

on L
2
. Consider the directed lines OP and OQ as

given in Fig 11.6. Let θ be the acute angle between
OP and OQ. Now recall that the directed line
segments OP and OQ are vectors with components
a

1
, b

1
, c

1
 and a

2
, b

2
, c

2
, respectively. Therefore, the

angle θ between them is given by

cos θθθθθ =
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ +

+ + + +
... (1)

The angle between the lines in terms of sin θ is given by

sin θ = 21 cos− θ

= ( )( )
2

1 2 1 2 1 2
2 2 2 2 2 2
1 1 1 2 2 2

( )
1

a a b b c c

a b c a b c

+ +−
+ + + +

=
( )( ) ( )

( ) ( )

22 2 2 2 2 2
1 1 1 2 2 2 1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a b c a b c a a b b c c

a b c a b c

+ + + + − + +

+ + + +

=
2 2 2

1 2 2 1 1 2 2 1 1 2 2 1

2 2 2 2 2 2
1 1 1 2 2 2

( ) ( ) ( )− + − + −

+ + + +

a b a b b c b c c a c a

a b c a b c
... (2)

�Note   In case the lines L
1 
and L

2
 do not pass through the origin, we may take

lines 1 2L and L′ ′ which are parallel to L
1
 and L

2
 respectively and pass through

the origin.

Fig 11.6
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If instead of direction ratios for the lines L
1
 and L

2
, direction cosines, namely,

l
1
, m

1
, n

1
 for L

1
 and l

2
, m

2
, n

2
 for L

2
 are given, then (1) and (2) takes the following form:

cos θ = | l
1 
l
2
 + m

1
m

2
 + n

1
n

2
|    (as 2 2 2

1 1 1 1l m n+ + = 2 2 2
2 2 2l m n= + + ) ... (3)

and sin θ = ( )2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( )l m l m m n m n n l n l− − − + −                    ... (4)

Two lines with direction ratios a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
 are

(i) perpendicular i.e. if θ = 90° by (1)

a
1
a

2
 + b

1
b

2
 + c

1
c

2
 = 0

(ii) parallel i.e. if θ = 0 by (2)

1

2

a

a  = 1 1

2 2

b c

b c
=

Now, we find the angle between two lines when their equations are given. If θ is
acute the angle between the lines

r
�  = 1 1a b+ λ

��
 and  r

�
 = 2 2a b+ µ

��

then cosθ =
1 2

1 2

b b

b b

⋅
� �

� �

In Cartesian form, if θ is the angle between the lines

1

1

x x

a

−
 = 1 1

1 1

y y z z

b c

− −= ... (1)

and
2

2

x x

a

−
 = 2 2

2 2

y y z z

b c

− −= ... (2)

where, a
1
, b

1,
 c

1 
and a

2,
 b

2
, c

2 
are the direction ratios of the lines (1) and (2), respectively,

then

cos θ =
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ +

+ + + +

Example 9 Find the angle between the pair of lines given by

r
�  = ˆ ˆˆ ˆ ˆ ˆ3 2 4 ( 2 2 )i j k i j k+ − + λ + +

and r
�  = ˆˆ ˆ ˆ ˆ5 2 (3 2 6 )i j i j k− + µ + +
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Solution Here 1b
�

 = ˆˆ ˆ2 2i j k+ +  and 2b
�

 = ˆˆ ˆ3 2 6i j k+ +
The angle θ between the two lines is given by

cos θ = 1 2

1 2

ˆ ˆˆ ˆ ˆ ˆ( 2 2 ) (3 2 6 )

1 4 4 9 4 36

b b i j k i j k

b b

⋅ + + ⋅ + +=
+ + + +

� �

� �

=
3 4 12 19

3 7 21

+ + =
×

Hence θ = cos–1 
19

21
 
  

Example 10 Find the angle between the pair of lines

3

3

x +
 =

1 3

5 4

y z− +=

and
1

1

x +
 =

4 5

1 2

y z− −=

Solution The direction ratios of the first line are 3, 5, 4 and the direction ratios of the
second line are 1, 1, 2.  If θ is the angle between them, then

cos θ =
2 2 2 2 2 2

3.1 5.1 4.2 16 16 8 3

1550 6 5 2 63 5 4 1 1 2

+ + = = =
+ + + +

Hence, the required angle is cos–1
8 3

15

 
   

.

11.5  Shortest Distance between Two Lines
If two lines in space intersect at a point, then the shortest distance between them is
zero. Also, if two lines in space are parallel,
then the shortest distance between them
will be the perpendicular distance, i.e. the
length of the perpendicular drawn from a
point on one line onto the other line.

Further, in a space, there are lines which
are neither intersecting nor parallel. In fact,
such pair of lines are non coplanar and
are called skew lines. For example, let us
consider a room of size 1, 3, 2 units along
x, y and z-axes respectively Fig 11.7. Fig 11.7
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l2

S

T
Q

P
l1

The line GE that goes diagonally across the ceiling and the line DB passes through
one corner of the ceiling directly above A and goes diagonally down the wall. These
lines are skew because they are not parallel and also never meet.

By the shortest distance between two lines we mean the join of a point in one line
with one point on the other line so that the length of the segment so obtained is the
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
the lines.

11.5.1  Distance between two skew lines

We now determine the shortest distance between two skew lines in the following way:
Let l

1 
and l

2  
be two skew lines with equations (Fig. 11.8)

r
�

 = 1 1a b+ λ
��

    ... (1)

and r
�

 = 2 2a b+ µ
��

  ... (2)

Take any point S on l
1
 with position vector 1a

�

 
and T on l

2
, with position vector  2a

�
.

Then the magnitude of the shortest distance vector
will be equal to that of the projection of ST along the
direction of the line of shortest distance (See 10.6.2).

If PQ
����

 is the shortest distance vector between

l
1 
and l

2 
, then it being perpendicular to both  

1b
�

 and

2b
�

, the unit vector n̂  along PQ
����

 would therefore be

n̂  = 1 2

1 2| |

b b

b b

×
×

� �

� �   ... (3)

Then PQ
����

 = d n̂
where, d is the magnitude of the shortest distance vector. Let θ be the angle between

ST
���

 and PQ
����

. Then
PQ = ST | cos θ |

But cos θ =
PQ ST

| PQ | | ST |

⋅
���� ���

����� ���

 =
2 1ˆ ( )

ST

d n a a

d

⋅ −� �

(since  2 1ST )a a= −
��� � �

= 1 2 2 1

1 2

( ) ( )

ST

b b a a

b b

× ⋅ −
×

� � � �

� � [From (3)]

Fig 11.8
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Hence, the required shortest distance is

d = PQ = ST | cos θ |

or d = 1 2 2 1

1 2

( ) . ( )

| |

b b a a

b b

× −
×

� �

� �

� �

Cartesian form

The shortest distance between the lines

l
1 
: 1

1

x x

a

−
 = 1 1

1 1

y y z z

b c

− −=

and l
2  

: 2

2

x x

a

−
 = 2 2

2 2

y y z z

b c

− −=

is

2 1 2 1 2 1

1 1 1

2 2 2

2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −

11.5.2 Distance between parallel lines

If two lines l
1
 and  l

2 
are parallel, then they are coplanar.  Let the lines be given by

r
�  = 1a b+ λ

�� ... (1)

and r
�  = 2a b+ µ

�� … (2)

where, 
1a
� is the position vector of a point S on l

1 
and

2a
�

 
is the position vector of a point T on l

2
 Fig 11.9.

As l
1
, l

2 
are coplanar, if the foot of the perpendicular

from T on the line l
1
 is P, then the distance between the

lines l
1 
and l

2 
=  |TP |.

Let θ be the angle between the vectors ST
���

and b
�

.
Then

STb ×
����

 = ˆ( | | | ST| sin )b nθ
����

... (3)

where n̂  is the unit vector perpendicular to the plane of the lines l
1 
and l

2.

But ST
���

= 2 1a a−� �

Fig 11.9
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Therefore, from (3), we get

2 1( )b a a× −
� � �

 = ˆ| | PTb n
�

        (since PT = ST sin θ)

i.e., 2 1| ( )|b a a× −
� � �

 = | | PT 1b ⋅
�

       (as | |n̂  = 1)

Hence, the distance between the given parallel lines is

d = 2 1( )
| PT |

| |

b a a

b

× −
=

�

� �

����

�

Example 11 Find the shortest distance between the lines l
1
 and l

2 
whose vector

equations are

r
�  = ˆˆ ˆ ˆ ˆ(2 )i j i j k+ + λ − + ... (1)

and r
�  = ˆ ˆˆ ˆ ˆ ˆ2 (3 5 2 )i j k i j k+ − + µ − + ... (2)

Solution Comparing (1) and (2) with r
�  = 1 1a b+ λ

��  and  
22 bar
��� µ+=  respectively,

we get 1a
�

 = 1
ˆˆ ˆ ˆ ˆ, 2i j b i j k+ = − +

�

2a
�

 = 2 î  + ĵ – k̂  and 2b
�

 = 3 î  – 5 ĵ  + 2 k̂

Therefore 2 1a a−� �
 = ˆî k−

and 1 2b b×
� �

 = ˆ ˆˆ ˆ ˆ ˆ( 2 ) ( 3 5 2 )i j k i j k− + × − +

=

ˆˆ ˆ

ˆˆ ˆ2 1 1 3 7

3 5 2

i j k

i j k− = − −
−

So 1 2| |b b×
� �

 = 9 1 49 59+ + =
Hence, the shortest distance between the given lines is given by

d  =
||

)(.)(

21

1221

bb

aabb
��

����

×
−×

  
59

10

59

|703| =+−=

Example 12 Find the distance between the lines l
1
 and l

2 
given by

r
�

 = ˆ ˆˆ ˆ ˆ ˆ2 4 ( 2 3 6 )i j k i j k+ − + λ + +

and r
�

 = ˆ ˆˆ ˆ ˆ ˆ3 3 5 ( 2 3 6 )i j k i j k+ − + µ + +
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Solution The two lines are parallel (Why? ) We have

1a
�

 = ˆˆ ˆ2 4i j k+ − , 2a
�

 = ˆˆ ˆ3 3 5i j k+ −  and b
�

 = ˆˆ ˆ2 3 6i j k+ +
Therefore, the distance between the lines is given by

d = 2 1( )

| |

b a a

b

× −
� � �

�  = 

ˆˆ ˆ

2 3 6

2 1 1

4 9 36

i j k

−

+ +

or =
ˆˆ ˆ| 9 14 4 | 293 293

749 49

i j k− + − = =

EXERCISE 11.2

1. Show that the three lines with direction cosines

12 3 4 4 12 3 3 4 12
, , ; , , ; , ,

13 13 13 13 13 13 13 13 13

− − −
 are mutually perpendicular.

2. Show that the line through the points (1, – 1, 2), (3, 4, – 2) is perpendicular to the
line through the points (0, 3, 2) and (3, 5, 6).

3. Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line
through the points (– 1, – 2, 1), (1, 2, 5).

4. Find the equation of the line which passes through the point (1, 2, 3) and is

parallel to the vector ˆˆ ˆ3 2 2i j k+ − .

5. Find the equation of the line in vector and in cartesian form that passes through

the point with position vector ˆˆ2 4i j k− + and is in the direction ˆˆ ˆ2i j k+ − .

6. Find the cartesian equation of the line which passes through the point (– 2, 4, – 5)

and parallel to the line given by 
3 4 8

3 5 6

x y z+ − += = .

7. The cartesian equation of a line is 
5 4 6

3 7 2

x y z− + −= = . Write its vector form.

8. Find the vector and the cartesian equations of the lines that passes through the
origin and (5, – 2, 3).
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9. Find the vector and the cartesian equations of the line that passes through the
points (3, – 2, – 5), (3, – 2, 6).

10. Find the angle between the following pairs of lines:

(i) ˆ ˆˆ ˆ ˆ ˆ2 5 (3 2 6 )r i j k i j k= − + + λ + +�
 and

ˆ ˆˆ ˆ ˆ7 6 ( 2 2 )r i k i j k= − + µ + +�

(ii) ˆ ˆˆ ˆ ˆ ˆ3 2 ( 2 )r i j k i j k= + − + λ − −�  and

ˆ ˆˆ ˆ ˆ ˆ2 56 (3 5 4 )r i j k i j k= − − + µ − −�

11. Find the angle between the following pair of lines:

(i)
2 1 3 2 4 5

and
2 5 3 1 8 4

x y z x y z− − + + − −= = = =
− −

(ii)
5 2 3

and
2 2 1 4 1 8

x y z x y z− − −= = = =

12. Find the values of p so that the lines 
1 7 14 3

3 2 2

x y z

p

− − −= =

and  
7 7 5 6

3 1 5

x y z

p

− − −= =  are at right angles.

13. Show that the lines 
5 2

7 5 1

x y z− += =
−

 and 
1 2 3

x y z= =  are perpendicular to

each other.
14. Find the shortest distance between the lines

ˆˆ ˆ( 2 )r i j k= + +�
 + ˆˆ ˆ( )i j kλ − +  and

ˆ ˆˆ ˆ ˆ ˆ2 (2 2 )r i j k i j k= − − + µ + +�

15. Find the shortest distance between the lines

1 1 1

7 6 1

x y z+ + += =
−

   and  
3 5 7

1 2 1

x y z− − −= =
−

16. Find the shortest distance between the lines whose vector equations are
ˆˆ ˆ( 2 3 )r i j k= + +�

 + ˆˆ ˆ( 3 2 )i j kλ − +

and  ˆ ˆˆ ˆ ˆ ˆ4 5 6 (2 3 )r i j k i j k= + + + µ + +�

17. Find the shortest distance between the lines whose vector equations are
ˆˆ ˆ(1 ) ( 2) (3 2 )r t i t j t k= − + − + −�  and

ˆˆ ˆ( 1) (2 1) (2 1)r s i s j s k= + + − − +�
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11.6  Plane
A plane is determined uniquely if any one of the following is known:

(i) the normal to the plane and its distance from the origin is given, i.e., equation of
a plane in normal form.

(ii) it passes through a point and is perpendicular to a given direction.

(iii) it passes through three given non collinear points.

Now we shall find vector and Cartesian equations of the planes.

11.6.1Equation of a plane in normal form

Consider a plane whose perpendicular distance from  the origin is d (d ≠ 0). Fig 11.10.

If ON
����

 is the normal from the origin to the plane, and n̂  is the unit normal vector

along ON
����

. Then ON
����

= d n̂  . Let P be any

point on the plane.  Therefore, NP
����

is

perpendicular to  ON
����

.

Therefore,  NP ON⋅
���� ����

 = 0 ... (1)

Let r
�

be the position vector of  the point P,

then NP
����

= ndr ˆ−�
 (as ON NP OP+ =

���� ���� ����
)

Therefore, (1) becomes

( )r d n d n
∧ ∧

− ⋅�
 = 0

or ( )r d n n
∧ ∧

− ⋅�
 = 0 (d ≠ 0)

or r n d n n
∧ ∧ ∧

⋅ − ⋅�
 = 0

i.e., r n
∧

⋅�  = d (as 1)n n
∧ ∧

⋅ = … (2)

This is the vector form of the equation of the plane.

Cartesian form

Equation (2) gives the vector equation of a plane, where n̂  is the unit vector normal to
the plane. Let P(x, y, z) be any point on the plane.  Then

OP
����

 = ˆˆ ˆr x i y j z k= + +�

Let l, m, n be the direction cosines of n̂ . Then

n̂  = ˆˆ ˆl i m j n k+ +

X

Y

Z

N

P( )x,y,z

r

d

O

Fig 11.10
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Therefore, (2) gives
ˆ ˆˆ ˆ ˆ ˆ( ) ( )x i y j z k l i m j n k d+ + ⋅ + + =

i.e.,  lx + my + nz = d ... (3)
This is the cartesian equation of the plane in the normal form.

�Note   Equation (3) shows that if ˆˆ ˆ( )r a i b j c k⋅ + +�
= d is the vector equation

of a plane, then ax + by + cz = d is the Cartesian equation of the plane, where a, b
and c are the direction ratios of the normal to the plane.

Example 13 Find the vector equation of the plane which is at a distance of 
29

6

from the origin and its normal vector from the origin is ˆˆ ˆ2 3 4i j k− + . Also find its
cartesian form.

Solution Let kjin ˆ4ˆ3ˆ2 +−=
�

. Then

||
ˆ

n

n
n �

�

=  =
ˆ ˆˆ ˆ ˆ ˆ2 3 4 2 3 4

4 9 16 29

i j k i j k− + − +=
+ +

Hence, the required equation of the plane is

2 3 4 6ˆˆ ˆ
29 29 29 29

r i j k
− ⋅ + + = 

 
�

Example 14 Find the direction cosines of the unit vector perpendicular to the plane
ˆˆ ˆ(6 3 2 ) 1r i j k⋅ − − +�

 = 0  passing through the origin.

Solution The given equation can be written as
ˆˆ ˆ( 6 3 2⋅ − + +�

r i j k ) = 1   ... (1)

Now ˆˆ ˆ| 6 3 2 |i j k− + +  = 36 9 4 7+ + =
Therefore,  dividing both sides of (1) by 7, we get

6 3 2 ˆˆ ˆ
7 7 7

r i j k
 ⋅ − + +  

�
 =

1

7

which is the equation of the plane in the form ˆr n d⋅ =�
.

This shows that kjin ˆ
7

2ˆ
7

3ˆ
7

6
ˆ ++−=  is a unit vector perpendicular to the

plane through the origin.  Hence, the direction cosines of n̂  are 
7

2
,

7

3
,

7

6− .
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Z

Y

X

O

P(x1, y1, z1
)

Example 15 Find the distance of the plane 2x –  3y + 4z – 6 = 0 from the origin.

Solution Since the direction ratios of the normal to the plane are 2, –3, 4; the direction
cosines of it are

2 2 2 2 2 2 2 2 2

2 3 4
, ,

2 ( 3) 4 2 ( 3) 4 2 ( 3) 4

−

+ − + + − + + − +  , i.e., 
2 3 4

, ,
29 29 29

−

Hence, dividing the equation 2x – 3y + 4z – 6 = 0 i.e.,  2x – 3y + 4z = 6 throughout by

29 , we get

2 3 4 6

29 29 29 29
x y z

−+ + =

This is of the form lx + my + nz = d, where d is the distance of the plane from the

origin. So, the distance of the plane from the origin is 
29

6
.

Example 16 Find the coordinates of the foot of the perpendicular drawn from the
origin to the plane 2x – 3y + 4z – 6 = 0.

Solution Let the coordinates of the foot of the perpendicular P from the origin to the
plane is (x

1
, y

1
, z

1
) (Fig 11.11).

Then, the direction ratios of the line OP are
x

1
, y

1
, z

1
.

Writing the equation of the plane in the normal
form, we have

2 3 4 6

29 29 29 29
x y z− + =

where, 
2 3 4, ,
29 29 29

−
 are the direction

cosines of the OP.

Since d.c.’s and direction ratios of a line are proportional, we have

1

2

29

x
 = 1 1

3 4

29 29

y z=− = k

i.e., x
1
 =

29

2k
, y

1
 = 1

3 4,
29 29

k k
z

− =

Fig 11.11
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Substituting these in the equation of the plane, we get k = 
29

6
.

Hence, the foot of the perpendicular is 
12 18 24, ,
29 29 29

− 
  

.

�Note   If d is the distance from the origin and l, m, n are the direction cosines of

the normal to the plane through the origin, then the foot of the perpendicular is
(ld, md, nd).

11.6.2Equation of a plane perpendicular to a
given vector and passing through a given point

In the space, there can be many planes that are
perpendicular to the given vector, but through a given
point P(x

1
, y

1
, z

1
), only one such plane exists (see

Fig 11.12).

Let a plane pass  through a point A with position

vector a
�

 and perpendicular to the vector N
��

.

Let r
�

be the position vector of any point P(x, y, z) in the plane. (Fig 11.13).

Then the point P lies in the plane if and only if

AP
����

 is perpendicular to N
��

. i.e., AP
����

. N
��

= 0. But

AP r a= −
���� � �

. Therefore, ( ) N 0r a− ⋅ =
�

� �

       … (1)

This is the vector equation of the plane.

Cartesian form

Let the given point A be (x
1
, y

1
, z

1
), P be (x, y, z)

and direction ratios of  N
��

 are A, B and C. Then,

1 1 1
ˆ ˆˆ ˆ ˆ ˆ,a x i y j z k r xi y j z k= + + = + +� �  and ˆˆ ˆN A B Ci j k= + +

�

Now ( – ) N =0r a ⋅
�� �

So ( ) ( ) ( )1 1 1
ˆ ˆˆ ˆ ˆ ˆ(A B C ) 0x x i y y j z z k i j k − + − + − ⋅ + + = 

i.e. A (x – x1) + B (y – y1) + C (z – z1) = 0

Example 17 Find the vector and cartesian equations of the plane which passes through
the point (5, 2, – 4) and perpendicular to the line with direction ratios 2, 3, – 1.

Fig 11.12

Fig 11.13
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Y

Z

O

ar

R

P

S
b c

(RS RT)X

X

T

Solution We have the position vector of point (5, 2, – 4) as ˆˆ ˆ5 2 4a i j k= + −�  and the

normal vector N
�

 perpendicular to the plane as ˆˆ ˆN = 2 +3i j k−
�

Therefore, the vector equation of the plane is given by  ( ).N 0r a− =
�� �

or ˆ ˆˆ ˆ ˆ ˆ[ (5 2 4 )] (2 3 ) 0r i j k i j k− + − ⋅ + − =� ... (1)

Transforming (1) into Cartesian form, we have

ˆ ˆˆ ˆ ˆ ˆ[( – 5) ( 2) ( 4) ] (2 3 ) 0x i y j z k i j k+ − + + ⋅ + − =

or 2( 5) 3( 2) 1( 4) 0x y z− + − − + =
i.e. 2x + 3y – z = 20
which is the cartesian equation of the plane.

11.6.3  Equation of a plane passing through three non collinear points

Let R, S and T be three non collinear points on the plane with position vectors a
�

, b
�

and
c
�

respectively (Fig 11.14).

Fig 11.14

The vectors RS
����

 and RT
����

 are in the given plane.  Therefore, the vector RS RT×
���� ����

is perpendicular to the plane containing points R, S and T.  Let r
�

 be the position vector
of any point P in the plane. Therefore, the equation of the plane passing through R and

perpendicular to the vector RS RT×
���� ����

 is

( ) (RS RT)r a− ⋅ ×
���� ����� �  = 0

or ( )×[( )×( )]
�� � � � �

r – a b – a c – a  = 0                                                       … (1)
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Fig 11.15

This is the equation of the plane in vector form passing through three noncollinear
points.

�Note   Why was it necessary to say that the three points

had to be non collinear? If the three points were on the same
line, then there will be many planes that will contain them
(Fig 11.15).

These planes will resemble the pages of a book where the
line containing the points R, S and T are members in the binding
of the book.

Cartesian form
Let (x1, y1, z1), (x2, y2, z2) and (x3,  y3,  z3) be the coordinates of the points R, S and T
respectively.  Let (x, y, z) be the coordinates of any point P on the plane with position
vector r

�
. Then

RP
����

 = (x – x
1
) î  + (y – y

1
) ĵ  + (z – z

1
) k̂

RS
����

 = (x2 – x1) î  + (y2 – y1) ĵ  + (z2 – z1) k̂

RT
����

 = (x3 – x1) î + (y3 – y1) ĵ  + (z3 – z1) k̂
Substituting these values in equation (1) of the vector form and expressing it in the

form of a determinant, we have

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0

x x y y z z

x x y y z z

x x y y z z

− − −
− − − =
− − −

which is the equation of the plane in Cartesian form passing through three non collinear
points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).

Example 18 Find the vector equations of the plane passing through the points
R(2, 5, – 3), S(– 2, – 3, 5) and T(5, 3,– 3).

Solution Let ˆˆ ˆ2 5 3a i j k= + −� , ˆˆ ˆ2 3 5b i j k=− − +
�

, ˆˆ ˆ5 3 3c i j k= + −�

Then the vector equation of the plane passing through a
� , b

�
 and c

� and  is
given by

( ) (RS RT)r a− ⋅ ×
���� ����� �  = 0     (Why?)

or ( ) [( ) ( ) ]r a b a c a− ⋅ − × −
�� � � � �

 = 0

i.e. ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ[ (2 5 3 )] [( 4 8 8 ) (3 2 )] 0r i j k i j k i j− + − ⋅ − − + × − =�

R

S

T
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11.6.4  Intercept form of the equation of a plane

In this section, we shall deduce the equation of a plane in terms of the intercepts made
by the plane on the coordinate axes.  Let the equation of the plane be

Ax + By + Cz + D = 0  (D ≠ 0) ... (1)

Let the plane make intercepts a, b, c on x, y and z axes, respectively  (Fig 11.16).

Hence, the plane meets x, y and z-axes at (a, 0, 0),
(0, b, 0), (0, 0, c), respectively.

Therefore Aa + D = 0 or A =
D

a

−

Bb + D = 0 or B =
D

b

−

Cc + D = 0 or C =
D

c

−

Substituting these values in the equation (1) of the
plane and simplifying, we get

x y z

a b c
+ +  = 1 ... (1)

which is the required equation of the plane in the intercept form.

Example 19 Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and
z-axis respectively.

Solution Let the equation of the plane be

x y z

a b c
+ +  = 1 ... (1)

Here a = 2, b = 3, c = 4.

