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Chapter 7

(INTEGRALS)

++ Just as a mountaineer climbs a mountain — because it is there, so
a good mathematics student studies new material because
itisthere. —JAMES B. BRISTOL ¢

7.1 Introduction

Differential Calculus is centred on the concept of the |idiiekip il fibiiiiiih
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f is differentiable in an interval I, i.e., its
derivative f “exists at each point of I, then a natural question
arises that given f “at each point of I, can we determine
the function? The functions that could possibly have given P
function as a derivative are called anti derivatives (or G .W. Leibnitz
primitive) of the function. Further, the formula that gives (1646-1716)
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the I ntegral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2 Integration asan I nver se Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that % (sin X) = cos X .. (D)
d ¥ ,
~ (2 = .. (2
dx( 3 ) =X (2)
d d (€)=¢e 3)
an — =
dx

We observe that in (1), the function cos X is the derived function of sin X. We say
3
that sin X is an anti derivative (or an integral) of cos X. Similarly, in (2) and (3), 3 and

€ are the anti derivatives (or integrals) of X* and €%, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :
3
i(sin x+C)=cos X, i(X—+C):x2and i(e" +C)=¢"
dx 3 dx
Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

d
More generally, if there is a function F such that ™ F(X) =1 (X, vxe I(interval),

then for any arbitrary real number C, (also called constant of integration)

d

&[F(x)vLC]:f(x),XEI
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Thus, {F + C, C € R} denotes a family of anti derivatives of f.

Remark Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval 1.

Consider the function f = g — h defined by f(X) = g(X) — h(x), v x e 1

df
Then A f’=9 - hgiving f'(X)=g'(X) —h(X) vxe I
or f”(X) = 0, v X e I by hypothesis,

i.e., the rate of change of f with respect to X is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C € R}
provides all possible anti derivatives of'f.

We introduce a new symbol, namely, j f(X) dx which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to X.
Symbolically, we write j fX)dx=FXx)+C.

d
Notation Given that d—i =1 (X), we write y = I f (x) dx.

For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).

Table7.1

Symbols/Ter ms/Phr ases M eaning

I f (x) dx Integral of f with respect to X

f(X) in j f (x) dx Integrand

X in _[ f(x) dx Variable of integration

Integrate Find the integral

An integral of f A function F such that
F()=f(x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as
constant function
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We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives

V)

(i)

(iii)

(iv)

V)

(vi)

(vii)

(viii)

(ix)

)

(xi)

d Xn +1
i =x".

dx ( n+ 1} ’
Particularly, we note that

d
~—(x)=1 -
o=l

&(sin X) =cos X ;

&(fcos X)=sin X ;

% (tan X) =sec’X ;

d (- cot X) = cosec’X ;
dx

— (sec X) =sec X tan X ;

dx

&(— cosec X) = cosec X cot X ;
%(Sin_lx)z 11x2 ;
I
%(tan_l X):1+1x2 ’
%(—cot‘l X)_1+1x2 ’

Integrals (Anti derivatives)

n+1

X
n+1

jx“dx= +C,n#-1

_[dx:x+C

Icos xdx=sin X+ C

jsin Xdx=—-cos X+ C
Isecz xdx=tan X+ C
jcosecz xdx=—cot x+C
Isec Xtan X dx=sec X+ C

Icosec X cot X dx = —cosec X+ C

J. dx =sin ' x+C
1-x°

J. dx =—cos ' x+C
1-x2

I 2=tan_lx+C
1+ x

J. dx2 =—cot ! x+C
1+ x



. i(sec’lx)=;
(xi) g XX 1

1

XX =1

— (- cosec™! X) =

(xiii) dx(
i) 5 (@)=¢"

d 1
—(log| x|)=—:
(xv) dx(0g| ) =

INTEGRALS 291

dx
J-—:sec’1 X+C
XA/ X =1
dx
j—z—cosec_lx+ C
XX =1
J‘e"dx:eX +C

jldx=1og|x|+c
X

d( a a*
N — = aX . Xd = C
(xvi) dx[log aJ ’ Jatax loga

In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f(x) = 2x. Then j f(X) dx= x> + C . For different values of C, we get different

integrals. But these integrals are very similar geometrically.

Thus, y=X*+ C, where C is arbitrary constant, represents a family of integrals. By
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along y-axis.

Clearly, for C =0, we obtain y = X2, a parabola with its vertex on the origin. The
curve y = x>+ 1 for C = 1 is obtained by shifting the parabola y = x* one unit along
y-axis in positive direction. For C =— 1, y=X*— 1 is obtained by shifting the parabola
y=X? one unit along y-axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the y-axis and for
negative values of C, each has its vertex along the negative side of the y-axis. Some of
these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line X=a. In the Fig 7.1,
we have taken a > 0. The same is true when a < 0. If the line X = a intersects the
parabolasy =x*, y =X+ 1,y=x+2,y=x-1,y=x-2atP,P,P P ,P etc,

respectively, then ;—di at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, IzX dx=x* + C = F. (X) (say), implies that
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S
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the tangents to all the curves y = F . (X), C € R, at the points of intersection of the
curves by the line X =@, (a € R), are parallel.

Further, the following equation (statement) I f(X)dx=F (x)+ C=y (say),

represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(I) The process of differentiation and integration are inverses of each other in the
sense of the following results :

d —
&J'f(x) dx =f(x)

and I f'x)dx = f(x) + C, where C is any arbitrary constant.



(1)
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Proof Let F be any anti derivative of f, i.c.,

% F(X) =f(x)

Then [foodx =Fo+C
Theref L fooax - S (Foo+0)
ererore dX = dX

d _
&F(x)— f(x)

Similarly, we note that

00 % f(%)

and hence f f'x)dx =f(x) + C

where C is arbitrary constant called constant of integration.

Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
Proof Let f and g be two functions such that

d d
&If(x)dx = &Ig(x)dx

or %Uf(x)dx—fg(x)dx]=0

Hence I f(x) dx —I g (X)dx= C, where C is any real number  (Why?)
or _[f(x)dxzjg(x)dx+c

So the families of curves {j fx)dx+C,,C, R}

and {J. gx)dx+C,,C, e R} are identical.

Hence, in this sense, j f (x) dxand j g(X) dx are equivalent.
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@ Note|The equivalence of the families {jf(X) dx+C,,C, ER} and

{J. g(x)dx+C,,C, € R} is customarily expressed by writing I f(x)dx= I g(x) dx,

without mentioning the parameter.

iy [TF00+geo]dx=[ £ dx+ [ g dx
Proof By Property (I), we have

d
S JTF00+ g1 ax| =00 + g ()
On the otherhand, we find that

d d
&If(x)dwr&jg(x)dx

f(X) + g(x) .. (2
Thus, in view of Property (II), it follows by (1) and (2) that

I( f(X) +g(x)) dx= I f(x) dx+jg(x) dx .

(IV) For any real number K, Ik f(x)dx=k I f (x) dx

%U f(x) dx+'|'g(x) dx}

Proof By the Property (1), di I k f(x)dx=k f(x).
X

Also %[kjf(x)dx}= k%jf(x)dx=kf(x)

Therefore, using the Property (1), we have fk f(x) dx=k j f(x)dx.
(V) Properties (III) and (IV) can be generalised to a finite number of functions f , f,
..., f_and the real numbers, k, k,, ..., kK giving

j[k1 fL00+ Ky Fy () + ot K £ (%)]
- klj f,(X) dx+ k2j f, (%) X+ ...+ k_ j f(x)dx.

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. We illustrate it
through some examples.
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Example 1 Write an anti derivative for each of the following functions using the
method of inspection:

1
(i) cos 2x (i) 3% + 4% (i) —.x#0

Solution

(1) We look for a function whose derivative is cos 2X. Recall that

& sin 2X = 2 cos 2X

_1d —i[lsin2xj
or cos 2X = > dx (sin 2X) = ax |2

1 .
Therefore, an anti derivative of cos 2X is 3 sin 2X

(i) We look for a function whose derivative is 3x* + 4x*. Note that

d s, 4
&(x + X )=3x2 + 4%,
Therefore, an anti derivative of 3x% + 4x* is X3 + X%
(i) We know that
1 1

i(log X)=—,X>Oandi[log(—x)]=L(—l)=—,X<0
dx X dx —X X

. d 1
Combining above, we get i (log|X|) =% X#0

1 1
Therefore, j; dx=1log|X| is one of the anti derivatives of v

Example 2 Find the following integrals:

. x3—1d 3 2 : e g
(1) I N X (ii) I(x3 +1) dx (iii) I(x +2e _;) X

Solution
(i) We have

I X3X2_ 1 dx = J.x dx — J. X2 dx (by Property V)
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1+1 —2+1
_ X +C, |- +C, |- £i :
=1 1+1 1 —o+1 2 |; C,, C, are constants of integration

2 —1 2
X X X 1
= —+C-—-C, =2 424C -C
1 2 5 X 1 2

-2 -1

2
X 1 . . .
= —+—+C, where C = C, — C, is another constant of integration.

From now onwards, we shall write only one constant of integration in the
final answer.

(i) We have

J.(x§ +1)dx=~|.x§ dx + Idx

E+1

3 s
:)2( +X+C:§ 3 4ex+C
—+1 5
3

3 3
(iii) We have [(x? +2ex—l)dx=jx2 dx+ [2€ dx—jldx
X X

%‘Fl
X +2€ —log|X+C

+1

N | W

7 2
- gx2 +2€ —log|x+C

Example 3 Find the following integrals:
@) I(sin X+ cos X) dx (ii) Icosec X (cosec X + cot X) dx
1—sin X
d
(i) I cos® X

Solution
(1) We have
J(sin X + €08 X) dx=jsin X dx + Icos X dx

= —cos X+sin X+ C
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(i) We have
J (cosec X (cosec X+ cot X) dx = Icosecz X dx + J.cosec X cot X dx

= —cot X—cosec X+ C
(iii) We have

J-l—sinXdX:J- 1 dX—J.SinXdX

0052X 0052X 0052X

jseczx dX—Itan X sec X dx

tan X —sec X+ C

Example 4 Find the anti derivative F of f defined by f (X) = 4x° — 6, where F (0) =3

Solution One anti derivative of f (X) is X* — 6X since
i(x4 —6X) = 4% — 6
dx

Therefore, the anti derivative F is given by
F(x) = x* — 6x + C, where C is constant.
Given that F(0) = 3, which gives,

3=0-6x0+C or C=3
Hence, the required anti derivative is the unique function F defined by
F(x) = x* — 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any
constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f by adding any constant to F
expressed by F(X) + C, C € R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(i) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding f f(X) dX. For example, it is not possible to find

— 2 . . . . . . . — 2
Ie “ dx by inspection since we can not find a function whose derivative is € *
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(i) When the variable of integration is denoted by a variable other than X, the integral

formulae are modified accordingly. For instance

4 y4+1 1 s
dy = +C==-y +C
Iy y 4+1 5y

7.2.3 Comparison between differentiation and integration

1.

Both are operations on functions.

2. Both satisfy the property of linearity, i.e.,

(1) %[kl f,0+k, f, (X)]: K % fi (X)) +k, % f, (X

) [k fi 0 +k f, 00]dx=k, [, (x)dx+Kk, [ f, () dx
Here k, and K, are constants.

We have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. We will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. However, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

When a polynomial function P is differentiated, the result is a polynomial whose
degree is 1 less than the degree of P. When a polynomial function P is integrated,
the result is a polynomial whose degree is 1 more than that of P.

We can speak of the derivative at a point. We never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time t is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
tis known.

Differentiation is a process involving limits. Soisintegration, as will be seen in
Section 7.7.
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10. The process of differentiation and integration are inverses of each other as

discussed in Section 7.2.2 (i).