Substituting the values of a, b and c in (1), we get the required equation of the

plane as 1
2 3 4

x y z+ + =  or 6x + 4y + 3z = 12.

11.6.5  Plane passing through the intersection
of two given planes
Let π

1
 and π

2
 be two planes with equations

1̂r n⋅�  = d
1
 and 2ˆr n⋅�  = d

2
 respectively.   The position

vector of any point on the line of intersection must
satisfy both the equations (Fig 11.17).

Fig 11.16

Fig 11.17
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If t
�

 is the position vector of a point on the line, then

1̂t n⋅
�

 = d
1
 and  2ˆt n⋅

�
 = d

2

Therefore, for all real values of λ, we have

1 2ˆ ˆ( )t n n⋅ + λ
�

 = 1 2d d+ λ
Since t

�
 is arbitrary, it satisfies for any point on the line.

Hence, the equation 1 2 1 2( )r n n d d⋅ + λ = + λ� � �
represents a plane π

3
 which is such

that if any vector r
�

 satisfies both the equations π
1
 and π

2
, it also satisfies the equation

π
3
 i.e., any plane passing through the intersection of the planes

1r n⋅� �
 = 1 2 2andd r n d⋅ =� �

has the equation 1 2( )r n n⋅ + λ� � �

= d1 + λλλλλd2 ... (1)

Cartesian form

In Cartesian system, let

1n
�

 = 1 2 1
ˆˆ ˆA B Ci j k+ +

2n
�

 = 2 2 2
ˆˆ ˆA B Ci j k+ +

and r
�

 = ˆˆ ˆxi y j z k+ +

Then (1) becomes

x (A
1
 +  λA

2
) + y (B

1
 +  λB

2
) + z (C

1
 +  λC

2
) = d

1
 +  λd

2

or (A
1
x + B

1
y + C

1
z – d

1
) +  λλλλλ(A

2
x + B

2
y + C

2
z – d

2
) = 0              ... (2)

which is the required Cartesian form of the equation of the plane passing through the
intersection of the given planes for each value of λ.

Example 20 Find the vector equation of the plane passing through the intersection of

the planes ˆ ˆˆ ˆ ˆ ˆ( ) 6 and (2 3 4 ) 5,r i j k r i j k⋅ + + = ⋅ + + =−� � and the point (1, 1, 1).

Solution Here, 1
ˆˆ ˆn i j k= + +�  and 2n

�
 = ˆˆ ˆ2 3 4 ;i j k+ +

and d
1
 = 6 and d

2
 = –5

Hence, using the relation 1 2 1 2( )r n n d d⋅ + λ = + λ� � �
, we get

ˆ ˆˆ ˆ ˆ ˆ[ (2 3 4 )]r i j k i j k⋅ + + +λ + +�  = 6 5− λ

or ˆˆ ˆ[(1 2 ) (1 3 ) (1 4 ) ]r i j k⋅ + λ + + λ + + λ�  = 6 5− λ                                … (1)

where, λ is some real number.
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Taking ˆˆ ˆr xi y j z k= + +� , we get

ˆ ˆˆ ˆ ˆ ˆ( ) [(1 2 ) (1 3 ) (1 4 ) ] 6 5xi y j z k i j k+ + ⋅ + λ + + λ + + λ = − λ

or (1 + 2λ ) x + (1 + 3λ) y + (1 + 4λ) z = 6 – 5λ
or (x + y + z – 6 ) + λ  (2x + 3y + 4 z + 5) = 0 ... (2)

Given that the plane passes through the point (1,1,1), it must satisfy (2), i.e.

(1 + 1 + 1 – 6) + λ (2 + 3 + 4 + 5) = 0

or λ = 
3

14

Putting the values of  λ in (1), we get

3 9 6 ˆˆ ˆ1 1 1
7 14 7

r i j k
      + + + + +            

�
 = 

15
6

14
−

or
10 23 13 ˆˆ ˆ
7 14 7

r i j k
 + +  

�
 = 

69

14

or ˆˆ ˆ(20 23 26 )r i j k⋅ + +�
 = 69

which is the required vector equation of the plane.

11.7  Coplanarity of Two Lines
Let the given lines be

r
�  = 1 1a b+λ

�� ... (1)

and r
�  = 2 2a b+µ

�� ... (2)

The line (1) passes through the point, say A, with position vector 1a
�

and is parallel

to 1b
�

. The line (2) passes through the point, say B with position vector 2a
�

and is parallel

to 2b
�

.

Thus, AB
����

 = 2 1a a−� �

The given lines are coplanar if and only if  AB
����

 is perpendicular to 1 2b b×
� �

.

i.e. 1 2AB.( )b b×
���� � �

 = 0 or 2 1 1 2( ) ( )a a b b− ⋅ ×
� �� �

 = 0

Cartesian form
Let (x

1
, y

1
, z

1
) and (x

2
, y

2
, z

2
) be the coordinates of the points A and B respectively.
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Let a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
 be the direction ratios of 1b

�
and 2b

�
, respectively.  Then

2 1 2 1 2 1
ˆˆ ˆAB ( ) ( ) ( )x x i y y j z z k= − + − + −

����

1 1 1 1 2 2 2 2
ˆ ˆˆ ˆ ˆ ˆandb a i b j c k b a i b j c k= + + = + +

� �

The given lines are coplanar if and only if ( )1 2AB 0b b⋅ × =
���� � �

. In the cartesian form,
it can be expressed as

2 1 2 1 2 1

1 2 1

2 2 2

0

x x y y z z

a b c

a b c

− − −
=                                 ... (4)

Example 21 Show that the lines

+3 1 5

–3 1 5

x y z− −= =  and  
+1 2 5

–1 2 5

x y z− −= =  are coplanar.

Solution Here, x
1
 = – 3, y

1
 = 1, z

1
 = 5, a

1
 = – 3, b

1
 = 1, c

1
 = 5

x
2
 = – 1, y

2
 = 2, z

2
 = 5, a

2
 = –1, b

2
 = 2, c

2
 = 5

Now, consider the determinant

2 1 2 1 2 1

1 1 1

2 2 2

2 1 0

3 1 5 0

1 2 5

x x y y z z

a b c

a b c

− − −
= − =

−
Therefore, lines are coplanar.

11.8  Angle between Two Planes
Definition 2 The angle between two planes is defined as the angle between their
normals (Fig 11.18 (a)). Observe that if θ is an angle between the two planes, then so
is 180 – θ (Fig 11.18 (b)). We shall take the acute angle as the angles between
two planes.

Fig 11.18
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If 1n
�

 and 2n
�

 are normals to the planes and θ be the angle between the planes

1r n⋅� �
 = d

1
 and 22. dnr =��

.

Then θ is the angle between the normals to the planes drawn from some common
point.

We have, cos θθθθθ = 1 2

1 2| | | |

n n

n n

⋅� �

� �

�Note  The planes are perpendicular to each other if 1n
�

. 2n
�

 = 0 and parallel if

1n
�

 is parallel to  2n
�

.

Cartesian form Let θ be the angle between the planes,

A
1
 x + B

1 
y + C

1
z + D

1
 = 0 and  A

2
x + B

2 
y + C

2
 z + D

2
 = 0

The direction ratios of the normal to the planes are A
1
, B

1
, C

1
 and A

2
, B

2
, C

2

respectively.

Therefore,   cos θθθθθ = 
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

A A B B C C

A B C A B C

+ +

+ + + +

�Note

1. If the planes are at right angles, then θ = 90o and so cos θ = 0.
Hence, cos θ = A

1
A

2
 + B

1
B

2
 + C

1
C

2
 = 0.

2. If the planes are parallel, then 1 1 1

2 2 2

A B C

A B C
= = .

Example 22 Find the angle between the two planes 2x + y – 2z = 5 and 3x – 6y – 2z = 7
using vector method.

Solution The angle between two planes is the angle between their normals. From the
equation of the planes, the normal vectors are

1N
��

 = ˆˆ ˆ2 2i j k+ −  and  2
ˆˆ ˆN 3 6 2i j k= − −

��

Therefore cos θ =
1 2

1 2

ˆ ˆˆ ˆ ˆ ˆN N (2 2 ) (3 6 2 )

| N | |N | 4 1 4 9 36 4

i j k i j k⋅ + − ⋅ − −=
+ + + +

�� ��

�� ��  = 
4

21
 
  

Hence θ = cos – 1 






21

4
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Example 23 Find the angle between the two planes 3x – 6y + 2z = 7 and 2x + 2y – 2z =5.

Solution Comparing the given equations of the planes with the equations
A

1
 x + B

1
 y + C

1
 z + D

1
 = 0  and  A

2
 x + B

2
 y + C

2
 z + D

2
 = 0

We get A
1
 = 3, B

1
 = – 6, C

1
 = 2

 A
2
 = 2, B

2
 = 2, C

2
 = – 2

cos θ =
( ) ( )2 2 2 2 2 2

3 2 ( 6) (2) (2) ( 2)

3 ( 6) ( 2) 2 2 ( 2)

× + − + −

+ − + − + + −

=
10 5 5 3

217 2 3 7 3

− = =
×

Therefore, θ = cos-1  
5 3

21

 
   

11.9  Distance of a Point from a Plane
Vector form
Consider a point P with position vector a

�  and a plane π
1
 whose equation is

ˆr n⋅�  = d (Fig 11.19).

Consider a plane π
2
 through P parallel to the plane  π

1
. The unit vector normal to

π
2
 is n̂ . Hence, its equation is ˆ( ) 0r a n− ⋅ =� �

i.e., ˆr n⋅�  = ˆa n⋅�

Thus, the distance ON′ of this plane from the origin is ˆ| |a n⋅� . Therefore, the distance
PQ from the plane π

1
 is (Fig. 11.21 (a))

i.e., ON – ON′ = | d – ˆ |a n⋅�

Fig 11.19
(a)

a

Z

X

Y
d

N’

P

O

� 1� 2

N

Q

� 1

(b)

P

X

Z

Y
O

d N’

N

� �

a
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which is the length of the perpendicular from a point to the given plane.

We may establish the similar results for (Fig 11.19 (b)).

�Note

1. If the equation of the plane π
2
 is in the form Nr d⋅ =

���
, where N

��
 is normal

to the plane, then the perpendicular distance is 
| N |

| N |

a d⋅ −
���

�� .

2. The length of the perpendicular from origin O to the plane N⋅ =
���

r d  is 
| |

| N |

d
��

(since a
�

 = 0).

Cartesian form

Let P(x
1
, y

1
, z

1
) be the given point with position vector a

�
and

Ax + By + Cz = D

be the Cartesian equation of the given plane. Then

a
�

 = 1 1 1
ˆˆ ˆx i y j z k+ +

N
��

 = ˆˆ ˆA B Ci j k+ +
Hence, from Note 1, the perpendicular from P to the plane is

1 1 1

2 2 2

ˆ ˆˆ ˆ ˆ ˆ( ) ( A B C ) D

A B C

x i y j z k i j k+ + ⋅ + + −

+ +

= 1 1 1

2 2 2

A B C D

A B C

x y z+ + −

+ +

Example 24 Find the distance of a point (2, 5, – 3) from the plane

ˆˆ ˆ( 6 3 2 )r i j k⋅ − +�  = 4

Solution Here,  ˆ ˆˆ ˆ ˆ ˆ2 5 3 , N 6 3 2= + − = − +
���

a i j k i j k and d = 4.

Therefore, the distance of the point (2, 5, – 3) from the given plane is

ˆ ˆˆ ˆ ˆ ˆ| (2 5 3 ) (6 3 2 ) 4|
ˆˆ ˆ| 6 3 2 |

i j k i j k

i j k

+ − ⋅ − + −
− +  = 

| 12 15 6 4 | 13

736 9 4

− − − =
+ +
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11.10  Angle between a Line and a Plane

Definition 3 The angle between a line and a plane is
the complement of the angle between the line and
normal to the plane (Fig 11.20).

Vector form If the equation of the line is

bar
��� λ+=  and the equation of the plane is

r n d⋅ =� �
. Then the angle θ between the line and the

normal to the plane is

cos θ =
| | | |

b n

b n

⋅
⋅

� �

� �

and so the angle φ between the line and the plane is given by 90 – θ, i.e.,

sin (90 – θ) = cos θ

i.e. sin φ =
| | | |

b n

b n

⋅
� �

� �  or φ = 
–1sin

b n

b n

⋅

Example 25 Find the angle between the line

1

2

x +
 =

3

3 6

y z −=

and the plane 10 x + 2y – 11 z = 3.

Solution Let θ be the angle between the line and the normal to the plane. Converting the
given equations into vector form, we have

r
�  = ˆ ˆˆ ˆ ˆ( – 3 ) ( 2 3 6 )i k i j k+ + λ + +

and ˆˆ ˆ( 10 2 11 )r i j k⋅ + −�
 = 3

Here b
�

 = ˆˆ ˆ2 3 6i j k+ +    and  kjin ˆ11ˆ2ˆ10 −+=
�

sin φ =
2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ ˆ(2 3 6 ) (10 2 11 )

2 3 6 10 2 11

i j k i j k+ + ⋅ + −

+ + + +

=
40

7 15

−
×  = 

8

21

−
 = 

8

21
  or φ = 1 8

sin
21

−  
  

Fig 11.20



THREE DIMENSIONAL GEOMETRY 493

EXERCISE 11.3

1. In each of the following cases, determine the direction cosines of the normal to
the plane and the distance from the origin.

(a) z = 2 (b) x + y + z = 1

(c) 2x + 3y – z = 5 (d) 5y + 8 = 0

2. Find the vector equation of a plane which is at a distance of 7 units from the

origin and normal to the vector  kji ˆ6ˆ5ˆ3 −+ .

3. Find the Cartesian equation of the following planes:

(a) ˆˆ ˆ( ) 2r i j k⋅ + − =� (b) ˆˆ ˆ(2 3 4 ) 1r i j k⋅ + − =�

(c) ˆˆ ˆ[( 2 ) (3 ) (2 ) ] 15r s t i t j s t k⋅ − + − + + =�

4. In the following cases, find the coordinates of the foot of the perpendicular
drawn from the origin.

(a) 2x + 3y + 4z – 12 = 0 (b) 3y + 4z – 6 = 0

(c) x + y + z = 1 (d) 5y + 8 = 0

5. Find the vector and cartesian equations of the planes
(a) that passes through the point (1, 0, – 2) and the normal to the plane is

ˆˆ ˆ .i j k+ −
(b) that passes through the point (1,4, 6) and the normal vector to the plane is

ˆˆ ˆ2 .i j k− +
6. Find the equations of the planes that passes through three points.

(a) (1, 1, – 1),  (6, 4, – 5), (– 4, – 2, 3)
(b) (1, 1, 0), (1, 2, 1), (– 2, 2, – 1)

7. Find the intercepts cut off by the plane 2x + y – z = 5.
8. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX

plane.
9. Find the equation of the plane through the intersection of the planes

3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).
10. Find the vector equation of the plane passing through the intersection of the

planes ˆˆ ˆ.(2 2 3 ) 7r i j k+ − =� , ˆˆ ˆ.(2 5 3 ) 9r i j k+ + =� and through the point
(2, 1, 3).

11. Find the equation of the plane through the line of intersection of the
planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane
x – y + z = 0.
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12. Find the angle between the planes whose vector equations are

ˆˆ ˆ(2 2 3 ) 5r i j k⋅ + − =� and  ˆˆ ˆ(3 3 5 ) 3r i j k⋅ − + =�
.

13. In the following cases, determine whether the given planes are parallel or
perpendicular, and in case they are neither, find the angles between them.

(a) 7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

(b) 2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

(c) 2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

(d) 2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

(e) 4x + 8y + z – 8 = 0 and y + z – 4 = 0

14. In the following cases, find the distance of each of the given points from the
corresponding given plane.

       Point Plane

(a) (0, 0, 0) 3x – 4y + 12 z = 3

(b) (3, – 2, 1) 2x – y + 2z + 3 = 0

(c) (2, 3, – 5) x + 2y – 2z = 9

(d) (– 6, 0, 0) 2x – 3y + 6z – 2 = 0

Miscellaneous Examples

Example 26 A line makes angles  α,  β, γ and  δ with the diagonals of a cube, prove that

cos2 α + cos2 β + cos2 γ + cos2 δ = 
4

3

Solution A cube is a rectangular parallelopiped having equal length, breadth and height.

Let OADBFEGC be the cube with each side of length a units. (Fig 11.21)

The four diagonals are OE, AF, BG and CD.

The direction cosines of the diagonal OE which
is the line joining two points O and E are

2 2 2 2 2 2 2 2 2

0 0 0
, ,

a a a

a a a a a a a a a

− − −

+ + + + + +

i.e.,
3

1
, 

3

1
,  

3

1 A( , 0, 0)a

B(0, , 0)a

C(0, 0, )a

G( , 0, )a a

F(0, , )a a

E( , , )a a a

X
D( , , 0)aa

Y

Z

O

Fig 11.21
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Similarly, the direction cosines of AF, BG and CD are 
–1

3
, 

3

1
, 

3

1
; 

3

1
,

–1

3
, 

3

1
  and  

3

1
 , 

3

1
, 

–1

3
, respectively.

Let l, m, n be the direction cosines of the given line which makes angles  α, β, γ, δ
with OE, AF, BG, CD, respectively. Then

cosα  =
1

3
 (l + m+ n); cos β = 

1

3
(– l + m + n);

cosγ =
1

3
(l – m + n); cos δ = 

1

3
(l + m – n)     (Why?)

Squaring and adding, we get

cos2α + cos2 β + cos2 γ + cos2 δ

 =
1

3
  [ (l + m + n )2 + (–l + m + n)2 ]  + (l – m + n)2 + (l + m –n)2]

 =
1

3
 [ 4 (l2 + m2 + n2 ) ]  = 

3

4
          (as l2 + m2 + n2 = 1)

Example 27 Find the equation of the plane that contains the point (1, – 1, 2) and is
perpendicular to each of the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8.

Solution The equation of the plane containing the given point is
A (x – 1) + B(y + 1) + C (z – 2) = 0 ... (1)

Applying the condition of perpendicularly to the plane given in (1) with the planes

2x + 3y – 2z = 5 and x + 2y – 3z = 8, we have

2A + 3B – 2C = 0 and A + 2B – 3C = 0

Solving these equations, we find A = – 5C and B = 4C. Hence, the required
equation is

– 5C (x – 1) + 4 C (y + 1) + C(z – 2) = 0

i.e. 5x – 4y – z = 7

Example 28 Find the distance between the point P(6, 5, 9) and the plane determined
by the points A (3, – 1, 2), B (5, 2, 4) and C(– 1, – 1, 6).

Solution Let A, B, C be the three points in the plane.  D is the foot of the perpendicular
drawn from a point P to the plane. PD is the required distance to be determined, which

is the projection of AP
����

 on AB AC×
���� ����

.
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Hence, PD = the dot product of AP
����

  with the unit vector along AB AC×
���� ����

.

So AP
����

= 3 kji ˆ7ˆ6ˆ ++

and AB AC×
���� ����

=

ˆˆ ˆ

ˆˆ ˆ2 3 2 12 16 12

4 0 4

i j k

i j k= − +
−

Unit vector along AB AC×
���� ����

=
ˆˆ ˆ3 4 3

34

i j k− +

Hence PD = ( )ˆ7ˆ6ˆ3 kji ++ . 
ˆˆ ˆ3 4 3

34

i j k− +

=
17

343

Alternatively, find the equation of the plane passing through A, B and C and then
compute the distance of the point P from the plane.

Example 29 Show that the lines

x a d− +
α − δ

 =
y a z a d− − −=

α α + δ

and
x b c− +

β − γ
 =

y b z b c− − −=
β β + γ

 are coplanar.

Solution
Here x

1
 = a – d x

2
 = b – c

y
1
 = a y

2
 = b

z
1
 = a + d z

2
 = b + c

a
1
 = α – δ a

2
 = β – γ

b
1
 = α b

2
 = β

c
1
 = α + δ c

2
 = β + γ

Now consider the determinant

2 1 2 1 2 1

1 1 1

2 2 2

x x y y z z

a b c

a b c

− − −

 = 

b c a d b a b c a d− − + − + − −
α − δ α α + δ
β − γ β β + γ
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Adding third column to the first column, we get

2 

b a b a b c a d− − + − −
α α α + δ
β β β + γ

 = 0

Since the first and second columns are identical.  Hence, the given two lines are
coplanar.

Example 30 Find the coordinates of the point where the line through the points
A (3, 4, 1) and B(5, 1, 6) crosses the XY-plane.

Solution The vector equation of the line through the points A and B is

 r
�  = ˆ ˆˆ ˆ ˆ ˆ3 4 [ (5 3) (1 4) (6 1) ]i j k i j k+ + + λ − + − + −

i.e.  r
�  = ˆ ˆˆ ˆ ˆ ˆ3 4 ( 2 3 5 )i j k i j k+ + + λ − + ... (1)

Let P be the point where the line AB crosses the XY-plane. Then the position

vector of the point P is of the form jyix ˆˆ + .

This point must satisfy the equation (1).      (Why ?)

i.e. ˆ ˆx i y j+  = ˆˆ ˆ(3 2 ) ( 4 3 ) ( 1 5 )i j k+ λ + − λ + + λ

Equating the like coefficients of ˆˆ ˆ, andi j k , we have

x = 3 + 2 λ
y = 4 – 3 λ
0 = 1 + 5 λ

Solving the above equations, we get

x =
13 23

and
5 5

y =

Hence, the coordinates of the required point are 






0,
5

23
,

5

13
.

Miscellaneous Exercise on Chapter 11

1. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the
line determined by the points (3, 5, – 1), (4, 3, – 1).

2. If l
1
, m

1
, n

1
 and l

2
, m

2
, n

2
 are the direction cosines of two mutually perpendicular

lines, show that the direction cosines of the line perpendicular to both of these

are  1 2 2 1 1 2 2 1 1 2 2 1, ,m n m n n l n l l m l m− − −
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3. Find the angle between the lines whose direction ratios are a, b, c and
b – c, c – a, a – b.

4. Find the equation of a line parallel to x-axis and passing through the origin.

5. If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (– 4, 3, – 6) and
(2, 9, 2) respectively, then find the angle between the lines AB and CD.

6. If the lines 
1 2 3 1 1 6

and
3 2 2 3 1 5

x y z x y z

k k

− − − − − −= = = =
− −

 are perpendicular,

find the value of k.
7. Find the vector equation of the line passing through (1, 2, 3) and perpendicular to

the plane 09)ˆ5ˆ2ˆ(. =+−+ kjir
�

.

8. Find the equation of the plane passing through (a, b, c) and parallel to the plane

ˆˆ ˆ( ) 2.r i j k⋅ + + =�

9. Find the shortest distance between lines ˆ ˆˆ ˆ ˆ ˆ6 2 2 ( 2 2 )r i j k i j k= + + + λ − +�

and ˆ ˆˆ ˆ ˆ4 (3 2 2 )r i k i j k= − − + µ − −�
.

10. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4,1)
crosses the YZ-plane.

11. Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1)
crosses the ZX-plane.

12. Find the coordinates of the point where the line through (3, – 4, – 5) and
(2, – 3, 1) crosses the plane 2x + y + z = 7.

13. Find the equation of the plane passing through the point (– 1, 3, 2) and perpendicular
to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

14. If the points (1, 1, p) and (– 3, 0, 1) be equidistant from the plane

ˆˆ ˆ(3 4 12 ) 13 0,⋅ + − + =�
r i j k then find the value of p.

15. Find the equation of the plane passing through the line of intersection of the

planes ˆˆ ˆ( ) 1r i j k⋅ + + =� and ˆˆ ˆ(2 3 ) 4 0r i j k⋅ + − + =�  and parallel to x-axis.

16. If O be the origin and the coordinates of P be (1, 2, – 3), then find the equation of
the plane passing through P and perpendicular to OP.

17. Find the equation of the plane which contains the line of intersection of the planes

ˆˆ ˆ( 2 3 ) 4 0r i j k⋅ + + − =� , ˆˆ ˆ(2 ) 5 0r i j k⋅ + − + =� and which is perpendicular to the

plane ˆˆ ˆ(5 3 6 ) 8 0r i j k⋅ + − + =� .



THREE DIMENSIONAL GEOMETRY 499

18. Find the distance of the point (– 1, – 5, – 10) from the point of intersection of the

line ˆ ˆˆ ˆ ˆ ˆ2 2 (3 4 2 )r i j k i j k= − + + λ + +�
and the plane ˆˆ ˆ( ) 5r i j k⋅ − + =�

.

19. Find the vector equation of the line passing through (1, 2, 3) and parallel to  the

planes ˆˆ ˆ( 2 ) 5r i j k⋅ − + =�
 and ˆˆ ˆ(3 ) 6r i j k⋅ + + =�

.

20. Find the vector equation of the line passing through the point (1, 2, – 4) and
perpendicular to the two lines:

7

10

16

19

3

8 −=
−
+=− zyx

and 
15

3

x −
 = 

29 5

8 5

y z− −=
−

.

21. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from

the origin, then 
2222

1111

pcba
=++ .

Choose the correct answer in Exercises 22 and 23.

22. Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units (B) 4 units (C) 8 units (D)
2

29
 units

23. The planes: 2x – y + 4z = 5 and 5x – 2.5y + 10z = 6 are

(A) Perpendicular (B) Parallel

(C) intersect y-axis (D) passes through 
5

0,0,
4

 
  

Summary

� Direction cosines of a line are the cosines of the angles made by the line
with the positive directions of the coordinate axes.

� If l, m, n are the direction cosines of a line, then l2 + m2 + n2 = 1.

� Direction cosines of a line joining two points P(x
1
, y

1
, z

1
) and Q(x

2
, y

2
, z

2
) are

2 1 2 1 2 1, ,
PQ PQ PQ

x x y y z z− − −

where PQ =   ( )2
12

2
12

2
12 )()( zzyyxx −+−+−

� Direction ratios of a line are the numbers which are proportional to the
direction cosines of a line.

� If l, m, n are the direction cosines and a, b, c are the direction ratios of a line
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then

l = 
222 cba

a

++
; m = 

222 cba

b

++
; n = 

222 cba

c

++
� Skew lines are lines in space which are neither parallel nor intersecting.

They lie in different planes.

� Angle between skew lines is the angle between two intersecting lines
drawn from any point (preferably through the origin) parallel to each of the
skew lines.

� If  l
1
, m

1
, n

1
 and l

2
, m

2
, n

2
 are the direction cosines of two lines; and  θ  is the

acute angle between the two lines; then
cosθ  =  | l

1
l
2
 + m

1
m

2
 + n

1
n

2
|

� If a
1
, b

1
, c

1
 and a

2
, b

2
, c

2
 are the direction ratios of two lines and θ is the

acute angle between the two lines; then

cosθ = 
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

a a b b c c

a b c a b c

+ +

+ + + +

� Vector equation of a line that passes through the given point whose position

vector is a
�

 and parallel to a given vector b
�

 is r a b= + λ
�� �  .

� Equation of a line through a point (x
1
, y

1
, z

1
) and having direction cosines l, m, n is

1 1 1x x y y z z

l m n

− − −= =

� The vector equation of a line which passes through two points whose position

vectors are a
�

 and b
�

 is ( )r a b a= + λ −
�� � �

.

� Cartesian equation of a line that passes through two points (x
1
, y

1
, z

1
) and

 (x
2
, y

2
, z

2
) is 1 1 1

2 1 2 1 2 1

x x y y z z

x x y y z z

− − −= =
− − −

.

� If θ is the acute angle between 1 1r a b= + λ
�� �  and 2 2r a b= + λ

�� �
, then

1 2

1 2

cos
| | | |

b b

b b

⋅θ =
� �

� �

� If  
1

1

1

1

1

1

n

zz

m

yy

l

xx −=−=−
 and  

2

2

2

2

2

2

n

zz

m

yy

l

xx −
=

−
=

−

are the equations of two lines,  then the  acute angle between the two lines is
given by cos θ  = |l

1
l
2
 + m

1
m

2
 + n

1
n

2
|.
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� Shortest distance between two skew lines is the line segment perpendicular
to both the lines.

� Shortest distance between 1 1r a b= + λ
�� �  and 2 2r a b= + µ

�� �
 is

1 2 2 1

1 2

( ) ( – )

| |

b b a a

b b

× ⋅
×

� � � �

� �

� Shortest distance between the lines: 1 1 1

1 1 1

x x y y z z

a b c

− − −= =  and

2 2

2 2

x x y y

a b

− −=  = 2

2

z z

c

−
 is

2 1 2 1 2 1

1 1 1

2 2 2

2 2 2
1 2 2 1 1 2 2 1 1 2 2 1( ) ( ) ( )

x x y y z z

a b c

a b c

b c b c c a c a a b a b

− − −

− + − + −

� Distance between parallel lines 1r a b= + λ
�� � and 2r a b= + µ

�� � is

2 1( )

| |

b a a

b

× −
� � �

�

� In the vector form, equation of a plane which is at a distance d from the

origin, and n̂  is the unit vector normal to the plane through the origin is

ˆr n d⋅ =�
.

� Equation of a plane which is at a distance of d from the origin and the direction
cosines of the normal to the plane as l, m, n is lx + my + nz = d.

� The equation of a plane through a point whose position vector is a
�

 and

perpendicular to the vector N
��

 is ( ) . N 0r a− =
��� � .

� Equation of a plane perpendicular to a given line with direction ratios A, B, C
and passing through a given point (x

1
, y

1
, z

1
) is

A (x – x
1
) + B (y – y

1
) + C (z – z

1
 ) = 0

� Equation of a plane passing through three non collinear points (x
1
, y

1
, z

1
),
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(x
2
, y

2
, z

2
) and (x

3
, y

3
, z

3
) is

131313

121212

111

zzyyxx

zzyyxx

zzyyxx

−−−
−−−
−−−

 = 0

� Vector equation of a plane that contains three non collinear points having

position vectors ba
��

,  and c
�

 is  ( ) . [ ( ) ( ) ] 0r a b a c a− − × − =
�� � � � �

� Equation of a plane that cuts the coordinates axes at (a, 0, 0), (0, b, 0) and
(0, 0, c) is

1=++
c

z

b

y

a

x

� Vector equation of a plane that passes through the intersection of

planes 1 1 2 2andr n d r n d⋅ = ⋅ =� � � �
  is 1 2 1 2( )r n n d d⋅ + λ = + λ� � �

, where λ is any

nonzero constant.

� Vector equation of a plane that passes through the intersection of two given
planes   A

1
 x + B

1
 y + C

1
 z + D

1
 = 0 and   A

2
 x + B

2
 y + C

2
 z + D

2
 = 0

is (A
1
 x + B

1
 y + C

1
 z + D

1
) + λ(A

2
 x + B

2
 y + C

2
 z + D

2
) = 0.

� Two planes 1 1r a b= + λ
�� �  and 2 2r a b= + µ

�� �  are coplanar if

2 1 1 2( ) ( )a a b b− ⋅ ×
� �� � = 0

� Two planes a
1
 x + b

1
 y + c

1
 z + d

1
 = 0 and a

2
 x + b

2
 y + c

2
 z + d

2
 = 0 are

coplanar if 
222

111

121212

cba

cba

zzyyxx −−−

 = 0.

� In the vector form, if  θ   is the angle between the two planes, 1 1r n d⋅ =� �
  and

2 2r n d⋅ =� �
, then θ = cos–1 1 2

1 2

| |

| | | |

n n

n n

⋅� �

� � .

� The angle φ between the line r a b= + λ
�� �

and the plane ˆr n d⋅ =�
is

ˆ
sin

ˆ| | | |

b n

b n

⋅φ =
�

�
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� The angle θ between the planes A
1
x + B

1
y + C

1
z + D

1
 = 0 and

A
2
 x + B

2
 y + C

2
 z + D

2
 = 0 is given by

cos θ =
1 2 1 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2

A A B B C C

A B C A B C

+ +

+ + + +

� The distance of a point whose position vector is a
�

 from the plane ˆr n d⋅ =�
 is

ˆ| |d a n− ⋅�

� The distance from a point (x
1
, y

1
, z

1
) to the plane Ax + By + Cz + D = 0 is

1 1 1

2 2 2

A B C D

A B C

x y z+ + +

+ +
.

—�—
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The mathematical experience of the student is incomplete if he never had
the opportunity to solve a problem invented by himself. – G. POLYA 

12.1  Introduction
In earlier classes, we have discussed systems of linear
equations and their applications in day to day problems. In
Class XI, we have studied linear inequalities and systems
of linear inequalities in two variables and their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solve some real life problems of the type as given below:

A furniture dealer deals in only two items–tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs 500. He estimates that from the sale of one table, he
can make a profit of Rs 250 and that from the sale of one
chair a profit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money so as to maximise his total profit, assuming that he can sell all
the items which he buys.

Such type of problems which seek to maximise (or, minimise) profit (or, cost) form
a general class of problems called optimisation problems. Thus, an optimisation
problem may involve finding maximum profit, minimum cost, or minimum use of
resources etc.

A special but a very important class of optimisation problems is linear programming
problem. The above stated optimisation problem is an example of linear programming
problem. Linear programming problems are of much interest because of their wide
applicability in industry, commerce, management science etc.

In this chapter, we shall study some linear programming problems and their solutions
by graphical method only, though there are many other methods also to solve such
problems.

Chapter 12
LINEAR PROGRAMMING

L. Kantorovich
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12.2  Linear Programming Problem and its Mathematical Formulation
We begin our discussion with the above example of furniture dealer which will further
lead to a mathematical formulation of the problem in two variables. In this example, we
observe

(i) The dealer can invest his money in buying tables or chairs or combination thereof.
Further he would earn different profits by following different investment
strategies.

(ii) There are certain overriding conditions or constraints viz., his investment is
limited to a maximum of Rs 50,000 and so is his storage space which is for a
maximum of 60 pieces.

Suppose he decides to buy tables only and no chairs, so he can buy 50000 ÷ 2500,
i.e., 20 tables. His profit in this case will be Rs (250 × 20), i.e., Rs 5000.

Suppose he chooses to buy chairs only and no tables. With his capital of Rs 50,000,
he can buy 50000 ÷ 500, i.e. 100 chairs. But he can store only 60 pieces. Therefore, he
is forced to buy only 60 chairs which will give him a total profit of Rs (60 × 75), i.e.,
Rs 4500.

There are many other possibilities, for instance, he may choose to buy 10 tables
and 50 chairs, as he can store only 60 pieces. Total profit in this case would be
Rs (10 × 250 + 50 × 75), i.e., Rs 6250 and so on.

We, thus, find that the dealer can invest his money in different ways and he would
earn different profits by following different investment strategies.

Now the problem is : How should he invest his money in order to get maximum
profit? To answer this question, let us try to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem
Let x be the number of tables and y be the number of chairs that the dealer buys.
Obviously, x and y must be non-negative, i.e.,

0 ... (1)
(Non-negative constraints)

... (2)0
x
y
≥ ⎫

⎬≥ ⎭
The dealer is constrained by the maximum amount he can invest (Here it is

Rs 50,000) and by the maximum number of items he can store (Here it is 60).
Stated mathematically,

2500x + 500y ≤ 50000 (investment constraint)
or 5x + y ≤ 100 ... (3)
and x + y ≤ 60  (storage constraint) ... (4)
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The dealer wants to invest in such a way so as to maximise his profit, say, Z which
stated as a function of x and y is given by
Z = 250x + 75y (called objective function) ... (5)
Mathematically, the given problems now reduces to:
Maximise Z = 250x + 75y
subject to the constraints:

5x + y ≤ 100

x + y ≤ 60

x ≥ 0,  y ≥ 0

So, we have to maximise the linear function Z subject to certain conditions determined
by a set of linear inequalities with variables as non-negative. There are also some other
problems where we have to minimise a linear function subject to certain conditions
determined by a set of linear inequalities with variables as non-negative. Such problems
are called Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the
optimal value (maximum or minimum value) of  a linear function (called objective
function) of several variables (say x and y), subject to the conditions that the variables
are non-negative and satisfy a set of linear inequalities (called linear constraints).
The term linear implies that all the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programme or plan of action.

Before we proceed further, we now formally define some terms (which have been
used above) which we shall be using in the linear programming problems:
Objective function Linear function Z = ax + by, where a, b are constants, which has
to be maximised or minimized is called a linear objective function.

In the above example, Z = 250x + 75y is a linear objective function. Variables x and
y are called decision variables.
Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x ≥ 0, y ≥ 0 are
called non-negative restrictions. In the above example, the set of inequalities (1) to (4)
are constraints.
Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subject to certain constraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems. The above problem of investing a
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given sum by the dealer in purchasing chairs and tables is an example of an optimisation
problem as well as of a linear programming problem.

We will now discuss how to find solutions to a linear programming problem. In this
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems
In Class XI, we have learnt how to graph a system of linear inequalities involving two
variables x and y and to find its solutions graphically. Let us refer to the problem of
investment in tables and chairs discussed in Section 12.2. We will now solve this problem
graphically.  Let us graph the constraints stated as linear inequalities:

5x + y ≤ 100 ... (1)
x + y ≤ 60 ... (2)

x ≥ 0 ... (3)
y ≥ 0 ... (4)

The graph of this system (shaded region) consists of the points common to all half
planes determined by the inequalities (1) to (4) (Fig 12.1). Each point in this region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefore, is called the feasible region for the problem. Every point of this
region is called a feasible solution to the problem. Thus, we have,
Feasible region The common region determined by all the constraints including
non-negative constraints x, y ≥ 0 of a linear programming problem is called the feasible
region (or solution region) for the problem. In Fig 12.1, the region OABC (shaded) is
the feasible region for the problem. The region other than feasible region is called an
infeasible region.
Feasible solutions Points within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
Fig 12.1, every point within and on the
boundary of the feasible region OABC
represents feasible solution to the problem.
For example, the point (10, 50) is a feasible
solution of the problem and so are the points
(0, 60), (20, 0) etc.

Any point outside the feasible region is
called an  infeasible solution. For example,
the point (25, 40) is an infeasible solution of
the problem. Fig 12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the objective function is called an optimal solution.

Now, we see that every point in the feasible region OABC satisfies all the constraints
as given in (1) to (4), and since there are infinitely many points, it is not evident how
we should go about finding a point that gives a maximum value of the objective function
Z = 250x + 75y. To handle this situation, we use the following theorems which are
fundamental in solving linear programming problems. The proofs of these theorems
are beyond the scope of the book.
Theorem 1 Let R be the feasible region (convex polygon) for a linear programming
problem and let Z = ax + by be the objective function. When Z has an optimal value
(maximum or minimum), where the variables x and y are subject to constraints described
by linear inequalities, this optimal value must occur at a corner point* (vertex) of the
feasible region.
Theorem 2 Let R be the feasible region for a linear programming problem, and let
Z = ax + by be the objective function. If R is bounded**, then the objective function
Z has both a maximum and a minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R is unbounded, then a maximum or a minimum value of the objective
function may not exist. However, if it exists, it must occur at a corner point of R.
(By Theorem 1).

In the above example, the corner points (vertices) of the bounded (feasible) region
are: O, A, B and C and it is easy to find their coordinates as (0, 0), (20, 0), (10, 50) and
(0, 60) respectively. Let us now compute the values of Z at these points.
We have

* A corner point of a feasible region is a point in the region which is the intersection of two boundary lines.
** A feasible region of a system of linear inequalities is said to be bounded if it can be enclosed within a

circle. Otherwise, it is called unbounded. Unbounded means that the feasible region does extend
indefinitely in any direction.

Vertex of the Corresponding value
Feasible Region of Z (in Rs)

O (0,0) 0
A (0,60) 4500
B (10,50) 6250
C (20,0)  5000

Maximum←
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We observe that the maximum profit to the dealer results from the investment
strategy (10, 50), i.e. buying 10 tables and 50 chairs.

This method of solving linear programming problem is referred as Corner Point
Method. The method comprises of the following steps:

1. Find the feasible region of the linear programming problem and determine its
corner points (vertices) either by inspection or by solving the two equations of
the lines intersecting at that point.

2. Evaluate the objective function Z = ax + by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.

3. (i) When the feasible region is bounded, M and m are the maximum and
minimum values of Z.

(ii) In case, the feasible region is unbounded, we have:
4. (a) M is the maximum value of Z, if the open half plane determined by

ax + by > M has no point in common with the feasible region. Otherwise, Z
has no maximum value.

(b) Similarly, m is the minimum value of Z, if the open half plane determined by
ax + by < m has no point in common with the feasible region. Otherwise, Z
has no minimum value.

We will now illustrate these steps of Corner Point Method by considering some
examples:

Example 1 Solve the following linear programming problem graphically:
Maximise Z = 4x + y ... (1)
subject to the constraints:

x + y ≤ 50 ... (2)

3x + y ≤ 90 ... (3)

x ≥ 0, y ≥ 0 ... (4)

Solution The shaded region in Fig 12.2 is the feasible region determined by the system
of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,
we now use Corner Point Method to determine the maximum value of Z.

The coordinates of the corner points O, A, B and C are (0, 0), (30, 0), (20, 30) and
(0, 50) respectively. Now we evaluate Z at each corner point.
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Fig 12.2
Hence, maximum value of Z is 120 at the point (30, 0).

Example 2 Solve the following linear programming problem graphically:
Minimise Z = 200 x + 500 y ... (1)
subject to the constraints:

x + 2y ≥ 10 ... (2)
3x + 4y ≤ 24 ... (3)
x ≥ 0, y ≥ 0 ... (4)

Solution The shaded region in Fig 12.3 is the feasible region ABC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

Corner Point Corresponding value
of Z

(0, 0) 0
(30, 0) 120 ← Maximum
(20, 30) 110
(0, 50) 50

Corner Point Corresponding value
of Z

(0, 5) 2500
(4, 3) 2300
(0, 6) 3000

Minimum←

Fig 12.3
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A, B and C are (0,5), (4,3) and (0,6) respectively. Now we evaluate Z  = 200x + 500y
at these points.
Hence, minimum value of Z is 2300 attained at the point (4, 3)

Example 3 Solve the following problem graphically:
Minimise and Maximise Z = 3x + 9y ... (1)
subject to the constraints: x + 3y ≤ 60 ... (2)

x + y ≥ 10 ... (3)
x ≤ y ... (4)

x ≥ 0, y ≥ 0 ... (5)

Solution First of all, let us graph the feasible region of the system of linear inequalities
(2) to (5). The feasible region ABCD is shown in the Fig 12.4. Note that the region is
bounded. The coordinates of the corner points A, B, C and D are (0, 10), (5, 5), (15,15)
and (0, 20) respectively.

Fig 12.4

Corner Corresponding value of
Point  Z = 3x + 9y
A (0, 10) 90
B (5, 5) 60
C (15, 15) 180
D (0, 20) 180

Minimum
Maximum
(Multiple
optimal
solutions)

←
}←

We now find the minimum and maximum value of Z. From the table, we find that
the minimum value of Z is 60 at the point B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two corner points
C (15, 15) and D (0, 20) and it is 180 in each case.

Remark Observe that in the above example, the  problem  has multiple optimal solutions
at the corner points C and D, i.e. the both points produce same maximum value 180. In
such cases, you can see that every point on the line segment CD joining the two corner
points C and D also give the same maximum value. Same is also true in the case if the
two points produce same minimum value.
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Example 4 Determine graphically the minimum value of the objective function
Z = – 50x + 20y ... (1)

subject to the constraints:
2x – y ≥ – 5 ... (2)
3x + y ≥ 3 ... (3)
2x – 3y ≤ 12 ... (4)
x ≥ 0, y ≥ 0 ... (5)

Solution First of all, let us graph the feasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible
region is unbounded.
We now evaluate Z at the corner points.

From this table, we find that  – 300 is the smallest value of Z at the corner point
(6, 0). Can we say that minimum value of Z is – 300? Note that if the region would
have been bounded, this smallest value of Z is the minimum value of Z (Theorem 2).
But here we see that the feasible region is unbounded. Therefore, – 300 may or may
not be the minimum value of Z. To decide this issue, we graph the inequality

– 50x + 20y < – 300 (see Step 3(ii) of corner Point Method.)
i.e., – 5x + 2y < – 30
and check whether the resulting open half plane has points in common with feasible
region or not. If it has common points, then –300 will not be the minimum value of Z.
Otherwise, –300 will be the minimum value of Z.

Fig 12.5

Corner Point Z = – 50x + 20y

(0, 5) 100
(0, 3) 60
(1, 0) –50
(6, 0) – 300 smallest←
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As shown in the Fig 12.5, it has common points. Therefore, Z = –50 x + 20 y
has no minimum value subject to the given constraints.

In the above example, can you say whether z = – 50 x + 20 y has the maximum
value 100 at (0,5)? For this, check whether the graph of – 50 x + 20 y > 100 has points
in common with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y
subject to the constraints:

x + y ≥ 8 ... (1)
3x + 5y ≤ 15 ... (2)
x ≥ 0, y ≥ 0 ... (3)

Solution Let us graph the inequalities (1) to (3) (Fig 12.6). Is there any feasible region?
Why is so?

From Fig 12.6, you can see that
there is no point satisfying all the
constraints simultaneously. Thus, the
problem is having no feasible region and
hence no feasible solution.

Remarks From the examples which we
have discussed so far, we notice some
general features of linear programming
problems:

(i) The feasible region is always a
convex region.

(ii) The maximum (or minimum)
solution of the objective function occurs at the vertex (corner) of the feasible
region. If two corner points produce the same maximum (or minimum) value
of the objective function, then every point on the line segment joining these
points will also give the same maximum (or minimum) value.

EXERCISE 12.1

Solve the following Linear Programming Problems graphically:
1. Maximise Z =  3x + 4y

subject to the constraints : x + y ≤ 4, x  ≥  0, y ≥ 0.

Fig 12.6
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2. Minimise Z = – 3x + 4 y
subject to x + 2y ≤ 8, 3x + 2y ≤ 12,  x  ≥  0, y ≥ 0.

3. Maximise Z = 5x + 3y
subject to 3x + 5y  ≤ 15, 5x + 2y ≤ 10, x  ≥ 0, y ≥ 0.

4. Minimise Z = 3x + 5y
such that x + 3y  ≥ 3, x + y  ≥ 2, x, y ≥ 0.

5. Maximise Z = 3x + 2y
subject to x + 2y ≤ 10, 3x + y ≤ 15, x, y ≥ 0.

6. Minimise Z = x + 2y
subject to 2x + y ≥ 3, x + 2y ≥ 6, x, y ≥ 0.

Show that the minimum of Z occurs at more than two points.
7. Minimise and Maximise Z = 5x + 10 y

subject to x + 2y  ≤ 120, x + y ≥ 60, x – 2y ≥ 0, x, y ≥ 0.
8. Minimise and Maximise Z = x + 2y

subject to x + 2y ≥ 100, 2x – y ≤ 0, 2x + y ≤ 200; x, y ≥ 0.
9. Maximise Z = – x + 2y, subject to the constraints:

x ≥ 3, x + y ≥ 5, x + 2y ≥ 6, y ≥ 0.
10. Maximise Z = x + y, subject to x – y ≤ –1, –x + y ≤  0,  x, y  ≥ 0.

12.3  Different Types of Linear Programming Problems
A few important linear programming problems are listed below:

1. Manufacturing problems In these problems, we determine the number of units
of different products which should be produced and sold by a firm
when each product requires a fixed manpower, machine hours, labour hour per
unit of product, warehouse space per unit of the output etc., in order to make
maximum profit.

2. Diet problems In these problems, we determine the amount of different kinds
of constituents/nutrients which should be included in a diet so as to minimise the
cost of the desired diet such that it contains a certain minimum amount of each
constituent/nutrients.

3. Transportation problems In these problems, we determine a transportation
schedule in order to find the cheapest way of transporting a product from
plants/factories situated at different locations to different markets.
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Let us now solve some of these types of linear programming problems:

Example 6 (Diet problem): A dietician wishes to mix two types of foods in such a
way that vitamin contents of the mixture contain atleast 8 units of vitamin A and 10
units of vitamin C. Food ‘I’ contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C.
Food ‘II’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs
Rs 50 per kg to purchase Food ‘I’ and Rs 70 per kg to purchase Food ‘II’. Formulate
this problem as a linear programming problem to minimise the cost of such a mixture.

Solution Let the mixture contain x kg of Food ‘I’ and y kg of Food ‘II’. Clearly, x ≥ 0,
y ≥ 0. We make the following table from the given data:

Resources Food Requirement
I II

(x) (y)
Vitamin A 2 1 8
(units/kg)
Vitamin C 1 2 10
(units/kg)
Cost (Rs/kg) 50 70

Since the mixture must contain at least 8 units of vitamin A and 10 units of
vitamin C, we have the constraints:

2x + y ≥ 8
x + 2y ≥ 10

Total cost Z of purchasing x kg of food ‘I’ and y kg of Food ‘II’ is
Z = 50x + 70y

Hence, the mathematical formulation of the problem is:
Minimise Z = 50x + 70y ... (1)
subject to the constraints:

2x + y ≥ 8 ... (2)
x + 2y ≥ 10 ... (3)

x, y ≥ 0 ... (4)
Let us graph the inequalities (2) to (4). The feasible region determined by the

system is shown in the Fig 12.7. Here again, observe that the feasible region is
unbounded.
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Let us evaluate Z at the corner points A(0,8), B(2,4) and C(10,0).

Fig 12.7
In the table, we find that smallest value of Z is 380 at the point (2,4). Can we say

that the minimum value of Z is 380? Remember that the feasible region is unbounded.
Therefore, we have to draw the graph of the inequality

50x + 70y < 380  i.e., 5x + 7y < 38
to check whether the resulting open half plane has any point common with the feasible
region. From the Fig 12.7, we see that it has no points in common.

Thus, the minimum value of Z is 380 attained at the point (2, 4). Hence, the optimal
mixing strategy for the dietician would be to mix 2 kg of Food ‘I’ and 4 kg of Food ‘II’,
and with this strategy, the minimum cost of the mixture will be Rs 380.

Example 7 (Allocation problem) A cooperative society of farmers has 50 hectare
of land to grow two crops X and Y. The profit from crops X and Y per hectare are
estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, a liquid herbicide
has to be used for crops X and Y at rates of 20 litres and 10 litres per hectare. Further,
no more than 800 litres of herbicide should be used in order to protect fish and wild life
using a pond which collects drainage from this land. How much land should be allocated
to each crop so as to maximise the total profit of the society?