4

| EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.
1. sin2x 2. cos 3X 3. ex
4. (ax + by 5. sin 2x — 4 e*
Find the following integrals in Exercises 6 to 20:
1
6. f@e+nd 7 [¥a-—pdx s [@ +bxrodk
2 3 2
X +5x" -4
9. I(2x2+ex)dx 10. I( x——j dx 11. j—zdx
X
X +3x+4 3 -
20 [P e as (XXX g [a-x Vo
x—1
15. I&(3x +2x+3) dx 16. I(2x—3cosx+ex)dx
17. J(2X2—3sin X+5\/§) dx 18. jsec X (sec X + tan X) dx
2
sec” X
10. J‘ ~_ dx 20. _[2 3s1nX
Choose the correct answer in Exercises 21 and 22.
21. The anti derivati f(&+lj I
: nti derivati -
e anti derivative o Ix equals
I 221,
(A) =x3+2x2+C (B) =x3+=x"+C
3 3 2
7 3 1 33 11
(C) =x2+2x2+C (D) =x?2+=x2+C
3 2 2
d ; 3 .
22. 1If &f(x)=4x —— such that f(2) = 0. Then f(X) is
X

o) KL 12 g -
(A) X 8 (B) x* 8

O Xl 12 by sl 120
(© X 8 (D) x* 8
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7.3 Methodsof Integration

In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,
this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution
2. Integration using Partial Fractions
3. Integration by Parts
7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral I f(X) dx can be transformed into another form by changing
the independent variable X to t by substituting X = g (t).

Consider 1= j f(x) dx

Put X = g(t) so that % =g'(b).

We write dx =g'(t) dt

Thus 1= [foodx= f(g(t) gty dt

This change of variable formula is one of the important tools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. X:

(i) sinmx (i) 2xsin (X +1)
~ tan” Vxsec? Jx ] sin (tan~" X)
(i) Ix (iv) Tl
Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mMx = t so that mdx = dt.

. 1. 1
Therefore, Ism WdX:—ISIHt dt = — lcos t+C == —cos mx+ C
m m m
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(i) Derivative of X* + 1 is 2X. Thus, we use the substitution x> + 1 =t so that
2x dx = dt.

Therefore, fZX sin (X +1) dx = Isin tdt = —cost+C =—cos(X+1)+C

1

o I o
(i) Derivative of \/x is > X 2= Thus, we use the substitution

1
2J0x

1 . .
Jx =t so that —— dx = dt giving dx = 2t dt.
X

2/x
.‘-tan“\/; sec” \/x dx = J- 2ttan‘t sec’t dt

Thus, = 2 [tan*t sec’t dt
E J
Again, we make another substitution tan t = U so that sec? t dt = du
5
Therefore, 2 Itan“t sec’tdt=2 Iu“ du =2 u? +C
2 s .
= gtan t+ C (since u = tan t)
2 .
-3 tan® /X + C (sincet = \/;)
tan* /X sec? \/; 2 5
H dx = =tan® V/x+C
ence, I x 5

Alternatively, make the substitution tan~/x =t

(iv) Derivative of tan™'x= >~ Thus, we use the substitution

1+ X

dx
tan”' X =t so that > = dt.
1+x

sin (tan~'x
(—z)dx
1+ Xx

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

Therefore , j = Isint dt = —cost+ C =—cos(tan"'x) + C

(i) [tan xdx =log|sec x| +C
We have

sin X
dx

Itan XdX=I

cos X
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Put cos X =t so that sin X dx = — dt
Then jtanXdX=—f%:—log|t|+C:—log|cosX|+C
or _ftan x dx =log [sec X+ C

(ii) Icot x dx =log|sinx|+C

CcoS X

dx

We have J.cot xdx= f i x

Put sin X =t so that cos X dx = dt
Then jCOt Xdx = I% = log |t| +C = log |sin X| +C

(iii) [ secx dx =log|sec x +tan x| +C

We have

sec X (sec X+ tan X) dx

sec X+ tan X
Put sec X + tan X =t so that sec X (tan X + sec X) dx = dt

Isec XdX=I

Therefore, jsec de=j%=log|t|+ C = log [sec X+ tan x|+ C

(iv) fcosec x dx = log|cosec x —cot x| +C

We have
cosec X(cosec X + cot X) dx

(cosec X +cot X)
Put cosec X + cot X =t so that — cosec X (cosec X + cot X) dx = dt

Icosec X dX=j

So jcosec XdX:—J.%:—logm:—log|cosecX+cotX|+C

2 2
|cosec X—cot X|
—log +C
| cosec X — cot X |

log |cosec X—cot X| +C
Example 6 Find the following integrals:

sin X

. . 3 2
@) J.sm X cos” X dx (ii) Ism x+a)

dx (1 1) I dx

1+ tan X
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Solution
(i) We have
j.sin3 X cos’Xx dx = Isinz X cos*X (sin X) dx
= I(l — cos*X) cos*X (sin X) dx
Put t = cos X so that dt = — sin x dx

Therefore, fsin2x COSZX(Sin X) dx = —j(l —t2)t2 dt
3 5
- [ -t dt=- LIS W
3 5

1

= ——cos3x+lcossx+ C
3 5

(ii) Put X+ a=t. Then dx = dt. Therefore

I sin X J~sm (t—a) ot
sin (X+a) sint

int a-— tsin a
J‘Sln COS costSin dt

sint

cosa [dt —sina [cot t dit

= (cos @)t —(sin ) [ log [sint|+ C, |

= (cos @) (x+a) —(sin &) [ log|sin (x+ )|+ C, |

= Xcos a+acos a—(sin a) log [sin (x+ &)| - C; sin a

sin X

sin(x+a) X cos a—sin alog |sin (X + a)| + C,

Hence, I

where, C=—C, sina+ acos a, is another arbitrary constant.

I B J~ cos X dx
(iif) 1+ tan X COS X + sin X

1 J- (cos X+ sin X+ cos X — sin X) dx
€OoS X+ sin X

303
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lJ-deLlIcosX—s%nxdx
2 27 cos X+sin X

J‘ COS X—Sll’lX
- COSX+S1HX

. cOos X —sin X
Now, consider 1= I —dx
cos X + sin X

Put cos X + sin X =t so that (cos X — sin X) dx = dt
Therefore I= I% =log |t| +C, = log|cos X +sin X+ C,

Putting it in (1), we get

dx x C 1 . C,
I—:—+—+—log|cosx+sm X|+—
I+tanx 2 2 2

X 1 . C G,
= —+—log|cos X+ sin X|+—+—
2 2 2 2

ZJrllog|cos X+ sin X|+C, C=&+&
2 2 2 2

| EXERCISE 7.2|
Integrate the functions in Exercises 1 to 37:
2X (log X)2 1
5 2, —— 3. T oo
1+ X X X+ Xlog X
4. sin Xsin (cos X) 5. sin (ax+ b) cos (ax+ b)

6. Jax+b 7. X X+2 8. Xq/l+2x°

1

X
9. (4X+2) /X2+X+1 10. X—\/; 11. m,x>0
X+

2

1 X 1
12. ¢ =13 % 13. —= 14, ——— x>0
=D 2+3%) X (log X"
X X
15. 16. @2x+3 17. —

. (1)



1

tan™ X 2 X
e e’ -1
18. 19.
1+ % e +1
21. tan®> (2x—3) 22. sec? (7 —4x)
2¢0s X —3sin X 1
24, 6cos X + 4sin X 25. cos’x (1 —tan x)*
: cos X
27. \/sin 2X cos 2X 28. m
sin X sin X
30 T3 cos x 3l. (1+ cos X)2
1 JJtan X
33. T __ 34, —————
1—tan X sin X cos X
X+ 1) (x+log x)* Xsin (tan~'x*
g6, XD (x+logx) o #
X 1+x

Choose the correct answer in Exercises 38 and 39.
10x* +10* log , dx
x'? +10%

(A) 10c—x°+C
(C) (10*=x1%1 + C

39. |

(A) tan X+ cot X+ C
(C) tanxcotx+C

equals

38. I

— — equals
sin” X cos” X

7.3.2 Integration using trigonometric identities

20.

23.

26.

29.

32.

35.
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¥ _g 2

e +e 2%
-]

sin X

NS

COS \/;
Ix

cot X log sin X

1+cot X

(1 + log X)2

(B) 100+ x°+C
(D) log (10*+ x1% + C

(B) tan X —cot X+ C
(D) tan X —cot 2x+ C

When the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) jcoszx dx (i) jsin 2xcos3xdx  (iii) Isin3x dx
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Solution
(i) Recall the identity cos 2x = 2 cos®> X— 1, which gives
1+ cos 2X
cos*X = —

1 1 1
2 _ P —

Therefore, Icos xdx = 2J‘(l+cos 2X) dx = 5 Idx+ 5 J.cos 2xdx

X 1.

= —+—sin 2xXx+C
4
(i) Recall the identity sin X cos y = ) [sin (X +y) + sin (X —Y)] (Why?)

Then .[Sin 2Xxcos3xdx = lUsin 5% dx-jsin xdx}

2

1 1
—|——cos5X+cos X|+C
21 5

= —L0055x+lcos X+C
10 2

(ii)) From the identity sin 3x = 3 sin X — 4 sin’ X, we find that
3sin X —sin 3X

s
SIn’ X =
4

.3 3¢. 1.
Therefore, Ism Xax = stm X dx — 2 fsm 3x dx

= ficos X+Lcos3X+C
4 12

Alternatively, jsin3XdX=jsin2Xsin xax = f(l—cos2x) sin X dx
Put cos X =t so that — sin X dx = dt
. t’
Therefore,  [sin’xdx = — [(1-t*)dt = — [dt +[t* dt=—t +—+C
erefore j j( ) I j 3
1 3
= —cos X+—cos’X+C

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises 1 to 22:
1. sin* (2x+5) 2. sin 3X cos 4X 3. cos 2X cos 4X cos 6X
4. sin® (2x+ 1) 5. sin® X cos® X 6. sin X sin 2X sin 3X
] ) 1—cos X cos X
7. sin4xsin 8X 8. ———— 9. ——
1+ cos X 1+ cos X
.2
X
10. sin*X 11. cos* 2x 12, 22
1+ cos X
- cos X —sin X
13, Sos2xzcos2a g, COSXTSX g5 a2 sec 2x
COS X —COS & 1 +sin 2X
-3 3 .2
sin” X+ cos” X 2X+ 2sin“X
16. tan*x 17. ———— 18. u
sin” Xcos” X cos” X
19 1 20, — 082X 21. sin ! (cos X)
B S B . sin ' (cos X
sin X cos’x (cos x + sin x)’

1
cos (X —a) cos (X—h)
Choose the correct answer in Exercises 23 and 24.

-2 2
23. Iw dx is equal to
sin” X cos” X
(A) tan X+ cot X+ C (B) tan X+ cosec X+ C
(C) —tanx+cotx+C (D) tan X+ sec X+ C
X
24. I#dx equals
cos”(e"X)
(A) —cot (ex)+C (B) tan (x&) + C
(C) tan (e + C (D) cot (&) +C

7.4 Integralsof SomeParticular Functions

In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:

(1) J~ dX2 X—-a

+C
x?—a

—ilog
2a
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dx 1 a+x
=—Ilo +C
2 faz—xz 2a |a-x
dx 1. 1X
=—tan +C
@ Jz = e
4 J.\/i Iog‘x+ x*-a’|+C
X
(5) j.\/i—sm 'Z+C
(6) f\/i Iog‘x+ x?+a’[+C
x* +a’

We now prove the above results:

1 1
(1) We have X —al  (x—a)(x+a)

_ 1| &x+a-(x-3) _L{L_L}
" 2al (x—a)(x+a) | 2alx-a x+a

x+a}

1
_ £[10g|(x—a)|—log|(><+a)|]+C

dx 1
Therefore, '[)(2—a2 ===

X—a
X+a

zllog +C

2a

(2) Inview of (1) above, we have

11 {(a+x)+(a—x)} 171 1
Tl NTENE

a —x (@a+x)(a—x) 2ala-x a+x
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Theref J-dx _L dx+dx
eretore, a?-x> R2al’a-x ‘Ya+x

= L[—log|a—x|+log|a+x|]+C
2a

a+ X

a—X

Llo
- 2a g

+C

The technique used in (1) will be explained in Section 7.5.