Solution Let x hectare of land be allocated to crop X and y hectare to crop Y. Obviously,
x ≥ 0, y ≥ 0.
Profit per hectare on crop X = Rs 10500
Profit per hectare on crop Y = Rs 9000
Therefore, total profit = Rs (10500x + 9000y)

Corner Point Z = 50x + 70y
(0,8) 560
(2,4) 380
(10,0) 500

Minimum←
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The mathematical formulation of the problem is as follows:
Maximise Z = 10500 x + 9000 y
subject  to the constraints:

x + y ≤ 50   (constraint related to land) ... (1)
20x + 10y ≤ 800 (constraint related to use of herbicide)

i.e. 2x + y ≤ 80 ... (2)
x ≥ 0, y ≥ 0     (non negative constraint) ... (3)

Let us draw the graph of the system of inequalities (1) to (3). The feasible region
OABC is shown (shaded) in the Fig 12.8. Observe that the feasible region is bounded.

The coordinates of the corner points O, A, B and C are (0, 0), (40, 0), (30, 20) and
(0, 50) respectively. Let us evaluate the objective function Z = 10500 x  + 9000y at
these vertices to find which one gives the maximum profit.

Fig 12.8
Hence, the society will get the maximum profit of Rs 4,95,000 by allocating 30

hectares for crop X and 20 hectares for crop Y.

Example 8 (Manufacturing problem) A manufacturing company makes two models
A and B of a product. Each piece of Model A requires 9 labour hours for fabricating
and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for
fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum
labour hours available are 180 and 30 respectively. The company makes a profit of
Rs 8000 on each piece of model A and Rs 12000 on each piece of Model B. How many
pieces of Model A and Model B should be manufactured per week to realise a maximum
profit? What is the maximum profit per week?

Corner Point Z = 10500x + 9000y

O(0, 0) 0

A( 40, 0) 420000

B(30, 20) 495000

C(0,50) 450000

←     Maximum
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←

Solution Suppose x is the number of pieces of Model A and y is the number of pieces
of Model B. Then

Total profit (in Rs) = 8000 x + 12000 y
Let Z = 8000 x + 12000 y
We now have the following mathematical model for the given problem.
Maximise Z = 8000 x + 12000 y ... (1)
subject to the constraints:

9x + 12y ≤ 180     (Fabricating constraint)
i.e. 3x + 4y ≤ 60 ... (2)

x + 3y ≤ 30 (Finishing constraint) ... (3)
x ≥ 0, y ≥ 0 (non-negative constraint) ... (4)

The feasible region (shaded) OABC determined by the linear inequalities (2) to (4)
is shown in the Fig 12.9. Note that the feasible region is bounded.

Fig 12.9
Let us evaluate the objective function Z at each corner point as shown below:

Corner Point Z = 8000 x + 12000 y

0 (0, 0) 0

A (20, 0) 160000

B (12, 6) 168000 Maximum

C (0, 10) 120000

We find that maximum value of Z is 1,68,000 at B (12, 6). Hence, the company
should produce 12 pieces of Model A and 6 pieces of Model B to realise maximum
profit and maximum profit then will be Rs 1,68,000.
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EXERCISE 12.2
1. Reshma wishes to mix two types of food P and Q in such a way that the vitamin

contents of the mixture contain at least 8 units of vitamin A and 11 units of
vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains
3 units/kg of Vitamin A and 5 units / kg of Vitamin B while food Q contains
4 units/kg of Vitamin A and 2 units/kg of vitamin B. Determine the minimum cost
of the mixture.

2. One kind of cake requires 200g of flour and 25g of fat, and another kind of cake
requires 100g of flour and 50g of fat. Find the maximum number of cakes which
can be made from 5kg of flour and 1 kg of fat assuming that there is no shortage
of the other ingredients used in making the cakes.

3. A factory makes tennis rackets and cricket bats. A tennis racket takes 1.5 hours
of machine time and 3 hours of craftman’s time in its making while a cricket bat
takes 3 hour of machine time and 1 hour of craftman’s time. In a day, the factory
has the availability of not more than 42 hours of machine time and 24 hours of
craftsman’s time.

(i) What number of rackets and bats must be made if  the factory is to work
at full capacity?

(ii) If the profit on a racket and on a bat is Rs 20 and Rs 10 respectively, find
the maximum profit of the factory when it works at full capacity.

4. A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A
and 3 hours on machine B to produce a package of nuts. It takes 3 hours on
machine A and 1 hour on machine B to produce a package of bolts. He earns a
profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How
many packages of each should be produced each day so as to maximise his
profit, if he operates his machines for at the most 12 hours a day?

5. A factory manufactures two types of screws, A and B. Each type of screw
requires the use of two machines, an automatic and a hand operated. It takes
4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, while it takes 6 minutes on automatic and
3 minutes on the hand operated machines to manufacture a package of screws
B. Each machine is available for at the most 4 hours on any day. The manufacturer
can sell a package of screws A at a profit of Rs 7 and screws B at a profit of
Rs 10. Assuming that he can sell all the screws he manufactures, how many
packages of each type should the factory owner produce in a day in order to
maximise his profit? Determine the maximum profit.
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6. A cottage industry manufactures pedestal lamps and wooden shades, each
requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on
grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal
lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer
to manufacture a shade. On any day, the sprayer is available for at the most 20
hours and the grinding/cutting machine for at the most 12 hours. The profit from
the sale of a lamp is Rs 5 and that from a shade is Rs 3. Assuming that the
manufacturer can sell all the lamps and shades that he produces, how should he
schedule his daily production in order to maximise his profit?

7. A company manufactures two types of novelty souvenirs made of plywood.
Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for
assembling. Souvenirs of type B require 8 minutes each for cutting and 8 minutes
each for assembling. There are 3 hours 20 minutes available for cutting and 4
hours for assembling. The profit is Rs 5 each for type A and Rs 6 each for type
B souvenirs. How many souvenirs of each type should the company manufacture
in order to maximise the profit?

8. A merchant plans to sell two types of personal computers – a desktop model and
a portable model that will cost Rs 25000 and Rs 40000 respectively. He estimates
that the total monthly demand of computers will not exceed 250 units. Determine
the number of units of each type of computers which the merchant should stock
to get maximum profit if he does not want to invest more than Rs 70 lakhs and if
his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.

9. A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two
foods F1 and F2 are available. Food F1 costs Rs 4 per unit food and F2 costs
Rs 6 per unit. One unit of food F1 contains 3 units of vitamin A and 4 units of
minerals. One unit of food F2 contains 6 units of vitamin A and 3 units of minerals.
Formulate this as a linear programming problem. Find the minimum cost for diet
that consists of mixture of these two foods and also meets the minimal nutritional
requirements.

10. There are two types of fertilisers F1 and F2. F1 consists of 10% nitrogen and 6%
phosphoric acid and F2 consists of 5% nitrogen and 10% phosphoric acid. After
testing the soil conditions, a farmer finds that she needs atleast 14 kg of nitrogen
and 14 kg of phosphoric acid for her crop. If F1 costs Rs 6/kg and F2 costs
Rs 5/kg, determine how much of each type of fertiliser should be used so that
nutrient requirements are met at a minimum cost. What is the minimum cost?

11. The corner points of  the feasible region determined by the following system of
linear inequalities:
2x + y ≤ 10, x + 3y ≤ 15, x, y ≥ 0 are (0, 0), (5, 0), (3, 4) and (0, 5). Let
Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z
occurs at both (3, 4) and (0, 5) is
(A) p = q (B) p = 2q (C) p = 3q (D) q = 3p
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Miscellaneous Examples

Example 9 (Diet problem) A dietician has to develop a special diet using two foods
P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units
of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity
of food Q contains 3 units of calcium, 20 units of iron, 4 units of cholesterol and 3 units
of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and
at most 300 units of cholesterol. How many packets of each food should be used to
minimise the amount of vitamin A in the diet? What is the minimum amount of vitamin A?

Solution Let x and y be the number of packets of food P and Q respectively. Obviously
x ≥ 0, y ≥ 0. Mathematical formulation of the given problem is as follows:
Minimise  Z = 6x + 3y (vitamin A)
subject to the constraints

12x + 3y ≥ 240 (constraint on calcium), i.e. 4x + y ≥ 80 ... (1)

4x + 20y ≥ 460 (constraint on iron), i.e. x + 5y ≥ 115 ... (2)

6x + 4y ≤ 300 (constraint on cholesterol), i.e. 3x + 2y ≤ 150 ... (3)

x ≥ 0, y ≥ 0 ... (4)
Let us graph the inequalities (1) to (4).

The feasible region (shaded) determined by the constraints (1) to (4) is shown in
Fig 12.10 and note that it is bounded.

Fig 12.10
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The coordinates of the corner points L, M and N are (2, 72), (15, 20) and (40, 15)
respectively. Let us evaluate Z at these points:

Corner Point Z = 6 x + 3 y

(2, 72) 228

(15, 20) 150 ← Minimum

(40, 15) 285

From the table, we find that Z is minimum at the point (15, 20). Hence, the amount
of vitamin A under the constraints given in the problem will be minimum, if 15 packets
of food P and 20 packets of food Q are used in the special diet. The minimum amount
of vitamin A will be 150 units.
Example 10 (Manufacturing problem) A manufacturer has three machines I, II
and III installed in his factory. Machines I and II are capable of being operated for
at most 12 hours whereas machine III must be operated for atleast 5 hours a day. She
produces only two items M and N each requiring the use of all the three machines.
The number of hours required for producing 1 unit of each of M and N on the three
machines are given in the following table:

Items Number of hours required on machines

I II III
M 1 2 1
N 2 1 1.25

She makes a profit of Rs 600 and Rs 400 on items M and N respectively. How many
of each item should she produce so as to maximise her profit assuming that she can sell
all the items that she produced? What will be the maximum profit?

Solution Let x and y be the number of items M and N respectively.
Total profit on the production = Rs (600 x + 400 y)
Mathematical formulation of the given problem is as follows:
Maximise Z = 600 x + 400 y
subject to the constraints:

x + 2y ≤ 12 (constraint on Machine I) ... (1)
2x + y ≤ 12 (constraint on Machine II) ... (2)

x + 
5
4

 y ≥ 5 (constraint on Machine III) ... (3)

x  ≥ 0,  y ≥ 0 ... (4)
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Let us draw the graph of constraints (1) to (4). ABCDE is the feasible region
(shaded) as shown in Fig 12.11 determined by the constraints (1) to (4). Observe that
the feasible region is bounded, coordinates of the corner points A, B, C, D and E are
(5, 0) (6, 0), (4, 4), (0, 6) and (0, 4) respectively.

Fig 12.11

Let us evaluate Z = 600 x + 400 y at these corner points.

Corner point Z = 600 x + 400 y

(5, 0) 3000

(6, 0) 3600

(4, 4) 4000 ← Maximum

(0, 6) 2400

(0, 4) 1600

We see that the point (4, 4) is giving the maximum value of Z. Hence, the
manufacturer has to produce 4 units of each item to get the maximum profit of Rs 4000.

Example 11 (Transportation problem) There are two factories  located one at
place P and the other at place Q. From these locations, a certain commodity is to be
delivered to each of the three depots situated at A, B and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commodity while the production
capacity of the factories at P and Q are respectively 8 and 6 units. The cost of
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transportation per unit is given below:
From/To Cost (in Rs)

A B C

P 160 100 150

Q 100 120 100

How many units should be transported from each factory to each depot in order that
the transportation cost is minimum. What will be the minimum transportation cost?
Solution The problem can be explained diagrammatically as follows (Fig 12.12):

Let x units and y units of the commodity be transported from the factory at P to
the depots at A and B respectively. Then (8 – x – y) units will be transported to depot
at C (Why?)

Hence, we have x ≥ 0, y ≥ 0 and 8 – x – y ≥ 0
i.e. x ≥ 0, y ≥ 0     and     x + y ≤ 8

Now, the weekly requirement of the depot at A is 5 units of the commodity. Since
x units are transported from the factory at P, the remaining (5 – x) units need to be
transported from the factory at Q. Obviously, 5 – x ≥ 0, i.e. x ≤ 5.

Similarly, (5 – y) and 6 – (5 – x + 5 – y) = x + y – 4 units are to be transported from
the factory at Q to the depots at B and C respectively.
Thus, 5 – y ≥ 0  ,  x + y – 4 ≥0
i.e. y ≤ 5  ,  x + y ≥ 4

Fig 12.12
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Total transportation cost Z is given by
Z = 160 x + 100 y + 100 ( 5 – x) + 120 (5 – y) + 100 (x + y – 4) + 150 (8 – x – y)

= 10 (x – 7 y + 190)
Therefore, the problem reduces to
Minimise Z = 10 (x – 7y + 190)
subject to the constraints:

x ≥ 0, y ≥ 0 ... (1)
x + y ≤ 8 ... (2)

x ≤ 5 ... (3)
y ≤ 5 ... (4)

and x + y ≥ 4 ... (5)
The shaded region ABCDEF

represented by the constraints (1) to
(5) is the feasible region (Fig 12.13).

Observe that the feasible region is bounded. The coordinates of the corner points
of the feasible region are (0, 4), (0, 5), (3, 5), (5, 3), (5, 0) and (4, 0).
Let us evaluate Z at these points.

Corner Point Z = 10 (x – 7 y + 190)

(0, 4) 1620

(0, 5) 1550 ←←←←← Minimum

(3, 5) 1580

(5, 3) 1740

(5, 0) 1950

(4, 0) 1940

From the table, we see that the minimum value of Z  is 1550 at the point (0, 5).
Hence, the optimal transportation strategy will be to deliver 0, 5 and 3 units from

the factory at P and 5, 0 and 1 units from the factory at Q to the depots at A, B and C
respectively. Corresponding to this strategy, the transportation cost would be minimum,
i.e., Rs 1550.

Miscellaneous Exercise on Chapter 12
1. Refer to Example 9. How many packets of each food should be used to maximise

the amount of vitamin A in the diet? What is the maximum amount of vitamin A
in the diet?

Fig 12.13



526 MATHEMATICS

2. A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per
bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units
of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional
element A, 11.25 units of element B, and 3 units of element C. The minimum
requirements of nutrients A, B and C are 18 units, 45 units and 24 units respectively.
Determine the number of bags of each brand which should be mixed in order to
produce a mixture having a minimum cost per bag? What is the minimum cost of
the mixture per bag?

3. A dietician wishes to mix together two kinds of food X and Y in such a way that
the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and
8 units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A Vitamin B Vitamin C

X 1 2 3

Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least
cost of the mixture which will produce the required diet?

4. A manufacturer makes two types of toys A and B. Three machines are needed
for this purpose and the time (in minutes) required for each toy on the machines
is given below:

Types of Toys Machines

I II III

A 12 18 6

B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on
each toy of type A is Rs 7.50 and that on each toy of type B is Rs 5, show that 15
toys of type A and 30 of type B should be manufactured in a day to get maximum
profit.

5. An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is
made on each executive class ticket and a profit of Rs 600 is made on each
economy class ticket. The airline reserves at least 20 seats for executive class.
However, at least 4 times as many passengers prefer to travel by economy class
than by the executive class. Determine how many tickets of each type must be
sold in order to maximise the profit for the airline. What is the maximum profit?
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6. Two godowns A and B have grain capacity of 100 quintals and 50 quintals
respectively. They supply to 3 ration shops, D, E and F whose requirements are
60, 50 and 40 quintals respectively. The cost of transportation per quintal from
the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)

From/To A B

D 6 4

E 3 2

F 2.50 3

How should the supplies be transported in order that the transportation cost is
minimum? What is the minimum cost?

7. An oil company has two depots A and B with capacities of 7000 L and 4000 L
respectively. The company is to supply oil to three petrol pumps, D, E and F
whose requirements are 4500L, 3000L and 3500L respectively. The distances
(in km) between the depots and the petrol pumps is given in the following table:

Distance in (km.)

From / To A B

D 7 3

E 6 4

F 3 2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how
should the delivery be scheduled in order that the transportation cost is minimum?
What is the minimum cost?

8. A fruit grower can use two types of fertilizer in his garden, brand P and brand Q.
The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of
each brand are given in the table. Tests indicate that the garden needs at least
240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of
chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden,
how many bags of each brand should be used? What is the minimum amount of
nitrogen added in the garden?
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kg per bag

Brand P Brand Q

Nitrogen 3 3.5

Phosphoric acid 1 2

Potash 3 1.5

Chlorine 1.5 2

9. Refer to Question 8. If the grower wants to maximise the amount of nitrogen
added to the garden, how many bags of each brand should be added? What is
the maximum amount of nitrogen added?

10. A toy company manufactures two types of dolls, A and B. Market tests and available
resources have indicated that the combined production level should not exceed 1200
dolls per week and the demand for dolls of type B is at most half of that for dolls of
type A. Further, the production level of dolls of type A can exceed three times the
production of dolls of other type by at most 600 units. If the company makes profit of
Rs 12 and Rs 16 per doll respectively on dolls A and B, how many of each should be
produced weekly in order to maximise the profit?

Summary

A linear programming problem is one that is concerned with finding the optimal
value (maximum or minimum) of a linear function of several variables (called
objective function) subject to the conditions that the variables are
non-negative and satisfy a set of linear inequalities (called linear constraints).
Variables are sometimes called decision variables and are non-negative.
A few important linear programming problems are:

(i) Diet problems
(ii) Manufacturing problems
(iii) Transportation problems

The common region determined by all the constraints including the non-negative
constraints x ≥ 0, y ≥ 0 of a linear programming problem is called the feasible
region (or solution region) for the problem.
Points within and on the boundary of the feasible region represent feasible
solutions of the constraints.
Any point outside the feasible region is an infeasible solution.
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Any point in the feasible region that gives the optimal value (maximum or
minimum) of the objective function is called an optimal solution.

The following Theorems are fundamental in solving linear programming
problems:
Theorem 1 Let R be the feasible region (convex polygon) for a linear
programming problem and let Z = ax + by be the objective function. When Z
has an optimal value (maximum or minimum), where the variables x and y
are subject to constraints described by linear inequalities, this optimal value
must occur at a corner point (vertex) of the feasible region.
Theorem 2 Let R be the feasible region for a linear programming problem,
and let Z = ax + by be the objective function. If R is bounded, then the
objective function Z has both a maximum and a minimum value on R and
each of these occurs at a corner point (vertex) of R.

If the feasible region is unbounded, then a maximum or a minimum may not
exist. However, if it exists, it must occur at a corner point of R.

Corner point method for solving a linear programming problem. The method
comprises of the following steps:

(i) Find the feasible region of the linear programming problem and determine
its corner points (vertices).

(ii) Evaluate the objective function Z = ax + by at each corner point. Let M
and m respectively be the largest and smallest values at these points.

(iii) If the feasible region is bounded, M and m respectively are the maximum
and minimum values of the objective function.

If the feasible region is unbounded, then
(i) M is the maximum value of the objective function, if the open half plane

determined by ax + by > M has no point in common with the feasible
region. Otherwise, the objective function has no maximum value.

(ii) m is the minimum value of the objective function, if the open half plane
determined by ax + by < m has no point in common with the feasible
region. Otherwise, the objective function has no minimum value.

If two corner points of the feasible region are both optimal solutions of the
same type, i.e., both produce the same maximum or minimum, then any point
on the line segment joining these two points is also an optimal solution of the
same type.
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Historical Note
In the World War II, when the war operations had to be planned to economise
expenditure, maximise damage to the enemy, linear programming problems
came to the forefront.

The first problem in linear programming was formulated in 1941 by the Russian
mathematician, L. Kantorovich and the American economist, F. L. Hitchcock,
both of whom worked at it independently of each other. This was the well
known transportation problem. In 1945, an English economist, G.Stigler,
described yet another linear programming problem – that of determining an
optimal diet.

In 1947, the American economist, G. B. Dantzig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in a finite number of steps.

L. Katorovich and American mathematical economist, T. C. Koopmans were
awarded the nobel prize in the year 1975 in economics for their pioneering
work in linear programming. With the advent of computers and the necessary
softwares, it has become possible to apply linear programming model to
increasingly complex problems in many areas.

— —
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The theory of probabilities is simply the Science of logic
quantitatively treated. – C.S. PEIRCE 

13.1  Introduction
In earlier Classes, we have studied the probability as a

measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful
in understanding the Bayes' theorem, multiplication rule of
probability and independence of events. We shall also learn
an  important concept of  random variable and its probability
distribution and also the mean and variance of a probability  distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called  Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.
13.2  Conditional Probability
Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Chapter 13
PROBABILITY

Pierre de Fermat
(1601-1665)
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Since the coins are fair, we can assign the probability  
1
8   to each sample point. Let

E be the event ‘at least two heads appear’ and  F be the event ‘first coin shows tail’.
Then

E = {HHH, HHT, HTH, THH}
and F = {THH, THT, TTH, TTT}
Therefore P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})

=
1 1 1 1 1
8 8 8 8 2
+ + + =  (Why ?)

and P(F) = P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})

=
1 1 1 1 1
8 8 8 8 2
+ + + =

Also E ∩ F = {THH}

with P(E ∩ F) = P({THH}) = 
1
8

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.
Now, the sample point of F which is favourable to event E is THH.

Thus, Probability of E considering F as the sample space = 
1
4

,

or Probability of E given that the event F has occurred = 
1
4

This probability of the event E is called the conditional probability of E given
that F has already occurred, and is denoted by P (E|F).

Thus P(E|F) =
1
4

Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E ∩ F.
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Thus, we can also write the conditional probability of E given that F has occurred as

P(E|F) =
Number of elementaryeventsfavourable to E F

Number of elementaryevents which arefavourable to F
∩

=
(E F)

(F)
n

n
∩

Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as

P(E|F) =

(E F)
P(E F)(S)

(F) P(F)
(S)

n
n
n
n

∩
∩

= ... (1)

Note that (1) is valid only when P(F) ≠ 0 i.e., F ≠ φ (Why?)
Thus, we can define the conditional probability as follows :
Definition 1 If  E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by

P(E|F) =
P(E F)

P(F)
∩

 provided P(F) ≠ 0

13.2.1  Properties of conditional probability
Let E and F be events of a sample space S of an experiment, then we have
Property 1 P (S|F) = P(F|F) = 1
We know that

P (S|F) =
P(S F) P(F) 1

P(F) P(F)
∩

= =

Also P(F|F) =
P(F F) P(F) 1

P(F) P(F)
∩

= =

Thus P(S|F) = P(F|F) = 1
Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) ≠ 0, then

P((A ∪ B)|F) = P(A|F) + P(B|F) – P ((A ∩ B)|F)
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In particular, if A and B are disjoint events, then
P((A∪B)|F) = P(A|F) + P(B|F)

We have

P((A ∪B)|F) =
P[(A B) F]

P(F)
∪ ∩

=
P[(A F) (B F)]

P(F)
∩ ∪ ∩

(by distributive law of union of sets over  intersection)

=
P(A F)+P(B F) – P(A B F)

P(F)
∩ ∩ ∩ ∩

=
P(A F) P(B F) P[(A B) F]

P(F) P(F) P(F)
∩ ∩ ∩ ∩

+ −

= P(A|F) + P(B|F) – P ((A ∩ B)|F)
When A and B are disjoint events, then

P((A ∩ B)|F) = 0
⇒ P((A ∪ B)|F) = P(A|F) + P (B|F)
Property 3 P (E′|F) = 1 − P (E|F)
From Property 1, we know that P (S|F) = 1
⇒ P(E ∪ E′|F) = 1    since  S = E ∪ E′
⇒ P(E|F) + P (E′|F) = 1     since E and E′ are disjoint events
Thus, P(E′|F) = 1 − P(E|F)
Let us now take up some examples.

Example 1 If P (A) = 
7

13 , P (B) = 
9

13  and P (A ∩ B) = 
4

13 , evaluate P(A|B).

Solution We have 

4
P(A B) 413P(A|B)= 9P(B) 9

13

∩
= =

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S = {(b, b), (g, b), (b, g), (g, g)}

Let E and F denote the following events :
E : ‘both the children are boys’
F : ‘at least one of the child is a boy’
Then E = {(b,b)} and F = {(b,b), (g,b), (b,g)}
Now E ∩ F = {(b,b)}

Thus P(F) =
3
4

 and P (E ∩ F )= 
1
4

Therefore P(E|F) =

1
P(E F) 14

3P( F) 3
4

∩
= =

Example 3  Ten cards  numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is  greater than 3’. We have to find P(A|B).
Now, the sample space of the experiment is S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Then A = {2, 4, 6, 8, 10},  B = {4, 5, 6, 7, 8, 9, 10}
and A ∩ B = {4, 6, 8, 10}

Also P(A) =
5 7 4, P(B) = and P(A B)

10 10 10
∩ =

Then P(A|B) =

4
P(A B) 410

7P(B) 7
10

∩
= =

Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out of 430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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Now  P(F) =
430 0.43

1000
=  and  43P(E F)= 0.043

1000
∩ =   (Why?)

Then  P(E|F) =
P(E F) 0.043 0.1

P(F) 0.43
∩

= =

Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.

Solution The sample space has 216 outcomes.

Now A =
(1,1,4)   (1,2,4) ... (1,6,4) (2,1,4) (2,2,4) ... (2,6,4)
(3,1,4) (3,2,4) ... (3,6,4) (4,1,4) (4,2,4) ...(4,6,4)
(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

B = {(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)}
and A ∩ B = {(6,5,4)}.

Now P(B) =
6

216
 and  P (A ∩ B) = 

1
216

Then P(A|B) =

1
P(A B) 1216

6P(B) 6
216

∩
= =

Example 6  A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?