(3) Put x=atan 6. Then dx = a sec? 6 do.
J- dx asec’ 6 do
X +a’  Ja’tan’0+a’

Therefore,

:ljm=1e+C=lum”5+c
a a a a
(4) Let x=asecH. Then dx = a sech tan6 do.

B J~ asecO tan0 do
a’ \/a2 sec’0—a’

= IsecO do =log |sece + tan9| +C

Therefore j o
’ \/ X2 _

=log|—+,|—-1

= log| x++/x* —a’ —10g|a|+Cl

= log| x+Vx* —a’ +C,whereC=C, —log|a|

(5) Letx=asin6. Then dx = acos6 de.
acosb do

Theref [ [
erefore, =
Jai - % Jat —a’ sin®
=jm:e+c=mn*§+c
(6) Let x=atan0. Then dx = a sec’*6 do.
asec’0 do

dx
Therefore, J. \/m = I \/m

= IsecO do = log |(sece + tan6)| +C,
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(7)

(8)

(9)

MATHEMATICS

_ log|—+ X—+1

= log|x+/x* +a’|-log|a|+C,

— log |x+ Vx> +a’ +C, where C = C, - log |a|

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.

: : dx :
To find the integral Iaxz bxic’ we write
[ , b c} [ b T c b
at+bx+c=a X +—X+—|=a|| X+ —| +|-——
a a 2a a 4a
b .. ¢c b 2
Now, put X+——=tso that dx = dt and writing ———— =% k", We find the
2a a 4da

1 dt c_bp
integral reduced to the form a I—tz e depending upon the sign of ( a 432 j

and hence can be evaluated.

To find the integral of the type I proceeding as in (7), we

dx
Jaxt +bx+c
obtain the integral using the standard formulae.
pPX+q
ax’ +bx+c
constants, we are to find real numbers A, B such that

To find the integral of the type f dx, where p, q, & b, c are

px+q=A%(ax2+bx+c)+B=A(2ax+b)+B

To determine A and B, we equate from both sides the coefficients of X and the
constant terms. A and B are thus obtained and hence the integral is reduced to
one of the known forms.
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. . px + Q) dx
(10) For the evaluation of theintegral of the type J‘\/i we proceed
ax’ +bx+c

as in (9) and transform the integral into known standard forms.
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

) dx . dx
U o IS I

Solution
. dx dx 1 -4
(i) We have jx2_16=j s =gl ‘—4+c [by 7.4 (1]
dx dx
(if) =
I\/2x—x2 I\/l—(x—l)z
Put X — 1 =t. Then dx = dt.
dx dt .
Therefore, = =sin" (1)+C by 7.4 (5
J.\/2x X2 J‘\/l—tz [by740)]
=sin”' (x-1)+C

Example 9 Find the following integrals :

§ dx i | dx
(l)f “ox+13 W -f3x2+13x—10 W J 5 —ax
Solution
(i) Wehave ¥ —6x+ 13=xX-6x+32-3>+13=(x—-3)1+4

dx 1
So, = dx
? Ix2 —6x+13 I(x—3)2 +27
Let X —3 =t. Then dx = dt
dx dt 1.t
= =—tan~ —+C
Therefore, [ —— =[5 r=5tn S [by 7.4 (3)]
= lta _I—X_3+C
2
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

3x2+13x—10==3(X2+—§————

137 (17Y
_3 x+g 3 (completing the square)

()-8

dx 1
3 +13x-10 3

—
Q.
X

Thus f

13
Put X+Z:t' Then dx = dt.

dx 1 J‘ dt

Therefore, _[3)(2 RERTIE

+C, [by 7.4 (1)]

X+
! 6 6 +C,

Il
|
—
@]
oQ

1 6Xx—4
17 6X+30

Il
|
—
Q
aQ

1

1 3x-2 1 1
+C,+—log—
17 X+5 17 ~3

I
|
—_
o
oQ

L10 3)(_2+C C+11 1
=17 g X+5 , Wwhere C= (; 17 0g3
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=
\E/:
5
=
oo
<
(¢)
—
<
9]
><|\.> a
X
N
x
Il
—
g
941
— Y
x
&}
|
‘l\)
x
N—

= (completing the square)

1
Put X—g=t . Then dx = dt.

@
2_

Therefore IL = LJ‘ !
’ Jsx—a2x V5 /t (1)2
5

2
7oy 3
= —log|t+,t"—| = | [+C 4(4
75 loe 3 [by 74 (4)]
- Llog x—Li e -l c
J5 5 5
Example 10 Find the following integrals:
X+2 X+3
. dx .. A— )¢
(1) f2x2+6x+5 W) I\/5—4x+x2

Solution
(i) Using the formula 7.4 (9), we express
X+2= Adi(zx2 +6x+5)+B — A(4X+6)+B
X
Equating the coefficients of X and the constant terms from both sides, we get

1 1
4A=1and 6A+B =2 or ZZandBZE.
X+2 1 4X+6 1 dx
Therefore, I2x2+6x+5 4I2x2+6x+5 2j2x2+6x+5
1.1
=—[+-=1
Jioh a) - ()
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In I, put 2X* + 6X + 5 =1, so that (4x + 6) dx = dt

Therefore, I = J‘% =log | t | +C,

— log|2X* +6X+5|+C,

and L= v 6ox+5

2

J‘ dx % dx

X +3x+é

1
= I tan~' 2t +C,

tan™' 2 (x+%)+ C, = tan™' (2x+3)+C,

Using (2) and (3) in (1), we get

=22 ax=Llog |2 + 6x+5)+ 2 tan™! (2x+3) + C
2X° 4+ 6X+5 4 2

C, C
where, c=—"1+=22

4 2

This integral is of the form given in 7.4 (10). Let us express

d
X+3 = A&(5—4x—x2)+B:A(—4—2x)+B

- Q)

[by 7.4 (3)]

.3

Equating the coefficients of X and the constant terms from both sides, we get

1
—2A=land-4A+B=3,ie,A= —E and B=1
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—4 - 2x dx

Theref: J‘ X+3 __J' J‘
erefore, =
J5—4x—x2 \/5 4x—X* \/5 4x— X2
1
= —E Il + 12 .. (D)
InI, put 5 —4x—x* =1, so that (- 4 — 2x) dx = dt.
4—2x)dx
Therefore, [= j(— j 2\ﬁ+C1
V5—4x—x
= 235 —4x-x* +C, . (2
Now consider L= I\/5—4X—X2 :I\/9_(x+2)2
Put x + 2 =, so that dx = di.
I ‘1£+C
Therefore, I, = \/7 [by 7.4 (5)]
_ sin_lx%2+C2 . (3)

Substituting (2) and (3) in (1), we obtain

[ i B2 where €=, -
5—4x—-x

2

|EXERCISE 7.4|

Integrate the functions in Exercises 1 to 23.
3x° 1 1

—_— 2. —T— 3. T
X8 +1 J1+4x (2—x)2+1

2

1 . 3x 5 X
9 _25%2 S 1+2xt S 1-x°

x—1 N sec’x

X -1 x° +a° - Jtan?x+4
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1 1 1
10. NN s 9%* +6X+5 12 V7 =6 =%
a1 T S
CJ(x=1)(x=2) L J843x=X2 - J(x—a)(x—h)
5 4x+1 X+2 g 5x-2
o J2X +X=3 e Xt —1 T axeae
6X+7 X+2 X+2
19. —— 20. 77— 21, ——
(x=5)(x—4) 4x—x? VX2 +2x+3
X+ 3 5X+3

22.

- 23. .
x> —2x-5 VX +4x+10
Choose the correct answer in Exercises 24 and 25.
dx
24. |————equals
I +2x12

(A) xtan!' (x+1)+C (B) tan' (x+1)+C
(C) (x+1Dtan'x+C (D) tan'x+ C

equals

- JL
T J9x—4x2

A Lsin [ 22281 ®) Lsin ! [*2 )
9 8 2 9
L. (9x-8 lsin1(9X—8j+C

©) Esm ( 2 j+C (D) > 9

7.5 Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

% , where P (X) and Q(X) are polynomials in X and Q(X) # 0. If the degree of P(X)
X

is less than the degree of Q(X), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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X
X)) is improper, then Px) =T(X)+ )

QM) Q)

P
functions by long division process. Thus, if (

P (X)
Q(X)
how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

. . P(x) P(x)
linear and quadratic factors. Assume that we want to evaluate _[— dx, where ——
Q(X) Q(x)
is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

where T(X) is a polynomial in X and is a proper rational function. As we know

Table7.2
S.No. | Form of the rational function Form of the partial fraction
A B
1. M, azb e T
(x-a) (x-b) X—a Xx-=b
5 pX+q LJr B -
| (x-ay? X-a (x-a)
. PX* + QX+ T A B, C
' (x—a)(x—=b)(x—c) X—a X-b x-c
4 pX% + QX+ I A B C
" | (x—a)* (x=b) x—a (x—a)’> x-b
. pX’ + QX+ A | BxiC
(x—a) (X* +bx+c) x—a X +bx+c
where X* + bx + ¢ cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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dx

Example 11 Find Im
Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (1)], we write

AL B 1
X+l X+2 - (D)

1
X+1)(x+2)

where, real numbers A and B are to be determined suitably. This gives
I1=AX+2)+B(Xx+1).
Equating the coefficients of X and the constant term, we get
A+B=0
and 2A+B=1
Solving these equations, we get A=1 and B =— 1.
Thus, the integrand is given by

1 1 -1
= +
X+1)(x+2) x+1 x+2
dx dx dx
Therefore, I(x+1) (X+2) J.x+1 _Ix+2

= log|X+1|—10g|X+ 2|+C

X+1
X+2

= log +C

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)
values of X. Some authors use the symbol ‘=’ to indicate that the statement is an
identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of X.
. X2 +1
Example 12 Find _[—2 dx
X" =5X+6

2
. . X+l : . .
Solution Here the integrand N is not proper rational function, so we divide

—-5X+6
X*+ 1 by X* — 5x + 6 and find that
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X2+1 5X-5 —1 5X-5

_ 4T 1+ > =1+

x> —5X+6 X" —5%+6 (x=2)(x=3)
L 5x-5 A B
© (x—=2)(x=3) X—2 x-3
So that 5Xx—5=A (X-3)+B (X-2)

Equating the coefficients of X and constant terms on both sides, we get A+ B =5
and 3A + 2B = 5. Solving these equations, we get A=—35 and B=10

x> +1 e 5 10

Th = +
e x> —5X+6 X—2 Xx-=3
x> +1 dx
Therefore, dx—5 —dx 10[—=
ererore J.X _5X+6 j I X—3
—X—510g|x—2|+1010g|x—3|+C.
X-2
Example 13 Find j—
(X+1D2(X+3)

Solution The integrand is of the type as given in Table 7.2 (4). We write

3x—-2 A B C
X+1)*(x+3)  x+1 (x+1)* x+3
So that IX—2=A X+ 1) X+3)+B(X+3)+C X+ 1)

—A(CHAX+)+B(X+3)+COR+2x+1)

Comparing coefficient of x>, X and constant term on both sides, we get
A+C=0,4A+B+2C=3and 3A + 3B + C=-2. Solving these equations, we get

11 =5 —11

A=-—,B=— and C=——.Thus the integrand is given by
2 4
3x—2 N
(X+1)2(x+3) 4(x+1) 2(x+1)2 4(x+3)
Theref =2 U “I e ox
eretore, x+1)2(x+3) 49 x+1 (x+1) 4%y
zﬂlog|x+1|+ > ——llog|x+3|+C
4 2(x+1) 4
11 X+1 5
=— + +
4 X+3 | 2(x+1)
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Example 14 Find J‘#dx
X +DH (X +4)
X2
Solution Consider —————— and put X* =Y.
X+ (x" +4)

2

Then 5 X 3 = y
X +D) (X" +4) Y+ (y+4)
Wit y A N B
e (Y+1)(y+4) y+1 y+4
So that y=A{y+4)+B(y+1)

Comparing coefficients of y and constant terms on both sides, we get A+ B =1
and 4A + B =0, which give

1 4
A=— and B=—
3 3

™ x? N .
us R+ +4)  30¢+1) 3¢ +4)
2
x“dx 1, d 4¢ d
Therefore, J‘# = ——JZ—X —j 3 X
X +D) (X" +4) 39x°+1 37x +4

—%tan'lx+ixltan'1§+ C

= —ltan_lx+gtan_1 Z+ C
3 3 2

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

(3 sin<|>—2) cos ¢ q
5—cos’hp—4sin ¢

Solution Let y = sin¢

Then dy = cos¢ dd

Example 15 Find |
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Therefore, I(3 sin — 2) cos¢ do = J' (3y—-2)dy

5—cos’p—4sind 5—(1-y*) -4y
J‘ 3y-2
Ty —4y+4
222 iay)
(y-2)
N it 3y -2 A, B [by Table 7.2 (2)]
oW, W€ Wri1te = Yy lable /.
(y-2) y-2 (y-2y
Therefore, 3y-2=A(y-2)+B

Comparing the coefficients of y and constant term, we get A=3 and B—2A=-2,
which gives A=3 and B =4.
Therefore, the required integral is given by

3
= |[[—+
S L . 2) I jw 2
1
_3log|y—2|+4(—ﬁj+c

4
2 —sin ¢

:3log|sin¢—2|+ +C

+C (since, 2 — sin ¢ is always positive)

= 3log (2—sin ¢) +
g ¢) 2—-sin¢

x>+ x+1dx

Example 16 Find Im

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2(5)]. Write

X +x+1 A Bx+C
O+ (x+2)  X+2 (C+]1)

Therefore, X+X+1=A+1)+Bx+C)X+2)
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Equating the coefficients of X*, X and of constant term of both sides, we get
A+ B=1,2B+ C=1and A + 2C = 1. Solving these equations, we get

Azg,BzzandC=l
5 5 5

Thus, the integrand is given by

21
Xax+l 3575 3 1(2x+l
D) (x+2)  S5(x+2) xX*+1  5(xx+2) 5\ x*+1

2
x>+ x+1 30 0dx 1 2x e 1
o= S [ 1 o+ [—— o
Therefore, I 5 IX+2 59 %241 5 J.xz +1

OC+1) (x+2)
:Elog|X+2|+llog‘X2+1‘+ltan_1X+C
5 5 5
EXERCISE 7.5|
Integrate the rational functions in Exercises 1 to 21.
X 5 1 5 3x—1
= (X+1) (x+2) X2 -9 - (x=D(x=2)(x-3)
4 X . 2X . 1-x?
T (X=D)(x=2)(x=3) 7 x*+3x+2 ©x(1-2X)
7 X 8 X 9 3X—+5
L+ (x=1) C(x=1)? (x+2) - X=X —x+1
0 2x-3 11 5% - X +Xx+1
T =1 (2x+3) S (x+D) (X -4) X -1
2 3x-1 1
BoiTnaed) M xe2)? v

1
16. m [Hint: multiply numerator and denominator by X"~ ! and put x"=1 ]

17 cos X i bt e
" (1-sin X) (2 —sin X) [Hint : Put sin X=t]
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¢ +1) (¢ +2) 2X 1
18. Ao 200
X +3)(x +4) X +Hx +3) X(X*=1)
1
21. & —1) [Hint : Put e =1]
Choose the correct answer in each of the Exercises 22 and 23.
CPI .L S—
- xohx-2) equals
(A) lo (x=1) +C (B) lo (x-2y +C
s X— s x—1
2
x—1
(C) log [Ej +C (D) log|(x-1)(x-2)|+C
23. equals
Ix(x2+1) 1
(A) log|x|—%log(xz+1)+C (B) log|x|+%log(xz+1)+c

1
(C) —log |X|+%log oC+)+C (D) 510g|><|+10g O+ +C

7.6 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

Ifuand v are any two differentiable functions of a single variable X (say). Then, by
the product rule of differentiation, we have

Integrating both sides, we get

dv du
= |u—dx+ |v—dx
W j dx dx
or uﬂdx =u- V%dx . (D)
dx X
dv
Let u="f(x) and W g(X). Then

d
d—i= £(x) and v = [ 900 dx
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Therefore, expression (1) can be rewritten as
[ £00 g0 ax = £00[ g(x) dx— [ g) dx] /(%) dx

ic. Jf00gedx = (0] g () dx— [T (x) [gx) dx] ik

If we take f as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) x (integral
of the second function) —Integral of [(differential coefficient of thefirst function)
x (integral of the second function)]”

Example 17 Find _[XCos X dx

Solution Put f (X) = X (first function) and g (X) = cos X (second function).
Then, integration by parts gives

d
IXcos xdx = xjcos xdx—j[&(x)jcos x dx] dx
= Xsin X—jsin X0X =xsin X+ cos X+ C
Suppose, we take f(X) = cos x and g(X) = X. Then

chos X dx

oS xjxdx—j[%(cos x)_[xdx] dx

2 2
= (cos X)X?+J.sin X%dx

Thus, it shows that the integral jx cos X dx is reduced to the comparatively more

complicated integral having more power of X. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(i) It is worth mentioning that integration by parts is not applicable to product of
functions in all cases. For instance, the method does not work for J.\/; sin X dX.
The reason is that there does not exist any function whose derivative is

Jx sin x.

(i) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos X
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as sin X + k, where K is any constant, then

JXcos Xdx = X(sin X+ k)—f(sin X+ k) dx

X (sin X+ k)—j(sin xdx—fk dx

X (sin X+ k) — cos X—kx+C = Xsin X+cos X+C

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(ii}) Usually, if any function is a power of X or a polynomial in X, then we take it as the
first function. However, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find flog X dx

Solution To start with, we are unable to guess a function whose derivative is log X. We
take log X as the first function and the constant function 1 as the second function. Then,
the integral of the second function is X.

Hence, I(logx.l) dx = log le ax— I[% (log x) J.l dx] dx
= (log x)-x—J.lxdx=xlog X=X+C.
X
Example 19 Find | x€”dx

Solution Take first function as X and second function as €. The integral of the second
function is €.

Therefore, fxexdx = xe‘ - fl -e"dx = xe*— e + C.

xsin~'x
Example 20 Find Iﬁ dx

Solution Let first function be sin ~ 'x and second function be

X dx

Ji-x

First we find the integral of the second function, i.e., f

Put t =1 — x2. Then dt = — 2x dx
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xdx  led Y
Therefore, jﬂ = 2I\ﬁ = -t VI-X

in”' : I 1
Hence, J-Xsm de = (sm_lx)(— 1—X2)—f (=v1=x*)dx
V1-x NIES's
= —J1-%* sin" "X+ x+C = x=v1-%" sin”'x+C
Alter natively, this integral can also be worked out by making substitution sin"' X =0 and
then integrating by parts.

Example 21 Find Ie" sin X dx

Solution Take €* as the first function and sin X as second function. Then, integrating
by parts, we have

I= Iex sin X dx=€*(—cos X)+Iexcos x dx

=—€cos X+ 1, (say) .. (D)
Taking €*and cos X as the first and second functions, respectively, in I, we get

I, = € sin X—Iexsin x dx
Substituting the value of I, in (1), we get
[=—€ecosx+e&sinXx—1 or 2l =€*(sin X — cos X)

X
Hence, 1= Iex sin XdX=%(sin X—cosX)+C

Alternatively, above integral can also be determined by taking sin X as the first function
and €* the second function.

7.6.1 Integral of the type Ie" [ f(x)+ f'(%)]dx
We have 1= e[ 0+ f'(0]dx = [€F00 dx+ [eF'(x) dx
= Il+fexf’(x) dx, whereIl=Iexf(X) dx . (1)
Taking f(X) and €*as the first function and second function, respectively, in I, and
integrating it by parts, we have I, = f (x) &— I f'(x) €dx+C
Substituting I, in (1), we get
[= exf(x)—f f’(x)exdx+jexf’(x) dx+C =ef(x)+C
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Thus, [T 00+ fO0ldx = eXf(x)+C

X2 +1)e

(x+1)°

Example 22 Find (i) fex(tan‘1x+ )dX (i1) I(

Solution

_ 1
(i) We have I =[€(tan™"x+ ) o

Consider f(x) = tan ', then f’(X) = 1+ X

Thus, the given integrand is of the form e[ f (x) + f "(X)].

1
Therefore, 1= jex(tan_lx+ —— )dx = e tan X+ C
+ X

o HDe _1+1+1)
(i) We have 1= I X1y —I (x+1) ———]dx
Je e e
(x+1) (x+1) Pl (x+1)
_ , 2
Consider f(X) =)):—+i, then f'(¥)= X+ 1)

Thus, the given integrand is of the form e* [f (X) + f "(X)].

2
X +1 x—1
Therefore, j i > € dx=——€"+C
xX+1) X+1
|EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.
1. Xsin X 2. Xsin 3X 3. ¥ e 4. xlog X
5. Xlog2x 6. x*log X 7. Xsin 'X 8. xtan! x
. X cos X
9. Xcos! X 10. (sin'x)? 11.

\/72 12. X sec*X
1-x

13. tan'Xx 14. x (log x)* 15. (¢ +1)logx
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. X e o 1+sin X
16. e“(sinx+ cosx) 17. 1+ %) 18. 1+ cos X
1 @(l_lJ 20 B 51 e
9. X 32 0. (X—1)3 : sin X

22. sin‘l( 2X2j
1+ X

Choose the correct answer in Exercises 23 and 24.

23. Ixzexsdx equals
1 o %
(A) 5eX +C (B) Ee +C

1 ¢ 1
—e +C D) —€° +C
© 5 (D) € +

24, Iex sec X (1+ tan X) dx equals

(A) €cosx+C (B) esec x+ C
(C) esinx+C (D) etanx+ C

7.6.2 Integrals of some more types

Here, we discuss some special types of standard integrals based on the technique of
integration by parts :

@ f VX2 —a? dx (ii) _[sz +a’ dx (iii) J.x/a2 —x* dx
(i) Let I:I\/xz—a2 dx

Taking constant function 1 as the second function and integrating by parts, we
have

[= XVX —a _IfﬁXdX

2 2 2
x*-a’+a
dx — xVx*-a’ —j

b T

[
X2 —a?



INTEGRALS 329

I
X
<
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|
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Qo
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Qo
X
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x
x
o
|
mm
|
—
|
2,
—
o
X

X’ —a
or 20= x\/xz—az—azfi
X’ —a’
2
or | = IJXZ_aZ dx = gx/xz—a2 —%Iog x+Vx?-a® [+C

Similarly, integrating other two integrals by parts, taking constant function 1 as the
second function, we get

2
(i) J'\/x2+a2dx=%x\/x2+a2 +a7log‘ X+ x% +a?

+C

1 2 X
(iii) I a? —x%dx == x+/a?-x? +& gntXic
2 2 a
Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution X =asec0 in (i), X =atan® in (ii) and X=a sin® in (iii) respectively.

Example 23 Find I X* +2X+5 dx

Solution Note that

I\/xz +2X+5dx = j (X+1)* +4 dx

Put X+ 1 =Yy, so that dx = dy. Then

J‘\/x2 +2X+5dx = J‘«/yz +2% dy

1 > 4
=— +4+—1lo
2y y > g

y+yy +4 ‘+ C  [using7.6.2 (ii)]
L VX 42X+ 5+ 21og| X+ 14X +2x+5 |+ C
2

Example 24 Find I\/Z»—Zx—x2 dx
Solution Note that I\/3—2x—x2 dx=_|.~/4—(x+1)2 dx
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Put X + 1 =y so that dx = dy.