Solution  Let E be the event that ‘number 4 appears at least once’ and F be the event
that ‘the sum of the numbers appearing is 6’.
Then, E = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}
and F = {(1,5), (2,4), (3,3), (4,2), (5,1)}

We have P(E) =
11
36

and P (F) = 
5

36
Also E∩F = {(2,4), (4,2)}
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Therefore P(E∩F) =
2

36
Hence, the required probability

P(E|F) =

2
P(E F) 236

5P(F) 5
36

∩
= =

For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P(E∩ F) and P(F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it
again but if it shows tail, then throw a die.  Find the
conditional probability of the event that ‘the die shows
a number greater than 4’ given that ‘there is at least
one tail’.

Solution The outcomes of the experiment can be
represented in following diagrammatic manner called
the ‘tree diagram’.

The sample space of the experiment may be
described as

S = {(H,H), (H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
where (H, H) denotes that both the tosses result into
head and (T, i) denote the first toss result into a tail and
the number i appeared on the die for i = 1,2,3,4,5,6.
Thus, the probabilities assigned to the 8 elementary
events

(H, H), (H, T), (T, 1), (T, 2), (T, 3) (T, 4), (T, 5), (T, 6)

are 
1 1 1 1 1 1 1 1, , , , , , ,
4 4 12 12 12 12 12 12

 respectively which  is

clear from the Fig 13.2.

Fig 13.1

Fig 13.2
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows
a number greater than 4’. Then

F = {(H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
E = {(T,5), (T,6)} and E ∩ F = {(T,5), (T,6)}

Now P(F) = P({(H,T)}) + P ({(T,1)}) + P ({(T,2)}) + P ({(T,3)})
+ P ({(T,4)}) + P({(T,5)}) + P({(T,6)})

=
1 1 1 1 1 1 1 3
4 12 12 12 12 12 12 4
+ + + + + + =

and P(E ∩ F) = P ({(T,5)}) + P ({(T,6)}) = 
1 1 1

12 12 6
+ =

Hence P(E|F) =

1
P(E F) 26

3P(F) 9
4

∩
= =

EXERCISE 13.1
1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and

P(E ∩ F) = 0.2, find P (E|F) and P(F|E)
2. Compute P(A|B), if P(B) = 0.5 and  P (A ∩ B) = 0.32
3. If  P (A) = 0.8,  P (B) = 0.5 and P (B|A) = 0.4, find

(i) P (A ∩ B) (ii) P(A|B) (iii) P(A ∪ B)

4. Evaluate P(A ∪ B), if 2P(A) = P(B) = 
5

13
 and P(A|B) = 

2
5

5. If P(A) = 
6

11  , P(B) = 
5

11  and P(A ∪ B) 7
11

= , find

(i) P(A∩B) (ii) P(A|B) (iii) P(B|A)
Determine P(E|F) in Exercises 6 to 9.

6. A coin is tossed three times, where
(i) E : head on third toss  ,      F : heads on first two tosses
(ii) E : at least two heads  ,     F : at most two heads
(iii) E : at most two tails    ,      F : at least one tail
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7. Two coins are tossed once, where
(i) E : tail appears on one coin, F : one coin shows head
(ii) E :  no tail appears, F : no head appears
8. A die is thrown three times,

E : 4 appears on the third toss, F : 6 and 5 appears respectively
on first two tosses

9. Mother, father and son line up at random for a family picture
E : son on one end, F : father in middle

10. A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9, given

that the black die resulted in a 5.
(b) Find the conditional probability of obtaining the sum 8, given that the red die

resulted in a number less than 4.
11. A fair die is rolled. Consider events E = {1,3,5},  F = {2,3} and G = {2,3,4,5}

Find
(i) P (E|F) and P (F|E) (ii) P (E|G) and P(G|E)

(iii) P ((E ∪ F)|G) and P ((E ∩ F)|G)
12. Assume that each born child is equally likely to be a boy or a girl. If a family has

two children, what is the conditional probability that both are girls given that
(i) the youngest is a girl, (ii) at least one is a girl?

13. An instructor has a question bank consisting of 300 easy True / False questions,
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is a multiple choice question?

14. Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event ‘the sum of numbers on the dice is 4’.

15. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the
die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

In each of the Exercises 16 and 17 choose the correct answer:

16. If  P (A) = 
1
2 , P (B) = 0, then P (A|B) is

(A) 0 (B)
1
2

(C) not defined (D) 1



 540 MATHEMATICS

17. If A and B are events such that P(A|B) = P(B|A), then
(A) A ⊂ B but A ≠ B (B) A = B
(C) A ∩ B = φ (D) P(A) = P(B)

13.3  Multiplication Theorem on Probability
Let E and F be two events associated with a sample space S. Clearly, the set E ∩ F
denotes the event that both E and F have occurred. In other words, E ∩ F denotes the
simultaneous occurrence of the events E and F. The event E ∩ F is also written as EF.

Very often we need to find the probability of  the event EF. For example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event ‘a king and a queen’. The probability of event EF is obtained
by using the conditional probability as obtained below :

We know that the conditional probability of event E given that F has occurred is
denoted by P(E|F) and is given by

P(E|F) =
P(E F) ,P(F) 0

P(F)
∩

≠

From this result, we can write
P(E ∩ F) = P(F) . P (E|F) ... (1)

Also, we know that

P(F|E) =
P(F E) ,P(E) 0

P(E)
∩

≠

or P(F|E) =
P(E F)

P(E)
∩

 (since E ∩ F = F ∩ E)

Thus, P(E ∩ F) = P(E). P(F|E) .... (2)
Combining (1) and (2), we find that

P(E ∩ F) = P(E) P(F|E)
= P(F) P(E|F) provided P(E) ≠ 0 and P(F) ≠ 0.

The above result is known as the multiplication rule of probability.
Let us now take up an example.

Example 8  An urn contains 10 black and 5 white balls. Two balls are drawn from the
urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P (E ∩ F) or P (EF).
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Now P(E) = P (black ball in first draw) = 
10
15

Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.

i.e. P(F|E) =
9

14
By multiplication rule of probability, we have

P (E ∩ F) = P(E) P (F|E)

=
10 9 3
15 14 7

× =

Multiplication rule of probability for more than two events If E, F and G are
three events of sample space, we have

P(E ∩ F ∩ G) = P (E) P (F|E) P(G|(E ∩ F)) = P (E) P(F|E) P(G|EF)
Similarly, the multiplication rule of probability can be extended for four or

more events.
The following example illustrates the extension of multiplication rule of probability

for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)

Now P(K) =
4

52
Also, P (K|K) is the probability of second king with the condition that one king has

already been drawn. Now there are three kings in (52 − 1) = 51 cards.

Therefore P(K|K) =
3
51

Lastly, P(A|KK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
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Therefore P(A|KK) =
4

50
By multiplication law of probability, we have

P(KKA) = P(K)   P(K|K)  P(A|KK)

=
4 3 4 2

52 51 50 5525
× × =

13.4  Independent Events
Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then

P(E) =
13 1 4 1and P(F)
52 4 52 13

= = =

Also E and F is the event ' the card drawn is the ace of spades' so that

P (E ∩ F) =
1
52

Hence P(E|F) =

1
P(E F) 152

1P(F) 4
13

∩
= =

Since P(E) = 
1
4

= P (E|F), we can say that the occurrence of event F has not

affected the probability of occurrence of the event E.
We also have

P(F|E) =

1
P(E F) 152 P(F)1P(E) 13

4

∩
= = =

Again,  P(F) = 
1

13
 = P (F|E) shows that occurrence of event E has not affected

the probability of occurrence of the event F.
Thus, E and F are two events such that the probability of occurrence of one of

them is not affected by occurrence of the other.
Such events are called independent events.
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Definition 2 Two events E and F are said to be independent, if
P(F|E) = P (F)  provided P (E)  ≠ 0

and P (E|F) = P (E)  provided P (F)  ≠ 0
Thus, in this definition we need to have P (E) ≠ 0 and  P(F) ≠ 0
Now, by the multiplication rule of probability, we have

P(E ∩ F) = P(E) . P (F|E) ... (1)
If E and F are independent, then (1) becomes

P(E ∩ F) = P(E) . P (F) ... (2)
Thus, using (2), the independence of two events is also defined as follows:
Definition 3 Let E and F be two events associated with the same random experiment,
then E and F are said to be independent if

P(E ∩ F) = P(E) . P (F)

Remarks
(i) Two events E and F are said to be dependent if they are not independent, i.e. if

P (E ∩ F ) ≠ P(E) . P (F)
(ii) Sometimes there is a confusion between independent events and mutually

exclusive events. Term ‘independent’ is defined in terms of ‘probability of events’
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly, ‘independent’ and
‘mutually exclusive’ do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent.

(iii) Two experiments are said to be independent if for every pair of events E and F,
where E is associated with the first experiment and F with the second experiment,
the probability of the simultaneous occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experiments, i.e., P (E ∩ F) = P (E) . P(F)

(iv) Three events A, B and C are said to be mutually independent, if
P (A ∩ B) = P (A) P (B)

P(A ∩ C) = P (A) P (C)
P(B ∩ C) = P(B) P(C)

and P(A ∩ B ∩ C) = P(A) P (B) P (C)
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If at least one of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of
3’ and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?

Solution We know that the sample space is S = {1, 2, 3, 4, 5, 6}
Now E = { 3, 6}, F = { 2, 4, 6} and  E ∩ F = {6}

Then P(E) = 
2 1 3 1 1, P(F) and P(E  F)
6 3 6 2 6
= = = ∩ =

Clearly P(E ∩ F) = P(E). P (F)
Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the
first throw’ and B the event ‘odd number on the second throw’. Check the independence
of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have

P(A) =
18 1
36 2

=  and 
18 1P(B)
36 2

= =

Also P(A ∩ B) = P (odd number on both throws)

=
9 1
36 4

=

Now P(A) P(B) =
1 1 1
2 2 4
× =

Clearly P(A ∩ B) = P(A) × P(B)
Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads
or three tails’, F ‘at least two heads’ and G ‘at most two heads’. Of the pairs (E,F),
(E,G) and (F,G), which are independent? which are dependent?

Solution The sample space of the experiment is given by
S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
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and G = {HHT, HTH, THH, HTT, THT, TTH, TTT}
Also E ∩ F = {HHH}, E ∩ G = {TTT}, F ∩ G = { HHT, HTH, THH}

Therefore P(E) =
2 1 4 1 7, P(F) , P(G)
8 4 8 2 8
= = = =

and P(E∩F) =
1 1 3, P(E G) , P(F G)
8 8 8

∩ = ∩ =

Also P(E) . P (F) =
1 1 1 1 7 7, P(E) P(G)
4 2 8 4 8 32
× = ⋅ = × =

and P(F) . P(G) =
1 7 7
2 8 16
× =

Thus P(E ∩ F) = P(E) . P(F)
P(E ∩ G) ≠ P(E) . P(G)

and P(F ∩ G) ≠ P (F) . P(G)
Hence, the events (E and F) are independent, and the events (E and G) and

(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events
E and F′.

Solution Since E and F are independent, we have
P(E ∩ F) = P(E) . P (F) ....(1)

From the venn diagram in Fig 13.3, it is clear
that E ∩ F and E ∩ F ′ are mutually exclusive events
and also  E =(E ∩ F) ∪ (E ∩ F ′).

Therefore P(E) = P(E ∩ F) + P(E ∩ F ′)

or P (E ∩ F ′) = P(E) − P(E ∩ F)

= P(E) − P(E) . P(F)
(by  (1))

= P(E) (1−P(F))

= P(E).  P(F ′)

Hence,  E and F ′ are independent

(E F )’∩ (E F)’∩

E
F

S

(E F)∩

(E F )’ ’∩

Fig 13.3
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Note In a similar manner, it can be shown that if the events E and F are
independent, then

(a) E ′ and F are independent,
(b) E ′ and F ′ are independent

Example 14 If A and B are two independent events, then the probability of occurrence
of at least one of A and B is given by 1– P(A′) P(B′)

Solution We have
P(at least one of A and B) = P(A ∪ B)

= P(A) + P(B) − P(A ∩ B)
= P(A) + P(B) − P(A) P(B)
= P(A) + P(B) [1−P(A)]
= P(A)  +  P(B). P(A′)
= 1− P(A′) + P(B) P(A′)
= 1− P(A′)  [1− P(B)]
= 1− P(A′) P (B′)

EXERCISE 13.2

1. If  P(A) 
3
5

=  and P (B) 
1
5

= , find P (A  ∩ B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are  good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on
the coin’ and B be the event ‘3 on the die’. Check whether A and B are
independent events or not.

5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,
‘the number is even,’ and B be the event, ‘the number is red’. Are A and B
independent?

6. Let E and F be events with P (E) 
3
5

= , P (F) 
3

10
=  and P (E ∩ F) = 

1
5 . Are

E and F independent?
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7. Given that the events A and B are such that P(A) = 
1
2

,  P (A ∪ B) = 
3
5

 and

P(B) = p. Find p if they are (i) mutually exclusive (ii) independent.
8. Let A and B be independent events with P (A) = 0.3 and P(B) = 0.4. Find

(i) P (A ∩ B) (ii) P (A ∪ B)
(iii) P (A|B) (iv) P (B|A)

9. If A and B are two events such that  P (A) = 
1
4 , P (B) = 

1
2  and  P (A ∩ B) =

1
8 ,

find P (not A and not B).

10. Events A and B are such that P (A) = 
1
2

, P(B) = 
7

12
 and P(not A or not B) = 

1
4

.

State whether A and B are independent ?
11. Given two independent events A and B such that P(A) = 0.3,  P(B) = 0.6.

Find
(i) P(A and B) (ii) P(A and not B)

(iii) P(A or B) (iv) P(neither A nor B)
12. A die is tossed thrice. Find the probability of getting an odd number at least once.
13. Two balls are drawn at random with replacement from a box containing 10 black

and 8 red balls. Find the probability that
(i) both balls are red.
(ii) first ball is black and second is red.
(iii) one of them is black and other is red.

14. Probability of solving specific problem independently by A and B are 
1
2

 and 
1
3

respectively. If both try to solve the problem independently, find the probability
that

(i) the problem is solved (ii) exactly one of them solves the problem.
15. One card is drawn at random from a well shuffled deck of 52 cards. In which of

the following cases are the events E and F independent ?
(i) E : ‘the card drawn is a spade’

F : ‘the card drawn is an ace’
(ii) E : ‘the card drawn is black’

F : ‘the card drawn is a king’
(iii) E : ‘the card drawn is a king or queen’

F : ‘the card drawn is a queen or jack’.
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16. In a hostel, 60% of the students read Hindi news paper, 40% read English news
paper and 20% read both Hindi and English news papers. A student is selected
at random.
(a) Find the probability that she reads neither Hindi nor English news papers.
(b) If she reads Hindi news paper, find the probability that she reads English

news paper.
(c) If she reads English news paper, find the probability that she reads Hindi

news paper.
Choose the correct answer in Exercises 17 and 18.
17. The probability of obtaining an even prime number on each die, when a pair of

dice is rolled is

(A) 0 (B)
1
3 (C)

1
12 (D)

1
36

18. Two events A and B will be independent, if
(A) A and B are mutually exclusive
(B) P(A′B′) = [1 – P(A)] [1 – P(B)]
(C) P(A) = P(B)
(D) P(A) + P(B) = 1

13.5  Bayes' Theorem
Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the

bags. We can find the probability of selecting any of the bags (i.e.
1
2 ) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. Famous mathematician, John Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 1763.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space
A set of events E1, E2, ..., En is said to represent a partition of the sample space S if

(a) Ei ∩ Ej = φ, i ≠ j, i, j = 1, 2, 3, ..., n
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Fig 13.4

(b) E1 ∪ Ε2 ∪ ... ∪ En= S and
(c) P(Ei) > 0 for all i = 1, 2, ..., n.

In other words, the events E1, E2, ..., En represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities.

As an example, we see that any nonempty event E and its complement E′ form a
partition of the sample space S since they satisfy E ∩ E′ = φ and E ∪ E′ = S.

From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any
two events associated with a sample space S, then the set  {E ∩ F′, E ∩ F, E′ ∩ F, E′ ∩ F′}
is a partition of the sample space S. It may be mentioned that the partition of a sample
space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2  Theorem of total probability
Let   {E1, E2,...,En}  be a partition of the sample space S,  and suppose that each of the
events E1, E2,..., En has nonzero probability of occurrence. Let A be any event associated
with S, then

P(A) = P(E1) P(A|E1) + P(E2) P(A|E2) + ... + P(En) P(A|En)

=
1
P(E ) P(A|E )

n

j j
j=
∑

Proof  Given that E1, E2,..., En is a partition of the sample space S (Fig 13.4). Therefore,
S = E1 ∪ E2 ∪ ... ∪ En  ... (1)

and Ei ∩ Ej = φ, i ≠ j, i, j = 1, 2, ..., n
Now, we know that for any event A,

A = A ∩ S
= A ∩ (E1 ∪ E2 ∪ ... ∪ En)
= (A ∩ E1) ∪ (A ∩ E2) ∪ ...∪ (A ∩ En)

Also A ∩ Ei  and A ∩ Ej  are respectively the subsets of Ei and Ej. We know that
Ei  and Ej are disjoint, for i j≠ , therefore, A  ∩ Ei and A  ∩ Ej  are also disjoint for all
i ≠ j,  i, j = 1, 2, ..., n.
Thus, P(A) = P [(A ∩ E1) ∪ (A ∩ E2)∪ .....∪ (A ∩ En)]

= P (A ∩ E1) + P (A ∩ E2) + ... + P (A ∩ En)
Now, by multiplication rule of probability, we have

P(A ∩ Ei) = P(Ei) P(A|Ei) as  P (Ei) ≠ 0∀i = 1,2,..., n
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Therefore, P (A) = P (E1) P (A|E1) + P (E2) P (A|E2) + ... + P (En)P(A|En)

or P(A) =
1
P(E ) P(A|E )

n

j j
j=
∑

Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.

Solution Let A be the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have

P(B) = 0.65, P(no strike) = P(B′) = 1 − P(B) = 1 − 0.65 = 0.35
P(A|B) = 0.32, P(A|B′) = 0.80

Since events B and B′ form a partition of the sample space S, therefore, by theorem
on total probability, we have

P(A) = P(B) P(A|B) + P(B′) P(A|B′)
         = 0.65 × 0.32 + 0.35 × 0.8
         = 0.208 + 0.28 = 0.488

Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.
Bayes’ Theorem If E1, E2 ,..., En are n non empty events which constitute a partition
of sample space S, i.e. E1, E2 ,..., En are pairwise disjoint and E1∪ E2∪ ... ∪ En = S and
A is any event of nonzero probability, then

P(Ei|A) =

1

P (E ) P (A|E )

P(E )P (A|E )

i i
n

j j
j=
∑

   for any i = 1, 2, 3, ..., n

Proof By formula of conditional probability, we know that

P(Ei|A) =
P(A E )

P(A)
i∩

=
P(E )P(A|E )

P(A)
i i  (by multiplication rule of probability)

=

1

P (E ) P(A|E )

P(E )P(A|E )

i i
n

j j
j=
∑

 (by the result of theorem of total probability)
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Remark  The following terminology is generally used when Bayes' theorem is applied.
The events E1, E2, ..., En are  called hypotheses.
The probability P(Ei) is called the priori probability of the hypothesis Ei

The conditional probability P(Ei |A) is called a posteriori probability of the
hypothesis Ei.

Bayes' theorem is also called the formula for the probability of "causes". Since the
Ei's are a partition of the sample space S, one and only one of the events Ei occurs (i.e.
one of the events Ei must occur and only one can occur). Hence, the above formula
gives us the probability of a particular Ei (i.e. a "Cause"), given that the event A has
occurred.

The Bayes'  theorem has its applications in variety of situations, few of which are
illustrated in following examples.

Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag II.

Solution Let E1 be the event of choosing the bag I, E2 the event of choosing the bag II
and A be the event of drawing a red ball.

Then P(E1) = P(E2) =  
1
2

Also P(A|E1) = P(drawing a red ball from Bag I) = 
3
7

and P(A|E2) = P(drawing a red ball from Bag II) = 
5

11
Now, the probability of drawing a ball from Bag II, being given that it is red,

is P(E2|A)
By using Bayes' theorem, we have

P(E2|A) = 2 2

1 1 2 2

P(E )P(A|E )
P(E )P(A|E )+P(E )P(A|E )

 = 

1 5
352 11

1 3 1 5 68
2 7 2 11

×
=

× + ×

Example 17 Given three identical boxes I, II and III, each containing two coins. In
box I, both coins are gold coins, in box II, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
If the coin is of gold, what is the probability that the other coin in the box is also of gold?
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Solution Let E1, E2 and E3 be the events that boxes I, II and III are chosen, respectively.

Then P(E1) = P(E2) = P(E3) = 
1
3

Also, let A be the event that ‘the coin drawn is of gold’

Then P(A|E1) = P(a gold coin from bag I) = 
2
2  = 1

P(A|E2) = P(a gold coin from bag II) = 0

P(A|E3) = P(a gold coin from bag III) = 
1
2

Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box I.
= P(E1|A)

By Bayes' theorem, we know that

P(E1|A) = 1 1

1 1 2 2 3 3

P(E )P(A|E )
P(E )P(A|E )+P(E )P(A|E )+P(E )P(A|E )

=

1 1 23
1 1 1 1 31 0
3 3 3 2

×
=

× + × + ×

Example 18 Suppose that the reliability of a HIV test is specified as follows:
Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of
people free of HIV, 99% of the test are judged HIV–ive but 1% are diagnosed as
showing HIV+ive. From a large population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A
the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).
Also E′ denotes the event that the person selected is actually not having HIV.

Clearly, {E, E′} is a partition of the sample space of all people in the population.
We are given that

P(E) = 0.1% 
0.1 0.001
100

= =
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P(E′) = 1 – P(E) = 0.999
P(A|E) = P(Person tested as HIV+ive given that he/she

is actually having HIV)

= 90% 
90 0.9

100
= =

and P(A|E′) = P(Person tested as HIV +ive given that he/she
is actually not having HIV)

= 1% = 
1

100
= 0.01

Now, by Bayes' theorem

P(E|A) =
P(E)P(A|E)

P(E)P(A|E)+ P(E )P(A|E )′ ′

=
0.001 0.9 90

0.001 0.9 0.999 0.01 1089
×

=
× + ×

= 0.083 approx.

Thus,  the probability that a person selected at random is actually having HIV
given that he/she is tested HIV+ive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?
Solution Let events B1, B2, B3 be the following :

B1 : the bolt is manufactured by machine A
B2 : the bolt is manufactured by machine B
B3 : the bolt is manufactured by machine C
Clearly, B1, B2, B3 are mutually exclusive and exhaustive events and hence, they

represent a partition of the sample space.
Let the event E be ‘the bolt is defective’.
The event E occurs with B1 or with B2 or with B3. Given that,

P(B1) = 25% = 0.25,  P (B2) = 0.35 and P(B3) = 0.40
Again P(E|B1) = Probability that the bolt drawn is defective given that it is manu-

factured by machine A = 5% = 0.05
Similarly, P(E|B2) = 0.04,  P(E|B3) = 0.02.
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Hence, by Bayes' Theorem, we have

P(B2|E) = 2 2

1 1 2 2 3 3

P(B )P(E|B )
P(B )P(E|B )+P(B )P(E|B )+P(B )P(E|B )

=
0.35 0.04

0.25 0.05 0.35 0.04 0.40 0.02
×

× + × + ×

=
0.0140 28
0.0345 69

=

Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport

are respectively 
3 1 1 2, , and

10 5 10 5 . The probabilities that he will be late are 
1 1 1, , and
4 3 12

,

if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?
Solution Let E be the event that the doctor visits the patient late and let T1, T2, T3, T4
be the events  that the doctor comes by train, bus, scooter, and other means of transport
respectively.

Then P(T1) = 2 3 4
3 1 1 2, P(T ) ,P(T ) and P(T )

10 5 10 5
= = = (given)

P(E|T1) = Probability that the doctor arriving late comes by train = 
1
4

Similarly, P(E|T2) = 
1
3 , P(E|T3) = 

1
12  and P(E|T4) = 0, since he is not late if  he

comes by other means of transport.
Therefore, by Bayes' Theorem, we have

P(T1|E) = Probability that the doctor arriving late comes by train

= 1 1

1 1 2 2 3 3 4 4

P(T )P(E|T )
P(T )P(E|T )+ P(T )P(E|T )+P(T )P(E|T )+P(T )P(E|T )

=

3 1
10 4

3 1 1 1 1 1 2 0
10 4 5 3 10 12 5

×

× + × + × + ×
 = 

3 120 1
40 18 2

× =

Hence, the required probability is 1
2

.
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.

Solution Let E be the event that the man reports that six occurs in the throwing of the
die and let S1 be the event that six occurs and S2 be the event that six does not occur.

Then P(S1) = Probability that six occurs = 
1
6

P(S2) = Probability that six does not occur = 
5
6

P(E|S1) = Probability that the man reports that six occurs when six has
actually occurred on the die

= Probability that the man speaks the truth = 
3
4

P(E|S2) = Probability that the man reports that six occurs  when six has
not actually occurred on the die

= Probability that the man does not speak the truth 3 11
4 4

= − =

Thus, by Bayes' theorem, we get
P(S1|E) = Probability that the report of the man that six has occurred is

actually a six

= 1 1

1 1 2 2

P(S )P(E |S )
P(S )P(E|S )+P(S )P(E|S )

=

1 3
1 24 36 4

1 3 5 1 8 8 8
6 4 6 4

×
= × =

× + ×

Hence, the required probability is 
3.
8

EXERCISE 13.3
1. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is

noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?
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2.  A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. Find the probability that the ball is drawn from the
first bag.

3. Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous year results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
at random from the college and he has an A grade, what is the probability that the
student is a hostlier?

4. In answering a question on a multiple choice test, a student either knows the

answer or guesses. Let 
3
4  be the probability that he knows the answer and 

1
4

be the probability that he guesses. Assuming that a student who guesses at the

answer will be correct with probability 
1
4 . What is the probability that the stu-

dent knows the answer given that he answered it correctly?
5. A laboratory blood test is 99% effective in detecting a certain disease when it is

in fact, present. However, the test also yields a false positive result for 0.5% of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?

6. There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?

7. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?

8. A factory has two machines A and B. Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and 1% produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

9. Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
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0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by
the second group.

10. Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and
notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?

11. A manufacturer has three machine operators A, B  and C. The first operator A
produces 1% defective items, where as the other two operators B and C pro-
duce 5% and 7% defective items respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by A?

12. A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards  are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.

13. Probability that A speaks truth is 
4
5

. A coin is tossed. A reports that a head

appears. The probability that actually there was head is

(A)
4
5 (B)

1
2 (C)

1
5 (D)

2
5

14. If A and B are two events such that A ⊂ B and P(B) ≠  0, then which of the
following is correct?

(A) P(B)P(A | B)
P(A)

= (B) P(A|B) < P(A)

(C) P(A|B) ≥ P(A) (D) None of these

13.6  Random Variables and its Probability Distributions
We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes  as shown in following
examples/experiments.

(i) In tossing two dice, we may be interested in the sum of the numbers on the
two dice.

(ii) In tossing a coin 50 times, we may want the number of heads obtained.
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(iii) In the experiment of taking out four articles (one after the other) at random
from a lot of 20 articles in which 6 are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.

In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by X.

If you recall the definition of a function, you will realise that the random variable X
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows :
Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.
For example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is  S = {HH, HT, TH, TT}.

If X denotes the number of heads obtained, then X is a random variable and for
each outcome, its value is as given below :

X(HH) = 2, X (HT) = 1, X (TH) = 1, X (TT) = 0.
More than  one random variables can be defined on the same sample space. For

example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.
Then Y(HH) = 2, Y (HT) = 0, Y (TH) = 0, Y (TT) = – 2.

Thus, X and Y are two different random variables defined on the same sample
space S.

Example  22 A person plays a game of tossing a coin thrice. For each head, he is
given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let X denote the amount  gained or lost by the person. Show that X is a
random variable and exhibit it as a function on the sample space of the experiment.

Solution X is a number whose values are defined on the outcomes of a random
experiment. Therefore, X is a random variable.
Now, sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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Then X (HHH) = Rs (2 × 3) = Rs 6
X(HHT) = X (HTH) = X(THH) = Rs (2 × 2 − 1 × 1.50) = Rs 2.50
X(HTT) = X(THT) = (TTH) = Rs (1 × 2) – (2 × 1.50) = – Re 1

and X(TTT) = − Rs (3 × 1.50) =  − Rs 4.50
where, minus sign shows the loss to the player. Thus, for each element of the sample
space, X takes a unique value, hence, X is a function on the sample space whose range
is

{–1,  2.50,  – 4.50,  6}

Example 23  A  bag contains 2 white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again.  If X
denotes the number of red balls recorded in the two draws, describe X.

Solution Let the balls in the bag be denoted by w1, w2, r. Then the sample space is
S = {w1 w1, w1 w2, w2 w2, w2 w1, w1 r, w2 r, r w1, r w2, r r}

Now, for ω ∈ S
X (ω) = number of red balls

Therefore
X ({w1 w1}) = X({w1 w2}) = X({w2 w2}) = X({w2 w1}) = 0

X({w1 r}) = X({w2 r}) = X({r w1}) = X({r w2}) = 1 and X({r r}) = 2
Thus, X is a random variable which can take values 0,  1 or 2.

13.6.1 Probability distribution of a random variable
Let us  look at the experiment of selecting one family out of ten families f1,  f2 ,..., f10 in
such a manner that each family  is equally likely to be selected. Let the families f1,  f2,
... , f10  have 3, 4, 3, 2, 5, 4, 3, 6, 4, 5 members, respectively.

Let us select a family and note down the number of members in the family denoting
X. Clearly, X is a random variable defined as below :

X(f1) = 3, X(f2) = 4, X(f3) = 3, X(f4) = 2, X(f5) = 5,
X(f6) = 4, X(f7) = 3, X (f8) = 6, X(f9) = 4, X(f10) = 5

Thus, X can take any value 2,3,4,5 or 6 depending upon which family is selected.
Now,  X will take the value 2 when the family f4 is selected.  X can take the value

3 when any one of the families f1, f3, f7 is selected.
Similarly, X = 4,  when family f2, f6 or f9 is selected,

X = 5,  when family f5 or f10 is selected
and X = 6, when family f8  is selected.
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Since we had assumed that each family is equally likely to be selected, the probability

that family f4 is selected is 1
10

.

Thus, the probability that X can take the value 2 is 
1

10
. We write P(X = 2) =

1
10

Also, the probability that any one of the families f1, f3 or f7 is selected is

P({f1, f3, f7}) =
3

10

Thus, the probability that X can take the value 3 = 
3

10

We write P(X = 3) =
3

10
Similarly, we obtain

P(X = 4) = P({f2, f6, f9}) =
3

10

P(X = 5) = P({f5, f10}) =
2

10

and P(X = 6) = P({f8}) =
1

10
Such a description giving the values of the random variable along with the

corresponding probabilities is called the probability distribution of the random
variable X.

In general, the probability distribution of a random variable X is defined as follows:
Definition 5 The probability distribution of a random variable X is the system of numbers

X : x1 x2 ... xn

P(X) : p 1 p 2 ... p n

where,
1

0,
n

i i
i

p p
=

> ∑  = 1, i = 1, 2,..., n

The real numbers x1, x2,..., xn are the possible values of the random variable X and
pi (i = 1,2,..., n) is the probability of the random variable X taking the value xi i.e.,
P(X = xi) = pi
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Note  If xi is one of the possible values of a random variable X, the statement
X = xi is true only at some point (s) of the sample space. Hence, the probability that
X takes value xi is always nonzero, i.e. P(X = xi) ≠ 0.

Also for all possible values of the random variable X, all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.

Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 52 cards. Find the probability distribution of the number of aces.

Solution The number of aces is a random variable. Let it be denoted by X. Clearly, X
can take the values 0, 1, or 2.

Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.
Therefore, P(X = 0) = P(non-ace and non-ace)

= P(non-ace) × P(non-ace)

=
48 48 144
52 52 169

× =

P(X = 1) = P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) + P(non-ace and ace)
= P(ace). P(non-ace) + P (non-ace) . P(ace)

=
4 48 48 4 24

52 52 52 52 169
× + × =

and P(X = 2) = P (ace and ace)

=
4 4 1

52 52 169
× =

Thus, the required probability distribution is

X 0 1 2

P(X)
144
169

24
169

1
169

Example 25 Find the probability distribution of number of doublets in three throws of
a pair of dice.
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Solution Let X denote the number of doublets. Possible doublets are
(1,1) , (2,2),  (3,3),  (4,4),  (5,5), (6,6)

Clearly, X can take the value 0, 1, 2, or 3.

Probability of getting a doublet 6 1
36 6

= =

Probability of not getting a doublet 
1 51
6 6

= − =

Now P(X = 0) = P (no doublet) = 
5 5 5 125
6 6 6 216
× × =

P(X = 1) = P (one doublet and two non-doublets)

=
1 5 5 5 1 5 5 5 1
6 6 6 6 6 6 6 6 6
× × + × × + × ×

=
2

2
1 5 753
6 2166

⎛ ⎞
× =⎜ ⎟⎝ ⎠

P(X = 2) = P (two doublets and one non-doublet)

= 2
1 1 5 1 5 1 5 1 1 1 5 153
6 6 6 6 6 6 6 6 6 6 2166

⎛ ⎞× × + × × + × × = × =⎜ ⎟⎝ ⎠

and P(X = 3) = P (three doublets)

=
1 1 1 1
6 6 6 216
× × =

Thus,  the required probability distribution is

X 0 1 2 3

P(X)
125
216

75
216

15
216

1
216

Verification Sum of the probabilities

1

n

i
i

p
=
∑  =

125 75 15 1
216 216 216 216

+ + +

=
125 75 15 1 216 1

216 216
+ + +

= =
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Example 26 Let X denote the number of hours you study during a randomly selected
school day. The probability that X can take the values x, has the following form, where
k is some unknown constant.

P(X = x) =

0.1, if 0
, if 1or 2

(5 ), if 3or 4
0, otherwise

=⎧
⎪ =⎪
⎨ − =⎪
⎪⎩

x
kx x
k x x

(a) Find the value of k.
(b) What is the probability that you study at least two hours ? Exactly two hours? At

most two hours?

Solution The probability distribution of X is

X 0 1 2 3 4
P(X) 0.1 k 2k 2k k

(a) We know that
1

n

i
i

p
=
∑  = 1

       Therefore 0.1 + k + 2k + 2k + k = 1
        i.e. k = 0.15
(b) P(you study at least two hours) = P(X ≥ 2)

= P(X = 2) + P (X = 3) + P (X = 4)
= 2k + 2k + k = 5k = 5 × 0.15 = 0.75

P(you study exactly two hours) = P(X = 2)
= 2k = 2 × 0.15 = 0.3

P(you study at most two hours) = P(X ≤ 2)
= P (X = 0) + P(X = 1) + P(X = 2)
= 0.1 + k + 2k = 0.1 + 3k = 0.1 + 3 × 0.15
= 0.55

13.6.2  Mean of a random variable
In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. Few
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
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Definition 6  Let X be a random variable whose possible values x1, x2, x3, ..., xn occur
with probabilities p1, p2, p3,..., pn, respectively. The mean of X, denoted by μ, is the

number 
1

n

i i
i

x p
=
∑ i.e. the mean of X is the weighted average of the possible values of X,

each value being weighted by its probability with which it occurs.
The mean of a random variable X is also called the expectation of X, denoted by

E(X).

Thus, E (X) = μ =
1

n

i i
i

x p
=
∑ = x1 p1+ x2 p2 + ... + xn pn.

In other words, the mean or expectation of a random variable X is the sum of the
products of all possible values of X by their respective probabilities.

Example 27 Let a pair of dice be thrown and the random variable X be the sum of the
numbers that appear on the two dice. Find the mean or expectation of X.

Solution The sample space of the experiment consists of 36 elementary events in the
form of ordered pairs (xi , yi), where xi = 1, 2, 3, 4, 5, 6 and yi = 1, 2, 3, 4, 5, 6.

The random variable X i.e. the sum of the numbers on the two dice takes the
values 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.

Now P(X = 2) = P({(1,1)}) 
1
36

=

P(X = 3) = P({(1,2), (2,1)}) 
2

36
=

P(X = 4) = P({(1,3), (2,2), (3,1)}) 
3

36
=

P(X = 5) = P({(1,4), (2,3), (3,2), (4,1)})
4

36
=

P(X = 6) = P({(1,5), (2,4), (3,3), (4,2), (5,1)})
5

36
=

P(X = 7) = P({(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)})
6

36
=

P(X = 8) = P({(2,6), (3,5), (4,4), (5,3), (6,2)})
5

36
=
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P(X = 9) = P({(3,6), (4,5), (5,4), (6,3)})
4

36
=

P(X = 10) = P({(4,6), (5,5), (6,4)})
3

36
=

P(X = 11) = P({(5,6), (6,5)})
2

36
=

P(X = 12) = P({(6,6)}) 
1
36

=

The probability distribution of X is

X or xi 2 3 4 5 6 7 8 9 10 11 12

P(X) or pi

1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Therefore,

μ = E(X) =
1

1 2 3 42 3 4 5
36 36 36 36

n

i i
i

x p
=

= × + × + × + ×∑

5 6 56 7 8
36 36 36

+ × + × + ×
4 3 2 19 10 11 12

36 36 36 36
+ × + × + × + ×

=
2 6 12 20 30 42 40 36 30 22 12

36
+ + + + + + + + + +

 = 7

Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.

13.6.3  Variance of a random variable
The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of X and Y.

X 1 2 3 4

P(X)
1
8

2
8

3
8

2
8
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Y –1 0 4 5 6

P(Y)
1
8

2
8

3
8

1
8

1
8

Clearly E(X) =
1 2 3 2 221 2 3 4 2.75
8 8 8 8 8

× + × + × + × = =

and E(Y) =
1 2 3 1 1 221 0 4 5 6 2.75
8 8 8 8 8 8

− × + × + × + × = × = =

The variables X and Y are different, however their means are same. It is also
easily observable from the diagramatic representation of these distributions (Fig 13.5).

Fig 13.5
To distinguish X from Y, we require a measure of the extent to which the values of

the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the
values of a random variable may be measured by variance.
Definition 7  Let X be a random variable whose possible values x1, x2,...,xn occur with
probabilities p(x1), p(x2),..., p(xn) respectively.

Let μ = E (X) be the mean of X. The variance of X, denoted by Var (X) or 2
xσ  is

defined as

2
xσ  = 2

1
Var (X)= ( μ) ( )

n

i i
i

x p x
=

−∑

or equivalently 2
xσ  = E(X – μ)2

O

1
8

2
8

3
8

P(Y)

O

1
8

2
8

3
8

P(X)

1 2 3 4 1 2 3 4–1 5 6

(i) (ii)
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The non-negative number

σx =
2

1
Var(X) = ( μ) ( )

n

i i
i

x p x
=

−∑
is called the standard deviation of the  random variable X.
Another formula to find the variance of a random variable. We know that,

Var (X) = 2

1
( μ) ( )

n

i i
i

x p x
=

−∑

= 2 2

1
( μ 2μ ) ( )

n

i i i
i

x x p x
=

+ −∑

= 2 2

1 1 1
( ) μ ( ) 2μ ( )

n n n

i i i i i
i i i

x p x p x x p x
= = =

+ −∑ ∑ ∑

= 2 2

1 1 1
( ) μ ( ) 2μ ( )

n n n

i i i i i
i i i

x p x p x x p x
= = =

+ −∑ ∑ ∑

= 2 2 2

1 =1 1
( ) μ 2μ since  ( )=1andμ= ( )

n n n

i i i i i
i i i

x p x p x x p x
= =

⎡ ⎤
+ − ⎢ ⎥

⎣ ⎦
∑ ∑ ∑

= 2 2

1
( ) μ

n

i i
i

x p x
=

−∑

or Var (X) =
2

2

1 1
( ) ( )

n n

i i i i
i i

x p x x p x
= =

⎛ ⎞
−⎜ ⎟
⎝ ⎠

∑ ∑

or Var (X) = E(X2) – [E(X)]2, where E(X2) = 2

1
( )

n

i i
i

x p x
=
∑

Example 28 Find the variance of the number obtained on a throw of an unbiased die.

Solution The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}.
Let X denote the number obtained on the throw. Then X is a random variable

which can take values 1, 2, 3, 4, 5, or 6.
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Also P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 
1
6

Therefore, the Probability distribution of  X  is

X 1 2 3 4 5 6

P(X)
1
6

1
6

1
6

1
6

1
6

1
6

Now E(X) =
1

( )
n

i i
i

x p x
=
∑

=
1 1 1 1 1 1 211 2 3 4 5 6
6 6 6 6 6 6 6

× + × + × + × + × + × =

Also E(X2) = 2 2 2 2 2 21 1 1 1 1 1 911 2 3 4 5 6
6 6 6 6 6 6 6

× + × + × + × + × + × =

Thus, Var (X) = E (X2) – (E(X))2

=
291 21 91 441

6 6 6 36
⎛ ⎞− = −⎜ ⎟
⎝ ⎠

  
35
12

=

Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation
of the number of kings.

Solution Let X denote the number of kings in a draw of two cards. X is a random
variable which can assume the values 0, 1 or 2.

Now P(X = 0) = P (no king) 
48

2
52

2

48!
C 48 47 1882!(48 2)!

52! 52 51 221C
2!(52 2)!

×−
= = = =

×
−

P(X = 1) = P (one king and one non-king) 
4 48

1 1
52

2

C C
C

=

   = 
4 48 2 32
52 51 221
× ×

=
×
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and P(X = 2) = P (two kings) =
4

2
52

2

C 4 3 1
52 51 221C
×

= =
×

Thus,  the probability distribution of  X is

X 0 1 2

P(X)
188
221

32
221

1
221

Now                           Mean of X = E(X) = 
1

( )
n

i i
i

x p x
=
∑

=
188 32 1 340 1 2
221 221 221 221

× + × + × =

Also E(X2) = 2

1
( )

n

i i
i

x p x
=
∑

= 2 2 2188 32 1 360 1 2
221 221 221 221

× + × + × =

Now Var(X) = E(X2) – [E(X)]2

=
2

2
36 34 6800–
221 221 (221)

⎛ ⎞ =⎜ ⎟
⎝ ⎠

Therefore σx =
6800Var(X) 0.37
221

= =

EXERCISE 13.4

1. State which of the following are not the probability distributions of a random
variable. Give reasons for your answer.

(i) X 0 1 2

P(X) 0.4 0.4 0.2

(ii) X 0 1 2 3 4

P(X) 0.1 0.5 0.2 – 0.1 0.3
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(iii) Y – 1 0 1

P(Y) 0.6 0.1 0.2

(iv) Z 3 2 1 0 –1

P(Z) 0.3 0.2 0.4 0.1 0.05

2. An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X
represent the number of black balls. What are the possible values of X? Is X a
random variable ?

3. Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed 6 times. What are possible values of X?

4. Find the probability distribution of
(i) number of heads in two tosses of a coin.
(ii) number of tails in the simultaneous tosses of three coins.
(iii) number of heads in four tosses of a coin.

5. Find the probability distribution of the number of successes in two tosses of a die,
where a success is defined as

(i) number greater than 4
(ii) six appears on at least one die

6. From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn
at random with replacement. Find the probability distribution of the number of
defective bulbs.

7. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is
tossed twice, find the probability distribution of number of tails.

8. A random variable X has the following probability distribution:

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k 2 2k2 7k2+k

Determine
(i) k (ii) P(X < 3)

(iii)  P(X > 6) (iv) P(0 < X < 3)
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9. The random variable X has a probability distribution P(X) of the following form,
where k is some number :

P(X) =

, 0
2 , 1
3 , 2
0, otherwise

k if x
k if x
k if x

=⎧
⎪ =⎪
⎨ =⎪
⎪⎩

(a) Determine the value of k.
(b) Find P (X < 2),  P (X ≤ 2), P(X ≥ 2).

10. Find the mean number of heads in three tosses of a fair coin.
11. Two dice are thrown simultaneously. If X denotes the number of sixes, find  the

expectation of X.
12. Two numbers are selected at random (without replacement) from the first six

positive integers. Let X denote the larger of the two numbers obtained. Find
E(X).

13. Let X denote the sum of the numbers obtained when two fair dice are rolled.
Find the variance and standard deviation of X.

14. A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20,
17, 16, 19 and 20 years. One student is selected in such a manner that each has
the same chance of being chosen and the age X of the selected student is
recorded. What is the probability  distribution of the random variable X? Find
mean, variance and standard deviation of X.

15. In a meeting, 70% of the members favour and 30% oppose a certain proposal.
A member is selected at random and we take X = 0 if he opposed, and X = 1 if
he is in favour. Find E(X) and Var (X).

Choose the correct answer in each of the following:
16. The mean of the numbers obtained on throwing a die having written 1 on three

faces, 2 on two faces and 5 on one face is

(A) 1 (B) 2 (C) 5 (D)
8
3

17. Suppose that two cards are drawn at random from a deck of cards. Let X be the
number of aces obtained. Then the value of E(X) is

(A)
37
221 (B)

5
13 (C)

1
13 (D)

2
13
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13.7  Bernoulli Trials and Binomial Distribution
13.7.1  Bernoulli trials

Many experiments are dichotomous in nature. For example, a tossed coin shows a
‘head’ or ‘tail’, a manufactured item can be ‘defective’ or ‘non-defective’, the response
to a question might be ‘yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision
is ‘yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’
and the other ‘not success’ or ‘failure’. For example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.

Each time we toss a coin or roll a die or perform any other experiment, we call it a
trial. If a coin is tossed, say, 4 times, the number of trials is 4, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as ‘success’ or ‘failure’ are called Bernoulli trials.
Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions :

(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes : success or failure.
(iv) The probability of  success remains the same in each trial.

For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to 6

written on six faces, then  p = 
1
2

 and q = 1 – p = 
1
2

 = probability of failure.

Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black
balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is

(i) replaced (ii) not replaced in the urn.

Solution
(i) The number of trials is finite. When the drawing is done with replacement, the

probability of success (say, red ball) is  p = 
7

16  which is same for all six trials

(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
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(ii) When the drawing is done without replacement, the probability of success

(i.e., red ball) in first trial is 
7

16
, in 2nd trial is 

6
15

if the first ball drawn is red or
7

15
 if the first ball drawn is black and so on. Clearly, the probability of success is

not same for all trials, hence the trials are not Bernoulli trials.

13.7.2  Binomial distribution
Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and F denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.
Clearly, six different cases are there as listed below:

SFFFFF,  FSFFFF, FFSFFF, FFFSFF, FFFFSF,  FFFFFS.

Similarly, two successes and four failures can have 
6!

4! 2!×  combinations. It will be

lengthy job to list all of these ways. Therefore, calculation of probabilities of 0, 1, 2,...,
n number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities  of number of
successes in n-Bernoulli trials, a formula is derived. For this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and q = 1 – p for
success and failure respectively in each trial. The sample space of the experiment is
the set

S = {SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF}
The number of successes is a random variable X and can take values 0, 1, 2, or 3.

The probability distribution of the number of successes is as below :
P(X = 0) = P(no success)

= P({FFF}) = P(F) P(F) P(F)
= q . q . q = q3 since  the trials are independent

P(X = 1) = P(one successes)
= P({SFF, FSF, FFS})
= P({SFF}) + P({FSF}) + P({FFS})
= P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
= p.q.q + q.p.q + q.q.p = 3pq2

P(X = 2) = P (two successes)
= P({SSF, SFS, FSS})
= P({SSF}) + P ({SFS}) + P({FSS})
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= P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)
= p.p.q. +  p.q.p  +  q.p.p  =  3p2q

and P(X = 3) = P(three success) = P ({SSS})
= P(S) . P(S) . P(S) = p3

Thus, the probability distribution of X is
X 0 1 2 3

P(X) q 3 3q2p 3qp2 p 3

Also, the binominal expansion of (q + p)3 is

q q p qp p3 3 2 3 2 3+ + +

Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd,
3rd and 4th term in the expansion of (q + p)3.

Also, since q + p = 1, it follows that the sum of these probabilities, as expected, is 1.
Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities

of 0, 1, 2,..., n successes can be obtained as 1st, 2nd,...,(n + 1)th terms in the expansion
of (q + p)n. To  prove this assertion (result), let us find the probability of x-successes in
an experiment of n-Bernoulli trials.
Clearly, in case of x successes (S), there will be (n – x) failures (F).

Now, x successes (S) and (n – x) failures (F) can be obtained in 
!

!( )!
n

x n x−  ways.

In each of these ways, the probability of x successes and (n − x) failures is
= P(x successes) . P(n–x) failures is

=
times ( ) times

P (S).P (S)...P(S) P(F).P(F)...P(F)
x n x−

⋅
 = px qn–x

Thus, the probability of x successes in n-Bernoulli trials is 
!

!( )!
n

x n x−
px qn–x

or nCx
 px  qn–x

Thus P(x successes) = Cn x n x
x p q − ,    x = 0, 1, 2,...,n. (q = 1 – p)

Clearly, P(x successes), i.e. Cn x n x
x p q − is the (x + 1)th term in the binomial

expansion of (q + p)n.
Thus, the probability distribution of number of successes in an experiment consisting

of n Bernoulli trials may be obtained by the binomial expansion of (q + p)n. Hence, this
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distribution of number of successes X can be written as

X 0 1 2 ... x ... n

P (X) nC0 q
n nC1 q

n–1p1 nC2 q
n–2p2 nCx q

n–xpx nCn p
n

The above probability distribution is known as binomial distribution with parameters
n and p, because for given values of n and p, we can find the complete probability
distribution.
The probability of x successes P (X = x) is also denoted by P (x) and is given by

P(x) = nCx q
n–xpx,    x = 0, 1,..., n. (q = 1 – p)

This P (x) is called the probability function of the binomial distribution.
A binomial distribution with n-Bernoulli trials and probability of success in each

trial as p, is denoted by B(n, p).
Let  us now take up some examples.

Example 31 If a fair coin  is tossed 10 times, find the probability of
(i) exactly six heads
(ii) at least six heads
(iii) at most six heads

Solution The repeated tosses of a coin are Bernoulli trials. Let X denote the number
of heads in an experiment of 10 trials.