Thus I\/3—2x—x2 dx = I~/4—y2 dy
= % yy4-y’ +% sin‘1%+ C [using 7.6.2 (iii)]

- %(x+l) V3-2x—x* +2sin™ (XTHJ+C

|EXERCISE 7.7
Integrate the functions in Exercises 1 to 9.
1. Ja-x 2. J1-4x2 3. X +4x+6
Ao X +4x+1 5. \l1-4x-x2 6. Jx?+4x-5
2
7o 143x=x° 8. Jx?+3x 9. 1+j
Choose the correct answer in Exercises 10 to 11.
10. I\/1+X2 dx is equal to
(A) §\/1+x2 +%1og(x+\/1+x2) +C
2,2 2 ~
(B) 5(1+x)2+C © Ex(l+x)2+C

2

(D) %m+%leog X+m
11. Imdx is equal to

(A) %(X—4)\/x2—8x+7+9log x—4+M‘+C

(B) %(x+4)\/x2—8x+7+9log x+4+M‘+c

(©) %(X—4)m—3ﬁlog x—4+m‘+c

(D) %(X—4)m—glog x—4+m‘+c

+C
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7.7 Definitelntegral

In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by I ° f (X) dx, where ais called the
a

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [a, b], then its value is the difference between the values of F at the end
points, i.e., F(b)— F(a). Here, we shall consider these two cases separately as discussed
below:

7.7.1 Definite integral as the limit of a sum

Let f be a continuous function defined on close interval [a, b]. Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the x-axis.

b
The definite integral _[a f(X) dx is the area bounded by the curve y = f(X), the

ordinates X = a, X = b and the x-axis. To evaluate this area, consider the region PRSQP
between this curve, x-axis and the ordinates X = a and x = b (Fig 7.2).

Y
1 S
M7 4
C
QAL
Q N
P A B R
< > X
x O\ a= XO Xl XZ Xr-l Xr Xn=
Y .
Fig 7.2

Divide the interval [a, b] into n equal subintervals denoted by [x, X ], [X,, X ,...,
X1, s [X X ], where X, =a, x, =a+h,x, =a+2h, ..,x =a+rhand

n-1°

[X

r—1°

b-a
X =b=a+nhor n:T. We note that as N — o, h — 0.
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The region PRSQP under consideration is the sum of n subregions, where each
subregion is defined on subintervals [X _,X],r=1,2,3,...,n.

From Fig 7.2, we have

area of the rectangle (ABLC) < area of the region (ABDCA) < area of the rectangle
(ABDM) .. (1)

Evidently as X —x _, — 0, i.e., h — 0 all the three areas shown in (1) become
nearly equal to each other. Now we form the following sums.

n—1
s =h[fx)+..+fx )=h2 i) - (2)
r=0
n
and S, = hIf )+ F o) +..+ Fx)I=hY f(x) -~ (3)
r=1
Here, s and S denote the sum of areas of all lower rectangles and upper rectangles
raised over subintervals [x_, X ] forr =1, 2, 3, ..., n, respectively.
In view of the inequality (1) for an arbitrary subinterval [X_, X ], we have
s, < area of the region PRSQP <S_ .. (4

Asn — oo strips become narrower and narrower, it is assumed that the limiting
values of (2) and (3) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

. . b
lim§, - rlglgosh = area of the region PRSQP = _[ a f (x)dx .. (3)

N—oo
It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (5) as

j:f(x)dx ~limh[f(@)+ f@+h+..+ f@+n-1h

or I:f(x)dx = (ba)%ig;%[f(a)Jr f@+rhy+..+ f(a+(n-)h] . (6)

b-a
where h=———>0asn—-w
n

The above expression (6) is known as the definition of definite integral as the limit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

t or uinstead of X, we simply write the integral as j ° f(t)dt or I ° f (u) du instead of
a a

b
J.a f(X) dx. Hence, the variable of integration is called a dummy variable.

2
Example 25 Find | - O +1) dx as the limit of a sum.

Solution By definition
J. f(x)dx = (b— a)hm [f(a)+f(a+h)+ 4+ f(@a+(n-1hj,

b-a

where, h=
n

: 2-0
In this example,a=0,b=2,f(x)=x2+ 1, h=——=

2
n n

Therefore,

2(n )

I(x +1)dx = 211m [f(0)+f( )+f(—)+ A4 f———)]

= 2lim l[l+(2+1)+(£+1)+ +(M+1J]

n—oo n2

1 1
= 20lim —[(1+1+..+)+— 2*+4 +..+(2n-2)"]
n—o | ——— N

n-terms

1 22 2 2 2
= 2lim—[n+— (" +2°+..+(n-1)7]
n’

n—o N

= 2liml[n+iz—(”_1)n(2”_l)]
n—o N n 6

— 2 lim L [n 2 (-1 (2n- 1)
n—wo N 3 n

. 2 1 1 4 14
=2lm [1+=(01-—-) -] =2[1+-] = —
fim [1+50-0) @91 =2 [1+3] =
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2
Example 26 Evaluate I . €* dx as the limit of a sum.

Solution By definition

) 1 3 f 2n-2
joex dX = (2-0)lim —| e’ +e" +e" +..+e "

n—ow N

2
Using the sum to n terms of a GP., where a=1, r =€", we have

2n

en—1 1] ex1
3 ]=2r{§{}oﬁz—

en—1 en—1

2 i 2 lim [
0 n—w N

26— N e VI
= ; =e -1 [usmgrlglg - =1]

en—1

-2

;
| 2

n

| EXERCISE 7.8|

Evaluate the following definite integrals as limit of sums.

1. I:xdx 2. J.Os(x+1)dx 3. J.szdx

4. I14(x2—x)dx 5. _fjlex dx 6. J.04(x+ezx)dx
7.8 Fundamental Theorem of Calculus 1 VI
7.8.1 Area function
We have defined j: f(X) dx as the area of

the region bounded by the curve y = f(X),

. . A
the ordinates X = a and X = b and x-axis. Let X *)

be a given point in [a, b]. Then I : f(x)dx xx 5

a X A

represents the area of the shaded region Y’ Fig 7.3
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in Fig 7.3 [Here it is assumed that f(X) > 0 for X € [a, b], the assertion made below is
equally true for other functions as well]. The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of X. We denote this
function of X by A(X). We call the function A(X) as Area function and is given by

X
AWK = [ f)dx ()

Based on this definition, the two basic fundamental theorems have been given.
However, we only state them as their proofs are beyond the scope of this text book.
7.8.2 First fundamental theorem of integral calculus
Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (X) be
the area function. Then A’(x) = f (x), for all x € [a, b].
7.8.3 Second fundamental theorem of integral calculus

We state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.

Theorem 2 Let f be continuous function defined on the closed interval [a, b] and F be
b
an anti derivative of f. Then _[a f(x)dx = [F(x)]2 = F (b) - F(a).

Remarks

b
(1) Inwords, the Theorem 2 tells us that Ia f (X) dx= (value of the anti derivative F
of f at the upper limit b — value of the same anti derivative at the lower limit a).

(ii) This theorem is very useful, because it gives us a method of calculating the
definite integral more easily, without calculating the limit of a sum.

(i) The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

b
(iv) In I . f (X) dx, the function f needs to be well defined and continuous in [&, b].

1
. . . L. 3 = .
For instance, the consideration of definite integral f , x(x2 —1)2 dx is erroneous

1
since the function f expressed by f(X) = X(X* —1)2 is not defined in a portion

— 1 <x<1 of the closed interval [- 2, 3].
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Steps for calculating I:f(x) dx.

(i) Find the indefinite integralf f(X) dx. Let this be F(x). There is no need to keep
integration constant C because if we consider F(X) + C instead of F(X), we get
b
[ (0 dx=[F (9 +CJ2 =[F(b) + C]-[F(a) + C] = F(b) - F(a).

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

b
(ii) Evaluate F(b) — F(a) = [F (X)]?1 , which is the value of ja f(x) dx.
We now consider some examples

Example 27 Evaluate the following integrals:

3 9 x
() j ) x> dx (ii) L ——— X
(30— x2)?
T — i 4 in® 2t cos 2t o
(111) Ilm (IV) .[0 Sin COS
Solution

. _ 3.2 . 2 _X3_
(i) LetI—J.2X dx . Since IX dX—?—F(X),

Therefore, by the second fundamental theorem, we get

27 8 19
I=FQ3)-FQ2)=—-2=—
3)-F@® 37373
9
(i) LetI= f A 4 dx. We first find the anti derivative of the integrand.
(30— x2)>

3
: 2
Put 30— X2 =t. Then —%«/x dx=dt or VX ck=-dt

JIx 2.d 2[1] 2 1
Thus, J‘—édX=—§J‘—=§ Y Y =F(x)
(30— x2)?



(iii)

(iv)
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Therefore, by the second fundamental theorem of calculus, we have

9

1= F(9)—F(4)=% L

(30 — x2)

4

J2f v 1) 21 1]
-~ 31(30-27) 30-8| 3|3 22| 99

2 X dx

el S

X -1 N 2
(X+D)(X+2) xX+1 x+2

Using partial fraction, we get

X dx
So Im=—log|x+1|+2log|x+2|=F(X)

Therefore, by the second fundamental theorem of calculus, we have
I=FQ2)-F()=[-log3+2log4]—[-log2+2log3]

32
=-3log3+log2+2log4=log >

Let I= IOZsin3 2t cos2t dt . Consider fsin3 2t cos2t dt

1
Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = 5 du

1
.3 b
So J‘sm 2tcos2tdt = 2Iu du

1 4. 1 .4
=—[u"]==sin" 2t =F (t) sa
8[ ] g (t) say

Therefore, by the second fundamental theorem of integral calculus

T 1 . 4T .4 1
I=F(—=)-F(0)=—=[sin" ——sin" 0] =—
() ~FO)=2lsin"> I=3
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|EXERCISE 7.9|
Evaluate the definite integrals in Exercises 1 to 20.
1 31 2 3 2
1. 14(X+1)dx 2. Ii;dx 3. I1(4x —5X" +6X+9) dx
L2 L2 s ki
4. [lsinaxax 5. [lcosaxdx 6. [ €dx 7. [ ftanxdx
i dx 1 dx 3 dx
[ *coseexax 9. [ 10. 11.
8 Igcosec 9 Io — 0 '[01+X2 szz—l
z 3 xdx 12X+3 1 e
2 ¢os? x € dx
12 [ eoxax 13 sz2+1 I05x2+1 15. [,

16 Izi 17 IZ(2seczx+x3+2)dX 18 J.n(sinzz—coszz)dx
S 44x+3 o 0 2 2

26X+3
0x*+4
Choose the correct answer in Exercises 21 and 22.

19. | dx 20 I;(xeersinnTx)dx

21. I lﬁ dx equals

2

1+x
A r B 2n C r D n
(A) 3 B) 3 ©) ¢ D)
2 dx
2. I034+9x2 equals
T T T
(A) c (B) I ©) o (D) N

7.9 Evaluation of Definite I ntegralsby Substitution

In the previous sections, we have discussed several methods for finding the indefinite
integral. One of the important methods for finding the indefinite integral is the method
of substitution.
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b
To evaluate Ia f (X) dx, by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y=f (X) or x= g(y) to reduce

the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning

the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original

variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find
the difference of the values at the upper and lower limits.

so that we can perform the last step.

In order to quicken this method, we can proceed as follows: After

performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,

Let us illustrate this by examples.

1
Example 28 Evaluate I_15x4\/ x> +1dx.

Solution Put t = x®+ 1, then dt = 5x* dx.

Therefore, j5x4 XS +1dx

Hence, [ 5%V +1

W | N

3

W | N
1

3
[Vt = %tz _ 241y

3

3
3 1
(x5+1)2}
—1

3

@412 (1 + 1)2}

3 3
2 22—02] - %(2ﬁ)=¥

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.
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Let t=x+ 1. Then dt = 5 x* dx.

Note that, when Xx=-1,t=0and whenx=1,t=2
Thus, as X varies from — 1 to 1, t varies from 0 to 2

Therefore .[_115)(4\/ X° +1 dx jjx/f at

3R
:g t2
3

dx

I tan~ ' X

Example 29 Evaluate Io Y
+ X

Solution Let t = tan ~'X, then dt =

g dx . The new limits are, when Xx=10, t=0 and
+ X

when x=1, t =% . Thus, as X varies from 0 to 1, t varies from 0 to % .

Therefore j an 5 dx= I“tdt Rl iy |
0 1+x 0 2], 2[16 32
|EXERCISE 7.10|
Evaluate the integrals in Exercises 1 to 8 using substitution.
X z 1L 2x
dx 2 fqi 5 dx
I0x2+1 2. _fo /sin ¢ cos® ¢ d¢ 3. J-Osm (1+x2j
2 g sin X
4. [ xIx+2 (putx+2=1) 5. [ 25 dx
0 1+cos” X
2 dx 1 dx (1 1 2%
N 7. - 8. ——— |e”dX
J.0x+4—x2 j—1x2+2x+5 jl(x 2x2j

Choose the correct answer in Exercises 9 and 10.
1

—y3)3
9. The value of the integral I 11 (X—z() dx is
z X
3
(A) 6 (B) 0 (©) 3 (D) 4
10. 1£f(x) = [ tsintdt, then F/(x) is

(A) cosx+ Xsin X (B) XsinX
(C) X cosx (D) sinx + X cosx
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7.10 Some Propertiesof Definitelntegrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P: j:f(x)dx=j:f(t)dt
P : J.:f(x)dx=—I:f(X)dX.Inparticular, I:f(x)dx=0
P,: _[:f(x)dx=_[:f(x)dx+I:f(x)dx

b b
P.: jaf(x)dx=jaf(a+b—x)dx

a a
P, : J.O f(x)dx=j0 f(a—x)dx
(Note that P, is a particular case of P,)

P, : j;af(x)dx:j:f(x)dx+j:f(2a—x)dx

Pt [ todx=2]"fo0dx.if f2a-x)=f() and
0iff(2a—x)=—-f(x)

~

P: () [ if(x)dx:ZjOaf(x)dx, if fis an even function, i.e., if f (— X) = f (X).

(i1) jl f(X)dx=0, if f is an odd function, i.e., if f(— X) = —f(X).

We give the proofs of these properties one by one.
Proof of P, It follows directly by making the substitution x=t.
Proof of P, Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have I:f(x)dx:F(b)—F(a):—[F(a)—F(b)]=—j:f(x)dx

Here, we observe that, if a = b, then I: f(x)dx=0.
Proof of P, Let F be anti derivative of f. Then
b
ja f(x) dx = F(b) - F(a) (D)

[Tk =F(o) - F@ e

and | b f(x) dx = F(b) — F(c) - 03
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Adding (2) and (3), we get [ “f(x) o|x+jcb f (x)dx = F(b)— F(a) = j: f (x)dx

This proves the property P,.
Proof of P, Lett=a+ b—x. Then dt=—dx WhenXx=a,t=band whenx=Db,t=a
Therefore

_[: f(x) dx

—_[:f(a+b—t) dt

[“t@+b-tyd by p)

b
- ja f(a+b-x) dx by P,

Proof of P, Putt=a—x. Then dt =—dx. When x=0, t=aand when x=a, t=0. Now
proceed as in P,.

Proof of P, Using P,, we have Ioza f(x)dx= I: f(X) dx+.fa2a f(x) dx.

Let t = 2a—xin the second integral on the right hand side. Then
dt = — dx. When x=a, t=aand when Xx=2a,t=0. Also x=2a—t.
Therefore, the second integral becomes

2a 0 a a
[ foodx= -[ fa-tdt - [, fea-vd = [ f(a-xdx
Hence [ Foodx = [“Foodes [ f2a-x dx
Proof of P, Using P, we have jozaf(x) dx=[ "fogdx+[ TFRa-x (1)
Now, if f(2a— x) = f(X), then (1) becomes
2 a a a
J.Oaf(x)dx = [ oo [ oo dx=2[ "f(x)dx,
and if f(2a — x) = —f(X), then (1) becomes
2a a a
jo f(x)dx = jo f(x)olx—j0 f(x)dx=0
Proof of P, Using P, we have

J._aaf(x) dx = I_Oaf(x) dx+I:f(x) dX . Then

Let t = — Xin the first integral on the right hand side.
dt = — dx. When x =— a, t = a and when
Xx=0,t=0. Also x=-1.
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Therefore J._aa f(x) dx —j: f(-t)dt +I: f(x) dx

Ioaf(—x) dx+j:f(x) dx  (byP) .. (1)

(1) Now, if f is an even function, then f(—X) = f(X) and so (1) becomes
a a a a
J:a f (x)dx:j0 f(x)dx+.|‘0 f(x)dx= 2[0 f (x)dx
(i) Iffis an odd function, then f(—X) = — f(X) and so (1) becomes

j:f(X)dxz—j:f(x)dx+j:f(x)dx=0

Example 30 Evaluate J._zl I X — X Idx

Solution We note that X* — X >0 on [- 1, 0] and X) — X < 0 on [0, 1] and that
X’ —x=0on[l,2]. So by P, we write

J._le X —x‘dx = ﬁ(x3—x) dx+.|‘;—(x3 —X) dx+.|‘12(x3 — x) dx

= I_Ol(x3 - X) dx+f(§(x—x3) dX-I—Lz(X3 —X) dx

2 2 X1 [x T
4 2 . 2 4 o 4 2 X

|

I

I
+

I
+

I

|

I
V)

|

I
+

Example 31 Evaluate J-fn sin” X dx
4
Solution We observe that sin® X is an even function. Therefore, by P_ (i), we get

K K
J-fn sin? xdx = 2_[(;‘ sin? x dx

4
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Z(1-cos 2x 3
2[04%@ = _[04(1—cos2x)dx

= X—lsinZX ! :(E—lsm—j 0———l
2 0 4 2 2 4 2

n Xsin X

Example 32 Evaluate j ————dx
91+ cos” X
© Xsin X

Solution Let I = f dx. Then, by P,, we have

0 1+ cos? X

B J-Tr (m—X) sin (w— X) dx
- 1+ cos?(m—X)

_J~ (m—X) sin x dx _ chw sin X dx O

1+ cos? x 0 1+ cos’ X

= sin X dX
or ZI:nf —
0 1+cos” X
n szdX
or - X[ nxac
01+ cos® X
Put cos X =t so that — sin X dx = dt. When Xx=0,t=1 and when x=m,t=— 1.
Therefore, (by P)) we get

—m -1 dt :Ej-l dt
2

I:_
2 91 14t? 11412

1 dt . 1 )
= Io e (by P, since e s even function)

2

- n[tan_lt]z) =Tc[taln_ll—tan71 0]=n[§—0}=%

1
Example 33 Evaluate j 1 sin® X cos* x dx

1 . .
Solution Let I = J._lsms xcos* x dx . Let f(X) = sin® X cos* X. Then

f (= X) = sin® (- X) cos* (— X) = — sin’® X cos* X = — f(X), i.e., f is an odd function.
Therefore, by P_ (i), [= 0
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. 4
5 sin*X
Example 34 Evaluate J‘z — — dx
0 sin” X+cos” X

T . 4
Solution Let I = IO de .. (D
Sll’l X+COS X

Then, by P,

.4,
sin® (- x) .
2 = [>2—B % (2
0 4 4
COoS X+sin X

S A

. 4,T 4,T
Sin " (——X)+cos (——X
(2 ) (2 )

Adding (1) and (2), we get

T

5 SlIl X+COS X

2I=I2+dx j dx = [x]
0 sin” X+cos” X

I

Hence |

dx

Example 35 Evaluate j ik
+ an X

A w)y

T

Solution LetI—I ] \/ti I ycos X o .. (D)
+ an X

A/COS X ++/sin X

A wia

n cos E+E—X dx
3 3 6

Then, by P 1=’
: Ig (n n j .(n n )
CoS| —+——=X |+, [sin| —+——X
36 36

J‘ s1n
\/ sin X ++/cos X

Adding (1) and (2), we get

)

21 In X [X]n 376 6.Hencel B

6 6
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g

Example 36 Evaluate J.Oalog sin X dx

g

Solution Let I = jf log sin X dx

Then, by P,

e ® N (2
I .[o logsm(2 dex—j0 log cos x dx

Adding the two values of I, we get

K

21 = If(log sin X+ log cos x) dx

o a

= I . (log sin Xcos X+log2 —log 2) dx (by adding and subtracting log 2)

= Iflog sin2x dx—Iflog2 dx (Why?)

Put 2X =t in the first integral. Then 2 dx = dt, when X= 0, t = 0 and when X :g,

t=m.
Therefore 2l = lJ.nlo sint dt—Elo 2
240 8 2 g

T

LI .
Io2 log sint dt —510g2 [by P, as sin (1 —t) = sin t)

N o

= JE log sin X dx_g log?2 (by changing variable t to X)

T
=I]-—log2
> g

Hence J.OElOg sinxdx = _Tn log?2 .
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| EXERCISE 7.11|

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

3
s1n sin2 X dx
cos? x dx 2. I ——F0x 3 I —3 3

sin X ++/cos X

S Nla

-

sin2 X+ cos? X

Z cos’ xdx 5 8
4. | —— 5. X+ 2| dx 6. X—5]dx
IO sin® X+ cos® X I‘5| | I2| |
1 kil 2
7. IOX(l—X)ndX 8. Io4log(1+tanx)dx 9. IOX\/Z—de
10. IE(2logsinx—logsin2x)dx 11. J‘? sin? x dx
2
T XdX % . 7 2n 5
12 [ = 13. [ 2 sin” xdx 14. | eos’ xadx
01+sinX *7“ 0
~ sinX—cos X T \/;
15, [ 3MATCOSA G4y 16, log(1+cosx)dx 17. ——0aX
IO 1+ sin X cos X -[0 g( ) fo Ix+Ja—x

18, [ -1

19. Show that [ (0@ dx=2 [ " (x) dx, if fand g are defined as f() = f(a—x)
and g(X) + g(a—x) =4

Choose the correct answer in Exercises 20 and 21.

T

20. The value of J._En (X* + X cos X+ tan’ X+ 1) dX is
2

(A) 0 (B) 2 (O (D) 1

4+3smxjdX s

21. ThevalueofJ-Ozlog[4 3
+3cosX

3
(A) 2 B) o (ORY (D) -2
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Miscellaneous Examples

Example 37 Find _fcos 6X /1 +sin 6x dx

Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

1
Therefore Icos6x 1+sin 6X dX:éjtzdt

3

= lxg(t)% +C= l(1+sin 6X)2 +C
6 3 9
1
4 _ )4
Example 38 Find [ X" gy
XS
1
| A T (e
Solution We have J‘(X —X) dX=I X dx
X x*

Put 1—L3=1—X’3 =t,sothati4dX=dt
X X
1 | s 5
- x)4 1 1 4> 4 1)+
Therefore ud =—|t4dt = —x—-t*+C=—|1-—| +C
'[ X’ X 3-[ 35 15 3

x* dx

Example 39 Find Im

Solution We have

X—4 = (x+l)+—1
(x-1)(x* +1) X=X +x-1
= (x+1)+;
B (x=1)(X* +1) - ()
1 A Bx+C

Now express XD+ 1) = x-1) + 1) . (2)
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So I=AX+1)+Bx+C)x-1)
=(A+B)¥+(C-B)x+A-C
Equating coefficients on both sides, we get A+ B=0,C—B=0andA-C=1,

which give A = l, B=C= 1 . Substituting values of A, B and C in (2), we get
2

2

1 11 o x 1
(X=1D(C+1)  2x=1) 2(¢+1) 20 +1)
Again, substituting (3) in (1), we have

. 3)

x* 1 1 X 1

= (X+1)+ —— -
(X=1) (X +x+1) (x+D) 2(x=1) 2 (¢ +1) 20¢+1)
Therefore
4 2
I Xz dx=X—+x+llog|x—1|—llog(x2+l)—ltan’lx+c
(X=1) (X" +x+1) 2 2 4 2

1
Example 40 Find [ [IOg (logx) + (log %)’ } dx

Solution Let I= I[log (logx)+ (1 ! 7 } dx
0g X

1

(log x)*
In the first integral, let us take 1 as the second function. Then integrating it by
parts, we get

— J-log (log x) dX+I dx

1 IdX

1 = xlog (log X)_leogXXd)H- (log x)*

dx +J‘ dx ) (1)

= Xlog (log X) —I (log )’

log X

. . dx . . .
Again, consider I , take 1 as the second function and integrate it by parts,

log x

dx X 1 1
we have I@_Logx _IX{_ (log )’ (;)} dx} .. (2
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Putting (2) in (1), we get