Clearly, X has the binomial distribution with n = 10 and p = 
1
2

Therefore P(X = x) = nCxq
n–xpx, x = 0, 1, 2,...,n

Here n = 10, 1
2

p=  , q = 1 – p = 
1
2

Therefore P(X = x) =
10 10

10 101 1 1C C
2 2 2

x x

x x

−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Now (i) P(X = 6) =
10

10
6 10

1 10! 1 105C
2 6! 4! 5122

⎛ ⎞ = =⎜ ⎟ ×⎝ ⎠

(ii) P(at least six heads) = P(X ≥ 6)

= P (X = 6) + P (X = 7) + P (X = 8) + P(X = 9) + P (X = 10)
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=
10 10 10 10 10

10 10 10 10 10
6 7 8 9 10

1 1 1 1 1C C C C C
2 2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= 10
10! 10! 10! 10! 10! 1

6! 4! 7! 3! 8! 2! 9! 1! 10! 2
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× × × ×⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

193
512

=

(iii) P(at most six heads) = P(X ≤ 6)
= P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)

+ P (X = 4) + P (X = 5) + P (X = 6)

=
10 10 10 10

10 10 10
1 2 3

1 1 1 1C C C
2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+ 
10 10 10

10 10 10
4 5 6

1 1 1C C C
2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
848 53

1024 64
=

Example 32 Ten eggs are drawn successively with replacement from a lot containing
10% defective eggs. Find the probability that there is at least one defective egg.

Solution Let X denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the

binomial distribution with n = 10 and 
10 1
100 10

p= = .

Therefore q = 91
10

p− =

Now P(at least one defective egg) = P(X ≥ 1) = 1 – P (X = 0)

=
10

10
0

91 C
10
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 = 
10

10
91

10
−

EXERCISE 13.5

1. A die is thrown 6 times. If  ‘getting an odd number’ is a success, what is the
probability of

(i) 5 successes? (ii) at least 5 successes?
(iii) at most 5 successes?
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2. A pair of dice is thrown 4 times. If getting a doublet is considered a success, find
the probability of two successes.

3. There are 5% defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?

4. Five cards are drawn successively with replacement from a well-shuffled deck
of 52 cards. What is the probability that

(i) all the five cards are spades?
(ii) only 3 cards are spades?
(iii) none is a spade?

5. The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. Find the probability that out of 5 such bulbs

(i) none
(ii) not more than one
(iii) more than one
(iv) at least one

will fuse after 150 days of use.
6. A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls

are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 0?

7. In an examination, 20 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true'; if it falls tails, he answers 'false'. Find the probability
that he answers at least 12 questions correctly.

8. Suppose X has a binomial distribution 1B 6,
2

⎛ ⎞
⎜ ⎟⎝ ⎠

. Show that  X = 3 is the most

likely outcome.
(Hint : P(X = 3) is the maximum among all P(xi), xi = 0,1,2,3,4,5,6)

9. On a multiple choice examination with three possible answers for each of the
five questions, what is the probability that a candidate would get four or more
correct answers just by guessing ?

10. A person buys a lottery ticket in 50 lotteries, in each of which his chance of

winning a prize is 1
100

. What is the probability that he will win a prize

(a) at least once (b) exactly once (c) at least twice?
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11. Find the probability of getting 5 exactly twice in 7 throws of a die.
12. Find the probability of throwing at most 2 sixes in 6 throws of a single die.
13. It is known that 10% of certain articles manufactured are defective. What is the

probability that in a random sample of 12 such articles, 9 are defective?
In each of the following, choose the correct answer:

14. In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is

(A) 10–1 (B)
51

2
⎛ ⎞
⎜ ⎟
⎝ ⎠

(C)
59

10
⎛ ⎞
⎜ ⎟
⎝ ⎠

(D)
9

10

15. The probability that a student is not a swimmer is 
1.
5

 Then the probability that

out of five students, four are swimmers is

(A)
4

5
4

4 1C
5 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

(B)
44 1

5 5
⎛ ⎞
⎜ ⎟
⎝ ⎠

(C)
4

5
1

1 4C
5 5
⎛ ⎞
⎜ ⎟
⎝ ⎠

(D) None of these

Miscellaneous Examples
Example 33 Coloured balls are distributed in four boxes as shown in the following
table:

Box Colour

    Black      White       Red  Blue

I 3 4 5 6

II 2 2 2 2

III 1 2 3 1

IV 4 3 1 5

A box is selected at random and then a ball is randomly drawn from the selected
box. The colour of the ball is black, what is the probability that ball drawn is from the
box III?
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Solution Let A, E1, E2, E3 and E4 be the events as defined below :
A : a black ball is selected E1 : box I is selected
E2 : box II is selected E3 : box III is selected
E4 : box IV is selected

Since the boxes are chosen at random,

Therefore P(E1) = P(E2) = P(E3) = P(E4) = 
1
4

Also P(A|E1) =
3

18 , P(A|E2) = 
2
8 , P(A|E3) = 

1
7  and  P(A|E4) = 

4
13

P(box III is selected, given that the drawn ball is black) = P(E3|A). By Bayes'
theorem,

P(E3|A) = 3 3

1 1 2 2 3 3 4 4

P(E ) P(A|E )
P(E )P(A|E ) P(E )P(A|E )+P(E )P(A|E ) P(E )P(A|E )

⋅
+ +

= 

1 1
4 7 0.1651 3 1 1 1 1 1 4

4 18 4 4 4 7 4 13

×
=

× + × + × + ×

Example 34 Find the mean of the Binomial distribution 
1B 4,
3

⎛ ⎞
⎜ ⎟⎝ ⎠

.

Solution Let X be the random variable whose probability distribution is 
1B 4,
3

⎛ ⎞
⎜ ⎟⎝ ⎠

.

Here n = 4, p =
1
3

 and  q = 
1 21
3 3

− =

We know that P(X = x) =
4

4 2 1C
3 3

x x

x

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, x = 0, 1, 2, 3, 4.

i.e. the distribution of X is

xi P(xi) xi P(xi)

0
4

4
0

2C
3

⎛ ⎞
⎜ ⎟⎝ ⎠ 0

1
3

4
1

2 1C
3 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

3
4

1
2 1C
3 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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2
2 2

4
2

2 1C
3 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

2 2
4

2
2 12 C
3 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

3
3

4
3

2 1C
3 3

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

3
4

3
2 13 C
3 3

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

4
4

4
4

1C
3

⎛ ⎞
⎜ ⎟⎝ ⎠

4
4

4
14 C
3

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Now Mean (μ) =
4

1
( )i i

i
x p x

=
∑

=
3 2 2

4 4
1 2

2 1 2 10 C 2 C
3 3 3 3

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

+
3 4

4 4
3 4

2 1 13 C 4 C
3 3 3

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
3 2

4 4 4 4
2 2 2 14 2 6 3 4 4 1
3 3 3 3

× + × × + × × + × ×

= 4
32 48 24 4 108 4

81 33
+ + +

= =

Example 35 The probability of a shooter hitting a target is 
3
4

. How many minimum

number of times must he/she fire so that the probability of hitting the target at least
once is more than 0.99?

Solution Let the shooter fire n times. Obviously, n fires are n Bernoulli trials. In each

trial, p = probability of hitting the target = 
3
4  and q  =  probability of not hitting the

target = 
1
4 . Then  P(X = x) = 

1 3 3C C C
4 4 4

n x x x
n n x x n n

x x x nq p
−

− ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.

Now, given that,
P(hitting the target at least once) > 0.99
i.e. P(x ≥ 1) > 0.99
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Therefore, 1 – P (x = 0) > 0.99

or 0
11 C
4

n
n−  > 0.99

or 0
1 1C 0.01 i.e.
4 4

<n
n n  < 0.01

or 4n > 
1

0.01
 = 100 ... (1)

The minimum value of n to satisfy the inequality (1) is 4.
Thus,  the shooter must fire 4 times.

Example 36 A and B throw a die alternatively  till one of them gets a ‘6’ and wins the
game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting a ‘6’) and F denote the failure (not getting
a ‘6’).

Thus, P(S) =
1 5, P(F)
6 6

=

P(A wins in the first throw) = P(S) = 
1
6

A gets the third throw, when the first throw by A and second throw by B result into
failures.

Therefore, P(A wins in the 3rd throw) = P(FFS) = 
5 5 1P(F)P(F)P(S)=
6 6 6
× ×

=
25 1

6 6
⎛ ⎞ ×⎜ ⎟
⎝ ⎠

P(A wins in the 5th throw) = P (FFFFS) 
45 1

6 6
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ and so on.

Hence, P(A wins) =
2 41 5 1 5 1 ...

6 6 6 6 6
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

1
6
251
36

−
 = 

6
11
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P(B wins) = 1 – P (A wins) = 
6 51
11 11

− =

Remark If a + ar + ar2 + ... + arn–1 + ..., where |r | < 1, then sum of this infinite G.P.

is given by .
1

a
r−  (Refer A.1.3 of Class XI Text book).

Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable items. Past experience shows that
80% of the set ups are correctly done. If after a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.
Also let B1 represent the event of correct set up and B2 represent the event of

incorrect setup.
Now P(B1) = 0.8, P(B2) = 0.2

P(A|B1) = 0.9 × 0.9  and P(A|B2) =  0.4 × 0.4

Therefore P(B1|A) = 1 1

1 1 2 2

P (B ) P(A|B )
P(B ) P(A|B ) + P(B ) P(A|B )

=
0.8× 0.9 × 0.9 648 0.95

0.8× 0.9× 0.9 + 0.2 × 0.4 × 0.4 680
= =

Miscellaneous Exercise on Chapter 13
1. A and B are two events such that P (A) ≠ 0. Find P(B|A), if

(i) A is a subset of B (ii) A ∩ B = φ
2. A couple has two children,

(i) Find the probability that both children are males, if it is known that at least
one of the children is male.

(ii) Find the probability that both children are females, if it is known that the
elder child is a female.

3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What  is the probability that
at most 6 of a random sample of 10 people are right-handed?
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5. An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15
bear a mark 'Y'. A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If 6 balls are drawn in this way, find the probability that

(i) all will bear 'X' mark.
(ii) not more than 2 will bear 'Y' mark.
(iii) at least one ball will bear 'Y' mark.
(iv) the number of balls with 'X' mark and 'Y' mark will be equal.

6. In a hurdle race, a player has to cross 10 hurdles. The probability that he will

clear each hurdle is 
5
6 . What is the probability that he will knock down fewer

than 2 hurdles?
7. A die is thrown again and again until three sixes are obtained. Find the probabil-

ity of obtaining the third six in the sixth throw of the die.
8. If a leap year is selected at random, what is the chance that it will contain 53

tuesdays?
9. An experiment succeeds twice as often as it fails. Find the probability that in the

next six trials, there will be atleast 4 successes.
10. How many times must a man toss a fair coin so that the probability of having

at least one head is more than 90%?
11. In a game, a man wins a rupee for a six and loses a rupee for any other number

when a fair die is thrown. The man decided to throw a die thrice but to quit as
and when he gets a six. Find the expected value of the amount he wins / loses.

12. Suppose we have four boxes A,B,C and D containing coloured marbles as given
below:

Box Marble colour
Red White Black

A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

   One of the boxes has been selected at random and a single marble is drawn from
it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
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13. Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient followed a course of
meditation and yoga?

14. If each element of a second order determinant is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being

assumed with probability 
1
2

).

15. An electronic assembly consists of two subsystems, say, A and B. From previ-
ous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2
P(B fails alone) = 0.15
P(A and B fail) = 0.15

Evaluate the following probabilities
(i) P(A fails|B has failed) (ii) P(A fails alone)

16. Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.
One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II.
The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black.

Choose the correct answer in each of the following:

17. If A and B are two events such that P(A) ≠ 0 and P(B | A) = 1, then

(A) A ⊂ B (B) B ⊂ A (C) B = φ (D) A = φ

18. If P(A|B) > P(A), then which of the following is correct :

(A) P(B|A) < P(B) (B) P(A ∩ B) < P(A) . P(B)

(C) P(B|A) > P(B) (D) P(B|A) = P(B)

19. If A and B are any two events such that P(A) + P(B) – P(A and B) = P(A), then

(A) P(B|A) = 1 (B) P(A|B) = 1

(C) P(B|A) = 0 (D) P(A|B) = 0
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Summary
The salient features of the chapter are –

The conditional probability of an event E, given the occurrence of the event F

is given by P(E F)P(E | F)
P(F)
∩

= , P(F) ≠ 0

0 ≤ P (E|F) ≤ 1, P (E′|F) = 1 – P (E|F)
P ((E ∪ F)|G) = P (E|G) + P (F|G) – P ((E ∩ F)|G)
P (E ∩ F) = P (E) P (F|E), P (E) ≠ 0
P (E ∩ F) = P (F)  P (E|F), P (F) ≠ 0
If E and F are independent, then
P (E ∩ F) = P (E) P (F)
P (E|F) = P (E), P (F) ≠ 0
P (F|E) = P (F), P(E) ≠ 0
Theorem of total probability
Let {E1, E2, ...,En) be a partition of a sample space and suppose that each of
E1, E2, ..., En has nonzero probability. Let A be any event associated with S,
then
P(A) = P(E1) P (A|E1) + P (E2) P (A|E2) + ... + P (En) P(A|En)
Bayes' theorem If E1, E2, ..., En are events which constitute a partition of
sample space S, i.e. E1, E2, ..., En are pairwise disjoint and E1 4 E2 4 ... 4 En = S
and A be any event with nonzero probability, then

i i

1

P(E ) P(A|E )
P(E | A)

P(E ) P(A|E )
i n

j j
j=

=

∑

A random variable is a real valued function whose domain is the sample
space of a random experiment.
The probability distribution of a random variable X is the system of numbers

X : x1 x2 ... xn

P(X) : p 1 p 2 ... p n

where,
1

0, 1, 1, 2,...,
n

i i
i

p p i n
=

> = =∑



 586 MATHEMATICS

Let X be a random variable whose possible values x1, x2, x3, ..., xn occur with
probabilities p1,  p2, p3, ... pn  respectively. The mean of X, denoted by μ, is

the number 
1

n

i i
i

x p
=
∑ .

The mean of a random variable X is also called the expectation of X, denoted
by E (X).
Let X be a random variable whose possible values x1, x2, ..., xn occur with
probabilities p(x1), p(x2), ..., p(xn) respectively.
Let μ = E(X) be the mean of X. The variance of X, denoted by Var (X) or

σx
2, is defined as 2 2

1
Var (X)= ( μ) ( )

n

x i i
i

x p x
=

= −∑σ

or equivalently  σx
2 = E (X – μ)2

The non-negative number

2

1
Va r (X) = ( μ) ( )

n

x i i
i

x p x
=

= −∑σ

is called the standard deviation of the  random variable X.
Var (X) = E (X2) – [E(X)]2

Trials of a random experiment are called Bernoulli trials, if they satisfy the
following conditions :

(i) There should be a finite number of trials.
(ii) The trials should be independent.
(iii) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.

For Binomial distribution B (n, p), P (X = x) = nCx q n–x px, x = 0,  1,..., n
(q = 1 – p)

 Historical Note
The earliest indication on measurement of chances in game of dice appeared

in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published
posthumously in 1663. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.
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Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat
(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the method of combinations.

Great Dutch Scientist, Huygens (1629-1695), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Ratiociniis in Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by Jacob Bernoulli (1654-1705),
in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, ‘Foundations of
probability’ published in 1933, introduces probability as a set function and is
considered a ‘classic!’.

— —
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EXERCISE 7.1

1. 1 cos 2
2

x− 2.
1 sin 3
3

x 3. 21
2

xe

4. 31 ( )
3

ax b
a

+ 5. 31 4cos 2
2 3

xx e− − 6. 34 C
3

xe x+ +

7.
3

C
3
x x− + 8.

3 2

C
3 2

ax bx cx+ + + 9. 32 C
3

xx e+ +

10.
2

log 2 C
2
x x x+ − + 11.

2 45 C
2
x x

x
+ + +

12.
7 3
2 22 2 8 C

7
x x x+ + + 13.

3

C
3
x x+ +

14.
3 5
2 22 2 C

3 5
x x− + 15.

7 5 3
2 2 26 4 2 C

7 5
x x x+ + +

16. 2 3sin + Cxx x e− + 17.
3

3 22 103cos C
3 3

x x x+ + +

18. tan x + sec x + C 19. tan x – x + C

20. 2 tan x – 3 sec x + C 21. C
22. A

EXERCISE 7.2

1. log (1 + x2) + C 2. 31 (log| |) C
3

x + 3. log 1+log Cx +

4. cos (cos x) + C 5.
1 cos2( ) C

4
ax b

a
− + +

6.
3
22 ( ) C

3
ax b

a
+ + 7.

5 3
2 22 4( 2) ( 2) C

5 3
x x+ − + +

ANSWERS
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8.
3

2 21 (1 2 ) C
6

x+ + 9.
3

2 24 ( 1) C
3

x x+ + + 10. 2log 1 Cx − +

 11.
2 4( 8) C
3

x x+ − +

12.
7 4

3 33 31 1( 1) ( 1) C
7 4

x x− + − + 13. 3 2
1 C

18(2 3 )x
− +

+

14.
1(log )

C
1

mx
m

−

+
− 15. 21 log | 9 4 |

8
x− − 16. 2 31 C

2
xe + +

17. 2

1 C
2 xe

− + 18.
1tan Cxe
−

+ 19. log( ) +Cx xe e−+

20. 2 21 log ( ) C
2

x xe e−+ + 21.
1 tan (2 3) C
2

x x− − +

22. 1 tan (7 4 ) C
4

x− − + 23. 1 21 (sin ) C
2

x− +

24.
1 log 2sin 3cos C
2

x x+ + 25.
1 C

(1 tan )x
+

−

26. 2sin Cx + 27.
3
21 (sin 2 ) C

3
x + 28. 2 1+sin Cx +

29. 21 (logsin ) C
2

x + 30. – log (1+cos )x 31.
1 C

1+cos x
+

32.
1 log cos sin C

2 2
x x x− + + 33.

1 log cos sin C
2 2
x x x− − +

34. 2 tan Cx + 35. 31 (1 log ) C
3

x+ + 36. 31 ( log ) C
3

x x+ +

37. 1 41 cos(tan ) C
4

x−− + 38. D

39. B
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EXERCISE 7.3

1.
1 sin (4 10) C

2 8
x x− + + 2.

1 1cos7 cos C
14 2

x x− + +

3.
1 1 1 1sin12 sin8 sin 4 C
4 12 8 4

x x x x⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

4. 31 1cos(2 1) cos (2 1) C
2 6

x x− + + + + 5. 6 41 1cos cos C
6 4

x x− +

6.
1 1 1 1cos6 cos 4 cos2 C
4 6 4 2

x x x⎡ ⎤− − +⎢ ⎥⎣ ⎦

7.
1 1 1sin 4 sin12 C
2 4 12

x x⎡ ⎤− +⎢ ⎥⎣ ⎦
8. 2tan C

2
x x− +

9. tan C
2
xx− + 10.

3 1 1sin 2 sin 4 C
8 4 32
x x x− + +

11. 3 1 1sin 4 sin8 C
8 8 64
x x x+ + + 12. x – sin x + C

13. 2 (sinx + x cosα) + C 14.
1 C

cos +sinx x
− +

15. 31 1sec 2 sec2 C
6 2

x x− + 16. 31 tan tan C
3

x x x− + +

17. sec x – cosec x + C 18. tan x + C

19. 21log tan tan C
2

x x+ + 20. log cos sin Cx x+ +

21.
2

C
2 2
x xπ
− + 22.

1 cos ( )log C
sin ( ) cos ( )

x a
a b x b

−
+

− −

23. A 24. B

EXERCISE 7.4

1. 1 3tan + Cx− 2. 21 log 2 1 4 C
2

x x+ + +
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3. 2

1log C
2 4 5x x x

+
− + − +

4. –11 5sin C
5 3

x
+

5.
1 23 tan 2 C

2 2
x− + 6.

3

3
1 1log C
6 1

x
x

+
+

−

7. 2 21 log 1 Cx x x− − + − + 8. 3 6 61 log C
3

x x a+ + +

9. 2log tan + tan + 4 Cx x + 10. 2log 1 2 2 Cx x x+ + + + +

11.
11 3 1tan C

6 2
x− +⎛ ⎞ +⎜ ⎟⎝ ⎠ 12.

–1 3sin C
4

x+⎛ ⎞ +⎜ ⎟⎝ ⎠

13. 23log – 3 2 C
2

x x x+ − + + 14.
–1 2 3sin C

41
x−⎛ ⎞ +⎜ ⎟⎝ ⎠

15.
+log – ( )( ) C
2

a bx x a x b+ − − +

16. 22 2 + 3 Cx x− + 17. 2 21 2log 1 Cx x x− + + − +

18.
2 15 11 3 1log 3 2 1 tan C

6 3 2 2
xx x − +⎛ ⎞

+ + − +⎜ ⎟⎝ ⎠

19. 2 296 – 9 + 20 34 log 9 20 C
2

x x x x x+ − + − + +

20. 2 1 2
– 4 – 4sin C

2
x

x x − −⎛ ⎞+ +⎜ ⎟⎝ ⎠

21. 2 22 +3 log 1 2 3 Cx x x x x+ + + + + + +

22.
21 2 1 6log 2 5 log C

2 6 1 6
xx x
x
− −

− − + +
− +
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23. 2 25 4 +10 7 log 2 4 10 Cx x x x x+ − + + + + +

24. B 25. B

EXERCISE 7.5

1.
2( 2)

log C
1

x
x
+

+
+ 2.

1 3log C
6 3

x
x
−

+
+

3. log 1 5log 2 4log 3 Cx x x− − − + − +

4.
1 3log 1 2log 2 log 3 C
2 2

x x x− − − + − +

5. 4log +2 2log 1 Cx x− + + 6.
3log log 1 2 C

2 4
x x x+ − − +

7. 2 11 1 1log 1 log ( 1) tan C
2 4 2

x x x−− − + + +

8.
2 1 1log C
9 2 3( 1)

x
x x
−

− +
+ − 9.

1 1 4log C
2 1 1

x
x x
+

− +
− −

10.
5 1 12log 1 log 1 log 2 3 C
2 10 5

x x x+ − − − + +

11.
5 5 5log 1 log 2 log 2 C
3 2 6

x x x+ − + + − +

12.
2 1 3

log 1 log 1 C
2 2 2
x x x+ + + − +

13. – log 1x − +
1
2 log (1 + x2) + tan–1x + C

14.
53log – 2 C

2
x

x
− +

−
15. 11 1 1log tan C

4 1 2
x x
x

−−
− +

+

16.
1 log C

1

n

n
x

n x
+

+ 17.
2 –sinlog C
1–sin

x
x
+

18.
1 12+ tan 3tan C

23 3
x xx − −− + 19.

2

2
1 1log C
2 3

x
x

⎛ ⎞+
+⎜ ⎟+⎝ ⎠



ANSWERS 593

20.
4

4
1 1log C
4

x
x
−

+ 21.
– 1log C

x

x
e

e
⎛ ⎞

+⎜ ⎟
⎝ ⎠

22. B 23. A

EXERCISE 7.6

1. – x cos x + sin x + C 2.
1cos3 sin3 C

3 9
x x x− + +

3. ex (x2 – 2x + 2) + C 4.
2 2

log C
2 4
x xx− +

5.
2 2

log 2 C
2 4
x xx − + 6.

3 3

log C
3 9
x xx− +

7.
2

2 11 1(2 1) sin C
4 4

x xx x− −
− + + 8.

2
1 11

tan tan C
2 2 2
x xx x− −− + +

9.
–1

2 2cos
(2 1) 1 C

4 4
x xx x− − − +

10. ( )2–1 2 1sin 2 1 sin 2 Cx x x x x−+ − − +

11. 2 –1– 1– cos Cx x x⎡ ⎤+ +⎢ ⎥⎣ ⎦ 12. x tan x + log cos x + C

13. 1 21tan log(1 ) C
2

x x x− − + + 14.
2 2 2

2(log ) log C
2 2 4
x x xx x− + +

15.
3 3

log C
3 9
x xx x x

⎛ ⎞
+ − − +⎜ ⎟⎝ ⎠ 16. ex sin x + C

17. C
1+

xe
x
+ 18. tan C

2
x xe +

19. C
xe
x
+ 20. 2 C

( 1)

xe
x

+
−

21.
2

(2sin cos ) C
5

xe x x− + 22. 2x tan–1x – log (1 + x2) + C

23. A 24. B
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EXERCISE 7.7

1. 2 11 4 2sin C
2 2

xx x −− + + 2. 1 21 1sin 2 1 4 C
4 2

x x x− + − +

3. 2 2( +2) 4 6 log 2 4 6 C
2

x x x x x x+ + + + + + + +

4. 2 2( +2) 34 1 log 2 4 1 C
2 2

x x x x x x+ + − + + + + +

5.
1 25 2 2

sin 1 4 C
2 25

x x x x− + +⎛ ⎞
+ − − +⎜ ⎟⎝ ⎠

6. 2 2( +2) 94 5 log 2 4 5 C
2 2

x x x x x x+ − − + + + − +

7.
2 1(2 3) 13 2 3

1 3 sin C
4 8 13

x xx x −− −⎛ ⎞
+ − + +⎜ ⎟⎝ ⎠

8.
2 22 +3 9 33 log 3 C

4 8 2
x x x x x x+ − + + + +

9. 2 239 log 9 C
6 2
x x x x+ + + + +

10. A 11. D

EXERCISE 7.8

1. 2 21 ( )
2

b a− 2.
35
2 3.

19
3

4.
27
2 5.