X dx dx
ot —
(logXx) (logXx)
Example 41 Find j [\/CO'E X ++/tan x] dx
Solution We have

= I[MJF tanx} dx:j\/tanx(l+eotx)dx

Put tan X = t2, so that sec?>x dx = 2t dt

1= xlog (log X) - — xlog (log X) —$+ C

logx_

2t dt
or dx = 2
1+t
1 2t
Th I= |t 1+—j dt
- f( ) 1+t

1 1
Put t—; =Y, so that (1 + t_zj dt = dy. Then

= —dy = an*1i+ = anl—(t_tj+
I—2Iy2+(ﬁ)2_\/§t 75+C V2t 7 *C

t2 -1 tan X—1
:\/Etan_1 +C=\/§tan_l( J+C
\/Et +/2tan X

sin 2Xcos 2x dx
{9 —cos*(2x)

Solution Let 1= [ SI2XCOS 2X (o

V9 —cos?2x

Example 42 Find [
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Put cos? (2X) =t so that 4 sin 2X cos 2X dx = — dt

Therefore 1= Ej +C=- l sin~! {% cos’ 2X} +C

—lJ‘L:—lsinl(
47 oz 4 3
Example 43 Evaluate J'i | xsin (7 x) | dx

xsinm Xfor—1<x<1

Solution Here f(X) = | X sin X | =
ere 1) =[x sin | —Xsinnxforlﬁxsg

3 3
Py . 1 . Py .
Therefore J.21|Xs1nn X|dx = _f  Xsin XdX+J.12—XSII’ITCXdX

3
1 . - .
- I 1X51n7t XdX—Il2X51nnxdx

Integrating both integrals on righthand side, we get

3

3 . 1 . 2

o s —XCOST X sinT X —XCOST X sinT X |2
J- | Xsin7 X|dX = + - +

-1 2 . 2

b T T i 1
_ LPLJ}LL
B T TC2 T Y TI:2

x dx

T
Example 44 Evaluate j -
P 0 a? cos® X+ b’ sin? x

n x dx _In (m—X) dx

Solution LetI= I . ;
0 a?cos? x+b?sin*x  * 0 a*cos®(n— X) +b’sin’(n - X)

(using P,)

J- T dx J- T X dx
= Tc J—
0 a?cos? x+b?sin®x Y9 a?cos’ x+b?sin? x

n dx

= nf - -1
0 a2 cos? X+ b?sin? x
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or I_nIn dx :g‘zjg dx

0 a2 cos? X+ b’ sin? x 0 a?cos® X+ b?sin? x
(using P,)

2—————— (dividing numerator and denominator by cos? X).

J- T sec’ xdx
0 a% +b? tan’ x

T
Put b tan X =1, so that b sec’>x dx = dt. Also, when x=0, t =0, and when X :E’

t = oo,
o 2
Therefore, 1:21' %zﬁ-l[tanll} =£[E—O}= T .
b’0a’+t" b a aj, abl2 2ab
Miscellaneous Exercise on Chapter 7
Integrate the functions in Exercises 1 to 24.
1 1 2 ! 3 ! [Hint:Put a]
: . . ——— [Hint:Putx=—
X% JxratJxib xJax—xt S
1 1 .
4, ——~ 5. —— [Hintt—/——— ;  » put X = 1]
X (x* +1)4 X2 +x3 X243 X3 Ll + xﬁJ
5X sin X eS logx _ e4 log X
6. —— 7 =< 7. ———< 8. —————
X+ (x*+9) sin (X—a) g’ logx _ o2 logx
cos X sin® —cos® x 1
9. F/— 10. — 3 11.
4 —sin?x 1—2sin” X cos” X cos (X+a) cos (X+b)
12 X 13 e—x 14 S
= C(1+€)(2+€9 O HD) (X +4)
15. cos®x glog sinx 16. el (x¢ + 1)! 17. f’ (ax + b) [f(ax + b)]"
18 1 19 sin”' /X —cos ' V/x o1
: . . : X
\/sm3Xs1n (X+ o) sin”' VX +cos ' VX € [0.1]
1-x 2+sin2X X* + X+1

20. 21. 22, —————
1++/x 1+ cos2X (X+1)2 (x+2)
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1—x o V% +1[log (X +1) -2 log x|

1+ X

X4

Evaluate the definite integrals in Exercises 25 to 33.

sin X cos X

cos? x dx

25 j [ SinX]dx 26. j SIX COSX k27, j;—
1+cosXx 0 cos* X+ sin* x 0 cos® X+ 4 sin’ X

3 smx+cosx

A/sin 2X

31. J.Oasin 2xtan”' (sin X) dx

28[

4
33. [ Ix=1]+[x=2]+|x-3[]dx

Prove the following (Exercises 34 to 39)

30 dx 2 2
I 2—=—+log—
Ix*(x+1) 3 3

36. Ijl X7 cos* xdx=0

38. J.OZZ tan’ X dx=1—log2

29 jl—dx
o1+ x—+x

s .
J~; sin X+ cos X

30. 0 94+16sin 2X

dx

30, In Xtan X

0 sec X+ tan X

35. I;xexdx=1

T

37. jozsin3xdx=%

39. Ilsin‘lxdx=E—1
0 2

1 ..
40. Evaluate I 082_3 *dx as a limit of a sum.

Choose the correct answers in Exercises 41 to 44.

41. I is equal to

e +e”
(A) tan!' (€9 + C
(C) log (- +C
42 I cos2X
(sin X+ cos X)?

-1
(A) —+C
sin X+ cos X

dx is equal to

(C) log|sinx—cosXx|+C

(B) tan! (&) + C
(D) log(ec+e9+C

(B) log|sinX+cosXx|+C

1

() (sin X + cos x)*
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43 1ff(@+b—x)=f (), then | x £(x) dx is equal to

a+b b a+b b

(A) — af(b—x)dx (B) — af(b+x)dx
© =2 :f(X)dx (D) a%b :f(x)dx
44. The value of | tan™ (%) dx is
(A) 1 (8) 0 (©) -1 D) 5
Summary

@ Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

d
Let = F(X)= f(X). Then we write I f(X)dx=F (x)+ C. These integrals

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.

From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the y-axis.

Some properties of indefinite integrals are as follows:

1. I[f(x)+g(x)]dx=jf(x) dx+jg(x) dx

2. For any real number K, Ik f(x)dx= k.[ f(x) dx

More generally, if f, f,, f,, ..., f are functions and k, k, ... K are real
numbers. Then

J.[kl fL()+ Kk, f,(X)+...+ Kk, f,(x)] dx

= kljfl(x) dx+k, J. f,(X) dx+...+ Kk, .[fn(x) dx
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€ Some standard integrals

n+1

X
() IXndX= n+1+c,n¢—1.Particularly, Idx=x+c
(i) _[costX=sinX+C (iif) IsinXdX=—cosX+C
(iv) Iseczde=tanX+C (v) Icoseczde=—cotX+C

(vi) _[sec Xtan X dx=sec X+ C

vii cosec XCOo = — CcoSecC Vil 5 -
\1-=X

dx _ 1 dx .
(ix) I e cos  X+C (x) _[1+X2=tan x+C
1 dx -1 . X X
(x1) ,[1_'_)(2 =-cot X+C (xii) Je dx=¢€"+C
al dx >
i A XS C (xiv) [——=sec”' x+C
J. loga Ixm
dx ol
(xv) I—z—cosec’1x+C (xvi) I—dX=log|X|+C
xVx -1 X

€ |Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form % ,
X
where P(X) and Q (X) are polynomials in X and Q (X) # 0. If degree of the

polynomial P (X) is greater than the degree of the polynomial Q (X), then we

may divide P (X) by Q (X) so that sz (X)+m, where T(X) is a
Q(X) Q(X)
polynomial in X and degree of P, (X) is less than the degree of Q(X). T(X)
P (X)

being polynomial can be easily integrated. can be integrated by

Q(¥)
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expressing il
Q%)
1, B -
(x—a)(x—b)
PX+q
2 (x-a) -
pX? + OX+ T
3. (x—a) (x=b)(x-c)
PX* + QX+ T
* (x—a)’ (x-b)
X2 + QX+ I
5. p. q _

(x—a) (X* +bx+c)

as the sum of partial fractions of the following type:

A B
——+——,a#b
x—a X-b

A B
x-a (x-a)’

A B C

A Bx+C
+ 2
X—a X +bx+c

where X + bx + ¢ can not be factorised further.

Integration by substitution

A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. When the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. Using substitution technique, we obtain the following standard

integrals.

(1) _[tanxdx=10g|secx|+C

(ii) _[cothX=log|sinX|+C

(iif) _[secxdx=log|secx+tanx|+C

(iv) _[cosecx dx =log | cosec X — cot X| +C

€ Integrals of some special functions

. _[ dx —Llo X—a
O "2 "2a %|x+a
- _[ dx —Llo a+X

@ J2 2 "2a %lax

+C

+C

dx 1 X
3 > =—tan 'Z4C
X +a a a

(i) |
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.1 X
=sin ' =+C

dx
(iv) I%zlog x+Vxt—a’ |+C (v) Iﬁ a
i) j%:logwﬂ/x%azuc
X +a

€ |Integration by parts
For given functions f and f, we have

[ 1,00+ 1,(x) dx= £, [ £, dx—f[% {0 [ 1,00 dx}dx, i.c., the

integral of the product of two functions = first function x integral of the
second function — integral of {differential coefficient of the first function x
integral of the second function}. Care must be taken in choosing the first
function and the second function. Obviously, we must take that function as
the second function whose integral is well known to us.

* _[ex[f(x)+f’(x)]dx:J.eXf(x)dx+C
€ Some special types of integrals

2

(i) I\/xz—az dx=§\/x2—a2 —%log x+Vx*-a’|+C
2

(ii) J\/x2+a2 dX=§\/X2+a2+a7log x+vxt+a’ [+C

2
i) [va?-x dx=§\/a2 e +a7sin_1§+c

dx dx

> orj can be
ax’ +bx+¢ 7 Jax +bx+c

(iv) Integrals of the types j

transformed into standard form by expressing

2 2
ad+bx+c= a[x2+2x+3}=a{(x+£) +(E—b—zﬂ
a a 2a a 4a

px+ q dx px+ q dx

(v) Integrals of the types jax2+bx+corIJ

can be
ax’ +bx+c
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transformed into standard form by expressing

}C)X+q=Adi(ax2 +bx+c)+B=A (2ax+b)+ B, where A and B are
X

determined by comparing coefficients on both sides.

¢ We have defined j i (X) dx as the area of the region bounded by the curve
a

y = f(X), a < x < b, the X-axis and the ordinates Xx=a and x = b. Let X be a

given point in [a, b]. Then Iax f (X) dX represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
First fundamental theorem of integral calculus

Let the area function be defined by A(X) = _[: f(X) dx for all x > a, where

the function f is assumed to be continuous on [a, b]. Then A’ (x) = f (X) for all

X e [a b].
Second fundamental theorem of integral calculus
Let f be a continuous function of X defined on the closed interval [a, b] and

d
let F be another function such that = F(X) = f(X) for all X in the domain of

f, then j: F () dx=[F(x) +C[’ =F (b)F (a).

This is called the definite integral of f over the range [a, b], where aand b
are called the limits of integration, a being the lower limit and b the
upper limit.

— % —
L4



Chapter

(APPLICATION OFINTEGRALS)

+» One should study Mathematics because it is only through Mathematics that
nature can be conceived in harmonious form. — BIRKHOFF <

8.1 Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f (X), the ordinates X = a,
X = b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves,
area between lines and arcs of circles, parabolas and
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.