1e
e

− 6.
815

2
e+

EXERCISE 7.9

1. 2 2.
3log
2 3.

64
3

4.
1
2 5. 0 6. e4 (e – 1)
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7.
1
2 log 2 8.

2 1log
2 3

⎛ ⎞−
⎜ ⎟−⎝ ⎠ 9.

π
2

10.
π
4 11.

1 3log
2 2 12.

π
4

13.
1
2 log 2 14.

11 3log6 tan 5
5 5

−+

15.
1
2 (e – 1) 16. 5 5 35 – 9log log

2 4 2
⎛ ⎞−⎜ ⎟⎝ ⎠

17.
4

2
1024 2
π π

+ + 18. 0 19.
33log 2
8
π

+

20. 1 + 
4 2 2
π π
− 21. D 22. C

EXERCISE 7.10

1.
1 log 2
2 2.

64
231 3. π

2
– log 2

4.
16 2

( 2 1)
15

+ 5.
π
4

6.
1 21 5 17log

417
+

7.
π
8 8.

2 2( 2)
4

e e −
9. D

10. B

EXERCISE 7.11

1.
π
4 2.

π
4 3.

π
4 4.

π
4

5. 29 6. 9 7.
1

( 1)( 2)n n+ +

8.
π log 2
8

9.
16 2

15
10.

π 1log
2 2

11.
π
2
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12. π 13. 0 14. 0 15. 0

16. – π log 2 17. 2
a

18. 5 20. C

21. C

MISCELLANEOUS EXERCISE ON CHAPTER 7

1.
2

2
1 log C
2 1

x
x

+
− 2.

3 3
2 22 ( ) ( ) C

3( ) 
x a x b

a b
⎡ ⎤

+ − + +⎢ ⎥
− ⎢ ⎥⎣ ⎦

3.
( )2– Ca x

a x
−

+ 4.
1
4

4
1– 1+ C
x

⎛ ⎞ +⎜ ⎟⎝ ⎠

5.
1 1 1
3 6 62 3 6 6log(1 ) Cx x x x− + − + +

6. 2 11 1 3log 1 log ( 9) tan C
2 4 2 3

xx x −− + + + + +

7. sin log sin ( ) cos Ca x a x a− + + 8.
3

C
3
x
+

9. –1 sinsin C
2

x⎛ ⎞ +⎜ ⎟⎝ ⎠ 10.
1 sin 2 C
2

x− +

11.
cos ( )1

log C
sin ( –  ) cos( )

x b
a b x a

+
+

+
12. 1 41 sin ( ) C

4
x− +

13.
1+log C
2+

x

x
e
e

⎛ ⎞
+⎜ ⎟⎝ ⎠ 14. 1 11 1tan tan C

3 6 2
xx− −− +

15. 41 cos C
4

x− + 16. 41 log( 1) C
4

x + +

17.
+1[ ( + )]

C
( +1)

nf ax b
a n

+ 18.
sin ( )–2 C

sin sin
x

x
α

α
+

+

19.
2

12(2 1) 2sin C
π π
x x xx x−− −

+ − +
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20. 1 2–2 1– cos Cx x x x−+ + − +

21. ex tan x + C 22.
12log +1 3log 2 C

1
x x

x
− − + + +

+

23. 1 21 cos 1 C
2

x x x−⎡ ⎤− − +⎢ ⎥⎣ ⎦ 24.

3
2

2 2
1 1 1 2– 1 log 1 C
3 3x x

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

25. 2e
π

26.
8
π

27.
6
π

28. 1 ( 3 1)
2sin

2
− −

29.
4 2

3
30.

1 log9
40

31.
π 1
2
− 32.

π (π 2)
2

−

33.
19
2 40.

21 1
3

e
e

⎛ ⎞−⎜ ⎟⎝ ⎠

41. A 42. B
43. D 44. B

EXERCISE 8.1

1.
14
3 2. 16 4 2− 3.

32 8 2
3
−

4. 12π 5. 6π 6.
π
3

7.
2 π 1

2 2
a ⎛ ⎞−⎜ ⎟

⎝ ⎠
8.

2
3(4) 9.

1
3

10.
9
8 11. 8 3 12. A 13. B
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EXERCISE 8.2

1.
12 9 2 2sin

6 4 3
−+ 2.

2π 3
3 2

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

3.
21
2 4. 4 5. 8

6. B 7. B

Miscellaneous Exercise on Chapter 8

1. (i)
7
3 (ii) 624.8

2.
1
6 3.

7
3 4. 9 5. 4

6.
2

3
8
3

a
m

7. 27 8.
3 (π 2)
2

−

9. (π 2)
4

ab
− 10.

9
2 11. 2 12.

1
3

13. 7 14.
7
2 15. 19π 9 1 1sin

8 4 3 3 2
− ⎛ ⎞− +⎜ ⎟⎝ ⎠

16. D 17. C 18. C 19. B

EXERCISE 9.1
1. Order 4; Degree not defined 2. Order 1; Degree 1
3. Order 2; Degree 1 4. Order 2; Degree not defined
5. Order 2; Degree 1 6. Order 3; Degree 2
7. Order 3; Degree 1 8. Order 1; Degree 1
9. Order 2; Degree 1 10. Order 2; Degree 1

11. D 12. A

EXERCISE 9.2
11. D 12. D
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EXERCISE 9.3
1. y″     = 0 2. xy y″ + x (y′)² – y y′ = 0
3. y″     – y′– 6y = 0 4.  y″     – 4y′ + 4y = 0
5. y″     – 2y′ + 2y = 0 6. 2xyy′ + x2 = y2

7. xy′ – 2y = 0 8. xyy″ + x(y′)² – yy′ = 0
9. xyy″ + x(y′)² – yy′ = 0 10. (x² – 9) (y′)² + x² = 0

11. B 12. C

EXERCISE 9.4

1. 2 tan C
2
xy x= − + 2. y = 2 sin (x + C)

3. y = 1 + Ae–x 4. tan tan Cx y =

5. y = log (ex + e–x) + C 6.
3

–1tan = + C
3
xy x +

7. y = ecx 8. x – 4 + y –4 = C
9. y = x sin–1x + 21– x + C 10. tan y = C ( 1 – ex)

11. 2 2 3 –11 1log ( 1) ( 1) tan 1
4 2

y x x x⎡ ⎤= + + − +⎣ ⎦

12.
2

2
1 1log
2

xy
x

⎛ ⎞−
= ⎜ ⎟⎝ ⎠ 13.

2cos y a
x
−⎛ ⎞ =⎜ ⎟⎝ ⎠

14. y = sec x 15. 2y – 1 = ex ( sin x – cos x)
16. y – x + 2 = log (x2 (y + 2)2) 17. y2 – x2 = 4

18. (x + 4)2 = y + 3 19.
1
3(63 27)t +

20. 6.93% 21. Rs 1648

22.
2log 2

11log
10
⎛ ⎞
⎜ ⎟⎝ ⎠

23. A

EXERCISE 9.5

1. 2( ) C
y

xx y x e
−

− = 2. log Cy x x x= +
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3. –1 2 21tan log ( ) C
2

y x y
x

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

4. x2 + y2 = Cx

5.
1 2log log C

2 2 2
x y x
x y
+

= +
− 6. 2 2 2+ + Cy x y x=

7. xy cos y
x

⎛ ⎞
⎜ ⎟⎝ ⎠

 = C 8. 1 cos Csiny yx
x x

⎡ ⎤⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

9. cy = log 1y
x
− 10. C

x
yye x+ =

11. log ( x2 + y2) + 2 tan–1 
y
x

 = 
π log 2
2
+

12. y + 2x = 3x2 y 13. cot logy ex
x

⎛ ⎞=⎜ ⎟
⎝ ⎠

14. cos logy ex
x

⎛ ⎞=⎜ ⎟
⎝ ⎠

15.
2 ( 0, )

1 log
xy x x e

x
= ≠ ≠

−

16. C 17. D

EXERCISE 9.6

1. y = 
1
5 (2sin x – cos x) + C e–2x 2. y = e–2x + Ce–3x

3.
4

C
4
xxy = + 4. y (sec x + tan x) = sec x + tan x – x + C

5. y = (tan x – 1) + Ce–tanx 6.
2

2(4 log 1) C
16
xy x x−= − +

7.
2log (1 log ) Cy x x
x
−

= + + 8. 2 2 1= (1+ )  log sin C(1 )y x x x− −+ +

9.
1 Ccot

sin
y x

x x x
= − + 10. (x + y + 1) = C ey

11.
2 C

3
= +

yx
y

12. x = 3y2 + Cy
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13. y = cos x – 2 cos2 x 14. y (1 + x2) = tan–1 x – 4
π

15. y = 4 sin3 x – 2 sin2 x 16. x + y + 1 = ex

17. y = 4 – x – 2 ex 18. C        19.  D

Miscellaneous Exercise on Chapter 9
1. (i) Order 2; Degree 1 (ii) Order 1; Degree 3

(iii) Order 4; Degree not defined

3.
2 22
4

y xy
xy
−′= 5. (x + yy′)² = (x – y)2 (1 + ( y′)2)

6. sin–1y + sin–1x = C 8. cos y = 
sec

2
x

9. tan–1 y + tan–1(ex) = 
π
2 10. C

x
ye y= +

11. log – 1x y x y= + + 12. 2 (2 C)xy e x= +

13.
2

2 π
sin 2 (sin 0)

2
y x x x= − ≠ 14.

2 1log , 1
1

xy x
x
+

= ≠ −
+

15. 31250 16. C
17. C 18. C

EXERCISE 10.1

1. In the adjoining figure, the vector OP
JJJG

 represents the required displacement.
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2. (i) scalar (ii) vector (iii) scalar (iv) scalar (v) scalar
(vi) vector

3. (i) scalar (ii) scalar (iii) vector (iv) vector (v) scalar

4. (i) Vectors aG  and b
G

 are coinitial

(ii) Vectors b
G

 and d
JG

 are equal

(iii) Vectors aG  and cG are collinear but not equal
5. (i) True (ii) False (iii) False (iv) False

EXERCISE 10.2

1. 3, 62, 1a b c= = =
GG G

2. An infinite number of possible answers.
3. An infinite number of possible answers.
4. x = 2, y = 3 5. –7 and 6; ˆ ˆ–7 and 6i j

6. ˆˆ4 j k− − 7.
1 1 2 ˆˆ ˆ
6 6 6

i j k+ +

8.
1 1 1 ˆˆ ˆ
3 3 3

i j k+ + 9.
1 1 ˆˆ
2 2

i k+

10.
40 8 16 ˆˆ ˆ
30 30 30

i j k− + 12.
1 2 3, ,
14 14 14

13.
1 2 2, ,
3 3 3

− − 15. (i)  
1 4 1 ˆˆ ˆ
3 3 3

i j k− + +    (ii)  ˆˆ3 3i k− +

16. ˆˆ ˆ3 2i j k+ + 18. (C) 19.  (D)

EXERCISE 10.3

1.
π
4 2. –1 5cos

7
⎛ ⎞
⎜ ⎟⎝ ⎠

3. 0

4.
60
114 6.

16 2 2 2,
3 7 3 7

7.
226 11 . – 35a a b b+

G GG G

8. 1, 1a b= =
GG

9. 13 10. 8
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12. Vector b
G

can be any vector 13.
3

2
−

14. Take any two non-zero perpendicular vectors aG and b
G

15.
–1 10

cos
102

⎛ ⎞
⎜ ⎟⎝ ⎠ 18. (D)

EXERCISE 10.4

1. 19 2 2.
2 2 1 ˆˆ ˆ
3 3 3

i j k± ∓ ∓ 3.
π 1 1 1; , ,
3 2 22

5.
273,
2 6. Either 0 or 0a b= =

GG

8. No; take any two nonzero collinear vectors

9. 61
2

10. 15 2 11. (B)        12.  (C)

Miscellaneous Exercise on Chapter 10

1.
3 1ˆ ˆ

2 2
i j+

2. 2 2 2
2 1 2 1 2 1 2 1 2 1 2 1– , – , ; ( ) ( ) ( )x x y y z z x x y y z z− − + − + −

3.
5 3 3ˆ ˆ

2 2
i j−
+

4. No; take aG , b
G  and cG  to represent the sides of a triangle.

5.
1
3

± 6.
3 10ˆ ˆ10
2 2

i j+ 7.
3 3 2 ˆˆ ˆ
22 22 22

i j k− +

8. 2 : 3 9. 3 aG  + 5 b
G

10.
1 ˆˆ ˆ(3 – 6 2 ); 11 5
7

i j k+

12.
1 ˆˆ ˆ(160 – 5 70 )
3

i j k+ 13. λ = 1 16. (B)

17. (D) 18. (C) 19. (B)
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EXERCISE 11.1

1.
1 10, ,
2 2
−

2.
1 1 1, ,
3 3 3

± ± ± 3. 11
2,

11
6,

11
9 −−

5.
2 2 3 2 3 2 4 5 1, , ; , , ; , ,

1717 17 17 17 17 42 42 42
− − − − − −

EXERCISE 11.2

4. ˆ ˆˆ ˆ ˆ ˆ2 3 ( 3 2 2 )r i j k i j k= + + + λ + −G , where λ is a real number

5. ˆ ˆˆ ˆ ˆ ˆ2 4 ( 2 )= − + + λ + −
Gr i j k i j k and cartesian form is

1
4

2
1

1
2

−
−

=
+

=
− zyx

6.
6

5
5

4
3

2 +
=

−
=

+ zyx

7. ˆ ˆˆ ˆ ˆ ˆ(5 4 6 ) (3 7 2 )r i j k i j k= − + + λ + +G

8. Vector equation of the line: ˆˆ ˆ( 5 2 3 )r i j k= λ − +G ;

Cartesian equation of the line: 325
zyx

=
−

=

9. Vector equation of the line: ˆ ˆˆ ˆ3 2 5 (11 )= − − + λ
Gr i j k k

Cartesian equation of the line:  3 2 5
0 0 11

x y z− + +
= =

10. (i) θ = 1 19cos
21

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

(ii) θ = 1 8cos
5 3

− ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

11. (i) θ = 1 26cos
9 38

− ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

(ii) θ = 1 2cos
3

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

12.
70
11

p = 14. 3 2
2

15. 2 29

16.
3
19 17. 29

8
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EXERCISE 11.3

1. (a) 0, 0, 1; 2 (b)
1 1 1 1, , ;
3 3 3 3

(c)
2 3 1 5, , ;
14 14 14 14

−
(d) 0, 1, 0;  5

8

2.
ˆˆ ˆ3 5 6 7

70
i j kr

⎛ ⎞+ −
⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠

G

3. (a) x + y – z = 2 (b) 2x + 3y – 4 z = 1
(c) (s – 2t) x + (3 – t) y + (2s + t) z = 15

4. (a)
24 36 48, ,
29 29 29

⎛ ⎞
⎜ ⎟
⎝ ⎠

(b)
18 240, ,
5 5

⎛ ⎞
⎜ ⎟
⎝ ⎠

(c) ⎟
⎠
⎞

⎜
⎝
⎛

3
1,

3
1,

3
1

(d) ⎟
⎠
⎞

⎜
⎝
⎛ − 0,

5
8,0

5. (a) ˆ ˆˆ ˆ ˆ[ ( 2 )] ( ) 0;− − ⋅ + − =
Gr i k i j k   x + y – z = 3

(b) ˆ ˆˆ ˆ ˆ ˆ[ ( 4 6 ) ] ( 2 ) 0;− + + ⋅ − + =
Gr i j k i j k  x – 2y + z + 1 = 0

6. (a) The points are collinear.  There will be infinite number of planes
passing through the given points.

(b) 2x + 3y – 3z = 5

7. 2
5

,  5, –5 8. y = 3 9. 7x – 5y + 4z – 8 = 0

10. ( )ˆˆ ˆ38 68 3 153⋅ + + =
Gr i j k 11. x – z + 2 = 0

12. 1 15
cos

731
− ⎛ ⎞

⎜ ⎟⎝ ⎠

13. (a) 1 2cos
5

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

(b) The planes are perpendicular

(c) The planes are parallel (d) The planes are parallel
(e) 45o

14. (a)
13
3

(b)
13
3

(c) 3 (d) 2
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Miscellaneous Exercise on Chapter 11

3. 90° 4. 1 0 0
x y z
= = 5.

1 5cos
187

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

6.
10
7

k −
= 7.

8. x + y + z = a + b + c 9. 9

10.
17 130, ,
2 2

−⎛ ⎞
⎜ ⎟
⎝ ⎠

11.
17 23, 0,
3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

12. (1, – 2, 7)

13. 7x – 8y + 3z + 25 = 0 14. p = 1 or 
3
7

15. y – 3z + 6 = 0 16. x + 2y – 3z – 14 = 0
17. 33 x + 45y + 50 z – 41 = 0 18. 13

19. ˆ ˆˆ ˆ ˆ ˆ2 3 ( 3 5 4 )= + + + λ − + +
Gr i j k i j k

20. ˆ ˆˆ ˆ ˆ ˆ2 4 (2 3 6 )= + − + λ + +
Gr i j k i j k 22. D

23. B

EXERCISE 12.1
1. Maximum Z = 16 at (0, 4)

2. Minimum Z = – 12 at (4, 0)

3. Maximum Z = 
235
19

 at 
20 45,
19 19
⎛ ⎞
⎜ ⎟⎝ ⎠

4. Minimum Z = 7 at 
3 1,
2 2

⎛ ⎞
⎜ ⎟⎝ ⎠

5. Maximum Z = 18 at (4, 3)

6. Minimum Z = 6 at all the points on the line segment joining the points (6, 0)
and (0, 3).

7. Minimum Z = 300 at (60, 0);

Maximum Z = 600 at all the points on the line segment joining the points (120, 0)
and (60, 30).

ˆ ˆˆ ˆ ˆ ˆ2 3 ( 2 5 )= + + + λ + −
Gr i j k i j k
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8. Minimum Z = 100 at all the points on the line segment joining the points (0, 50)
and (20, 40);

Maximum Z = 400 at (0, 200)

9. Z has no maximum value

10. No feasible region, hence no maximum value of Z.

EXERCISE 12.2

1. Minimum cost = Rs 160 at all points lying on segment joining 
8 ,0
3

⎛ ⎞
⎜ ⎟⎝ ⎠

 and 
12,
2

⎛ ⎞
⎜ ⎟⎝ ⎠ .

2. Maximum number of cakes = 30 of kind one and 10 cakes of another kind.
3. (i) 4 tennis rackets and 12 cricket bats

(ii) Maximum profit = Rs 200
4. 3 packages of nuts and 3 packages of bolts; Maximum profit = Rs 73.50.
5. 30 packages of screws A and 20 packages of screws B; Maximum profit

= Rs 410
6. 4 Pedestal lamps and 4 wooden shades; Maximum profit = Rs 32
7. 8 Souvenir of types A and 20 of Souvenir of type B; Maximum profit

= Rs 1600.
8. 200 units of desktop model and 50 units of portable model; Maximum profit

= Rs 1150000.
9. Minimise Z = 4x + 6y

subject to 3x + 6y ≥ 80, 4x + 3y ≥ 100, x ≥ 0 and y ≥ 0, where x and y denote the
number of units of food F1 and food F2 respectively; Minimum cost = Rs 104

10. 100 kg of fertiliser F1 and 80 kg of fertiliser F2;  Minimum cost = Rs 1000
11. (D)

Miscellaneous Exercise on Chapter 12

1. 40 packets of food P and 15 packets of food Q; Maximum amount of vitamin A
= 285 units.

2. 3 bags of brand P and 6 bags of brand Q; Minimum cost of the mixture = Rs 1950
3. Least cost of the mixture is Rs 112 (2 kg of Food X and 4 kg of food Y).



MATHEMATICS608

5. 40 tickets of executive class and 160 tickets of economy class; Maximum profit
= Rs 136000.

6. From A : 10,50, 40 units; From B: 50,0,0 units to D, E and F respectively and
minimum cost = Rs 510

7. From A: 500, 3000 and 3500 litres; From B: 4000, 0, 0 litres to D, E and F
respectively; Minimum cost = Rs 4400

8. 40 bags of brand P and 100 bags of brand Q; Minimum amount of nitrogen
= 470 kg.

9. 140 bags of brand P and 50 bags of brand Q; Maximum amount of nitrogen
= 595 kg.

10. 800 dolls of type A and 400 dolls of type B; Maximum profit = Rs 16000

EXERCISE 13.1

1. ( ) ( )2 1P E|F , P F|E
3 3

= = 2. ( ) 16P A|B
25

=

3. (i) 0.32 (ii) 0.64 (iii) 0.98

4.
11
26

5. (i)
4

11 (ii)
4
5 (iii)

2
3

6. (i)
1
2

(ii)
3
7

(iii)
6
7

7. (i) 1 (ii) 0

8.
1
6

9. 1 10. (a) 
1
3

,   (b) 
1
9

11. (i)
1
2 , 

1
3 (ii)

1
2 , 

2
3 (iii)

3
4 , 

1
4

12. (i)
1
2 (ii)

1
3 13.

5
9

14.
1

15 15. 0 16. C     17.   D
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EXERCISE 13.2

1.
3
25 2.

25
102 3.

44
91

4. A and B are independent 5. A and B are not independent
6. E and F are not independent

7. (i)
1

10
p = (ii)

1
5

p =

8. (i) 0.12 (ii) 0.58 (iii) 0.3 (iv)    0.4

9.
3
8

10. A and B are not independent
11. (i) 0.18 (ii) 0.12 (iii) 0.72 (iv) 0.28

12.
7
8 13. (i) 

16
81 , (ii) 

20
81 , (iii) 

40
81

14. (i) 
2
3 , (ii) 

1
2 15. (i) , (ii) 16. (a) 

1
5 , (b) 

1
3 , (c) 

1
2

17. D 18. B

EXERCISE 13.3

1.
1
2

2.
2
3

3.
9

13 4.
12
13

5.
198

1197
6.

4
9 7.

1
52

8.
1
4

9.
2
9 10.

8
11 11.

5
34 12.

11
50

13. A 14. C

EXERCISE 13.4
1. (ii),  (iii)  and  (iv) 2. X = 0, 1, 2; yes 3. X = 6, 4, 2, 0

4. (i) X 0 1 2

P(X)
1
4

1
2

1
4

(ii) X 0 1 2 3

P(X)
1
8

3
8

3
8

1
8
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(iii) X 0 1 2 3 4

P(X)
1

16
1
4

3
8

1
4

1
16

5. (i) X 0 1 2

P(X)
4
9

4
9

1
9

(ii) X 0 1

P(X)
25
36

11
36

6. X 0 1 2 3 4

P(X)
256
625

256
625

96
625

16
625

1
625

7. X 0 1 2

P(X)
9

16
6

16
1

16

8. (i) 1
10

k = (ii) 3P(X 3)
10

< = (iii) 17P(X 6)
100

> =

(iv) 3P(0 X 3)
10

< < =

9. (a) 1
6

k = (b) 1 1P(X 2) , P(X 2) 1, P(X 2)
2 2

< = ≤ = ≥ =

10. 1.5 11.
1
3

12.
14
3

13. Var(X) = 5.833, S.D = 2.415

14. X 14 15 16 17 18 19 20 21

P(X)
2

15
1

15
2

15
3

15
1

15
2

15
3

15
1

15

Mean = 17.53, Var(X) = 4.78 and S.D(X) = 2.19
15. E(X) = 0.7 and Var (X) = 0.21 16. B 17. D
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EXERCISE 13.5

1. (i)
3

32 (ii)
7
64 (iii)

63
64

2.
25

216 3.
929 19

20 20
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

4. (i)
1

1024 (ii)
45

512 (iii)
243

1024
5. (i) (0.95)5 (ii) (0.95)4 × 1.2 (iii) 1 – (0.95)4 × 1.2

(iv) 1 – (0.95)5

6.
49

10
⎛ ⎞
⎜ ⎟⎝ ⎠ 7.

20
20 20

12 13 20
1 20C C ... C
2

⎛ ⎞ ⎡ ⎤+ + +⎜ ⎟ ⎣ ⎦⎝ ⎠

9.
11
243

10. (a)
50991

100
⎛ ⎞−⎜ ⎟⎝ ⎠ (b)

491 99
2 100
⎛ ⎞
⎜ ⎟⎝ ⎠ (c)

49149 991
100 100

⎛ ⎞− ⎜ ⎟⎝ ⎠

11.
57 5

12 6
⎛ ⎞
⎜ ⎟⎝ ⎠ 12.

435 5
18 6

⎛ ⎞
⎜ ⎟⎝ ⎠ 13.

3

11
22 9
10
×

14. C 15. A

Miscellaneous Exercise on Chapter 13
1. (i) 1 (ii) 0

2. (i)
1
3 (ii)

1
2

3.
20
21

4.
10

10 10

7
1 C (0.9) (0.1)r r

r
r

−

=

−∑

5. (i)
62

5
⎛ ⎞
⎜ ⎟
⎝ ⎠

(ii)
427

5
⎛ ⎞
⎜ ⎟
⎝ ⎠

(iii)
621

5
⎛ ⎞− ⎜ ⎟
⎝ ⎠

(iv)
864
3125
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6.
10

9
5

2 6× 7.
625

23328 8.
2
7

9.
431 2

9 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

10. n ≥ 4 11.
11
216

12.
1 2 8, ,

15 5 15 13.
14
29 14.

3
16

15. (i) 0.5 (ii) 0.05 16.
16
31

17. A 18. C 19. B

— —
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