8.2 Areaunder SimpleCurves

In the previous chapter, we have studied
definite integral as the limit of a sum and Y
how to evaluate definite integral using
Fundamental Theorem of Calculus. Now,

we consider the easy and intuitive way of /

finding the area bounded by the curve §
y = f(X), x-axis and the ordinates X = a and
x = b. From Fig 8.1, we can think of area
under the curve as composed of large x=a
number of very thin vertical strips. Consider
an arbitrary strip of height y and width dx,

WA bt

A.L.Cauchy
(1789-1857)

y=f

/=

then dA (area of the elementary strip)=ydx, X<g P
where, y = f(X). N
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This area is called the elementary area which is located at an arbitrary position
within the region which is specified by some value of X between a and b. We can think
of the total area A of the region between X-axis, ordinates X = a, X = b and the curve
y=f(X) as the result of adding up the elementary areas of thin strips across the region
PQRSP. Symbolically, we express Y

y=d
A= I:dAzj:ydx=J':f(x)dx
The area A of the region bounded by dy = \
the curve X = g (y), y-axis and the lines y = C, = g0)
y=dis given by &
d d y=c
A= xdy=| g(y)dy X< X
Here, we consider horizontal strips as shown in Y’
the Fig 8.2 Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since
f(X) <0 from Xx=ato x=D, as shown in Fig 8.3, the area bounded by the curve, X-axis
and the ordinates X = a, X = b come out to be negative. But, it is only the numerical
value of the area which is taken into consideration. Thus, if the area is negative, we

take its absolute value, i.e., I i (x) dx

X< 3] 7Zx/= b‘X
j xX=a

A
y/s

N\

Y’ Fig8.3

Generally, it may happen that some portion of the curve is above X-axis and some is
below the x-axis as shown in the Fig 8.4. Here, A, <0 and A, > 0. Therefore, the area
A bounded by the curve y = f (X), X-axis and the ordinates X = a and X = b is given
by A=]A|+A.
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Y
N
A,
=b
X'«< ) >X
xX=a
v A,
YV
Fig 8.4
Example 1 Find the area enclosed by the circle X* + y?= a2
Solution From Fig 8.5, the whole area enclosed Y
by the given circle B0, a)
= 4 (area of the region AOBA bounded by
the curve, x-axis and the ordinates X = 0 and
X = a) [as the circle is symmetrical about both ’
x-axis and y-axis . A(g, 0)
y-axis] X O dx X
= 41.0 ydX (taking vertical strips)
= 4I0a\/a2 —-x* dx
YI
Since X* +y> =&’ gives Y= ++a’—x Fig8.5

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get

the whole area enclosed by the given circle

r a
X a . ;X
-4 —\/az—X2+751n 1—}

|
N
I
TN
(SRR
X
=
+
l\)|m~
w2
@,
s\
Nl
|
=
|
Il
i
VR
N|9’N
N—
VR
|3
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Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the

region enclosed by circle Y
a a B 0,“
:4I0xdy:4jow/a2—y2dy (Why?) Q.9
X
dy
[y a -y +—sm1y} A@ 0)
2 2 aj, X o —>X
2
_ o [B0r Ein1] 0
27 )
2
. a m _ 2
= 475— ma ' Y’
5 , Fig86

Example 2 Find the area enclosed by the ellipse X—2 + %zl
a

Solution From Fig 8.7, the area of the region ABA’B’A bounded by the ellipse

4 area of theregion AOBAin the first quadrant bounded
~ | bythecurve, x — axisand theordinatesx = 0, x = a

(as the ellipse is symmetrical about both x-axis and y-axis)
=4 I Oa ydx (taking verticalstrips)

X2 2

b >
Now ¥+§ =1gives y==% a a’-x , but as the region AOBA lies in the first

quadrant, Y is taken as positive. So, the required area is

_4I —\/a —x2dx X

a X
2 a
X
o
2 (_ a, 0) (a’ 0)
= 4—b{(3><0+a—sin11]—0} K/
all2 2
B




Alternatively, considering horizontal strips as
shown in the Fig 8.8, the area of the ellipse is

b
= 4jobxdy = 4%I\/b2—y2dy (Why?) Am%
0 Xl
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Y
B| (0, b)
A
X
(4, 0)

- 2 b
- 4—; X\/bz -y +b?sin_1 %}
0

|2
i 2
= E (E><O+b—sin_1 1]—0}
b i 2 2
>
_ ﬂb_ﬁznab
b 22

o 0)!/

B’| (0,— b)

Yl
Fig 8.8

8.2.1 The area of the region bounded by a curve and a line

In this subsection, we will find the area of the region bounded by a line and a circle,
aline and a parabola, a line and an ellipse. Equations of above mentioned curves will be
in their standard forms only as the cases in other forms go beyond the scope of this

textbook.

Y
Example 3 Find the area of the region bounded ~ x’=y T
by the curve y = X* and the line y = 4. ; N /]/3 y
Solution Since the given curve represented by dy X
the equation y = X2 is a parabola symmetrical
about y-axis only, therefore, from Fig 8.9, the
required area of the region AOBA is given by X' 0
4
2f xdy = v
Fig8.9
area of theregion BONBbounded by curve, y — axis
and thelines y=0and y=4
of 2T 4
4 2
= 2 = 2 f— 2 =— X 8 = — h ‘7
[, Jyady Xiy} 3 T (Why?)

0

Here, we have taken horizontal strips as indicated in the Fig 8.9.

,X
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Alternatively, we may consider the vertical 2 _ y Y
strips like PQ as shown in the Fig 8.10 to Q _4
obtain the area of the region AOBA. To this A N B’
end, we solve the equations X¥*=yand y=4
which gives x=-2 and X = 2. x=-2 ) dxx=2
Thus, the region AOBA may be stated as >
the region bounded by the curve y=x2, y=4 X'¢ y >X
and the ordinates X =-2 and X = 2. o
Therefore, the area of the region AOBA Y’
> Fig 8.10
= [y

[y = (y-coordinate of Q) — (y-coordinate of P) =4 — x?]

- 2[02(4—x2)dx (Why?)

3 2
—2| ax-X =2[4x2—§} _32
3, 3173

Remark From the above examples, it is inferred that we can consider either vertical
strips or horizontal strips for calculating the area of the region. Henceforth, we shall
consider either of these two, most preferably vertical strips.

Example 4 Find the area of the region in the first quadrant enclosed by the X-axis,
the line y = X, and the circle X* + y* = 32.

. Y
Solution The given equations are N
2 )2/: X .. (1) y=x
and X +y'= 32 .. (2) B(4’4)

Solving (1) and (2), we find that the line
and the circle meet at B(4, 4) in the first
quadrant (Fig 8.11). Draw perpendicular A
BM to the x-axis. X< M >X
0 (44/2,0)

Therefore, the required area = area of
the region OBMO + area of the region

BMAB.
Now, the area of the region OBMO
4 4
= [ ydx=] xdx - (3) Y,
_ %[XZ];‘ _g Fig8.11
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Again, the area of the region BMAB

= I:ﬁ ydx = j:ﬁ\/32—x2dx

1 1 x 2
= [—x\/32 x>+ —=x32xsin’! —}
2 2 42 |,

1 1 . ] [4 1 . 1)

=|=4v2 x0+—x32 1|-]=+/32-16 +—x32xsin —

[2 V2 x 2>< x sin 5 5 72

=8n—-(8+4m)=4n-38 .. (4)
Adding (3) and (4), we get, the required area = 4.

2 2

X
Example 5 Find the area bounded by the ellipse ;4-%:1 and the ordinates X =0
and X = ae, where, > =a (1 - €)and e< 1.

Solution The required area (Fig 8.12) of the region BOB’RFSB is enclosed by the
ellipse and the lines x =0 and x = ae. v

Note that the area of the region BOB’'RFSB

B g Xx=ae
ae
= 210 ydx = Zgjzex/az—xzdx
a X' F (ae, 0) >X

ae
= 2—b[§\/ Iox +a7 sin”' 5}
a

2 OJ/
R

aj|?2 0
2b B
= 2—[ae\/a2 -a’e +a’sin’ e] v
a

Fig8.12

= ab[e\/l —¢e +sin! e}

|[EXERCISE 8.1

1. Find the area of the region bounded by the curve y* = X and the lines X = 1,
X =4 and the x-axis.

2. Find the area of the region bounded by y? = 9x, x=2, X=4 and the X-axis in the
first quadrant.
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Find the area of the region bounded by X* =4y, y =2, y= 4 and the y-axis in the
first quadrant.

2 2

Find the area of the region bounded by the ellipse E+?:1 .
X2 y2

Find the area of the region bounded by the ellipse T+?=1 .

Find the area of the region in the first quadrant enclosed by x-axis, line X=4/3 y
and the circle X*+ y? = 4.

a
Find the area of the smaller part of the circle X2 + y? = & cut off by the line X=$ .

The area between X = y* and X = 4 is divided into two equal parts by the line
X = @, find the value of a.

Find the area of the region bounded by the parabolay = X*and y = |X| .

Find the area bounded by the curve X2 = 4y and the line X =4y — 2.

Find the area of the region bounded by the curve y? = 4x and the line X = 3.

Choose the correct answer in the following Exercises 12 and 13.

12.

13.

Area lying in the first quadrant and bounded by the circle X*> + y* =4 and the lines
X=0and x=21is

A B z C z D z
(A) = (B) (© 3 D) -
Area of the region bounded by the curve y? = 4x, y-axis and the liney= 3 is

9 9 9
(1) 2 B) © 3 D) 5

8.3 Areabetween Two Curves

Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by
cutting the region into a large number of small strips of elementary area and then
adding up these elementary areas. Suppose we are given two curves represented by
y="1(X), y=0(X), where f(X) = g(X) in [a, b] as shown in Fig 8.13. Here the points of
intersection of these two curves are given by X = a and X = b obtained by taking
common values of y from the given equation of two curves.

For setting up a formula for the integral, it is convenient to take elementary area in

the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height
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f(X) — g(X) and width dx so that the elementary area

){ y=fx
dx | _y=fx)-gx

x=a y =g

X\O >X

A4
Y’ Fig8.13
dA = [f(X) — g(X)] dx, and the total area A can be taken as

A= [ F0-g0]dx
Alternatively,

A = [area bounded by y = f (X), X-axis and the lines X=a, X = b]
— [area bounded by y = g (X), X-axis and the lines X = a, X = b]

= [ 109ax=] [geoax <[ " (0~ g00Jdx, where £ (9 g (4 in [2. b]

Iff (X) 2g(x)in [a, c] and f (X) < g (X) in [C, b], where a < ¢ < b as shown in the
Fig 8.14, then the area of the regions bounded by curves can be written as

Total Area = Area of the region ACBDA + Area of the region BPRQB

[ (x)—g(x)]dx+jcb[g(x)— ()] dx

y=g
P
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Example 6 Find the area of the region bounded by the two parabolas y = x* and y* = X.

Solution The point of intersection of these two Y ,
parabolas are O (0, 0) and A (1, 1) as shown in y=x )
the Fig 8.15. xX=y
Here, we can set y> =X or y=./x = f(X) and y = X LD
= g(X), where, f (X) > g (x) in [0, 1].

X X

Therefore, the required area of the shaded region (0]

- I;[ f (x)—g(x)]dx

0 Fig8.15

3 3
Example 7 Find the area lying above X-axis and included between the circle
X2+ y* = 8X and the parabola y* = 4x.

Solution The given equation of the circle x> + y*> = 8x can be expressed as
(X — 4)*> + y* = 16. Thus, the centre of the Y
circle is (4, 0) and radius is 4. Its intersection T
with the parabola y* = 4X gives
X2+ 4x = 8X
or X —4x=0
or X(X—4)=0
or X=0,x=4 0 C 4,0 Q6,0
Thus, the points of intersection of these
two curves are O(0, 0) and P(4,4) above the
X-axis.
From the Fig 8.16, the required area of

the region OPQCO included between these v ;
T Fig8.16
two curves above X-axis is Y

= (area of the region OCPO) + (area of the region PCQP)
4 8
= IO ydx+j4ydx

- ZJ.:\/;dx+J.f«/42—(x—4)2dx (Why?)

P4, 4)

X
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4

2| 2 ¢

= 2x§{x2} +| /4% —t>dt, where, x—4=t (Why?)
o O

3

4
+[ix0+lx42xsin_ll}=£+ O+8x£ :2+4n:—(8+3ﬂ?)
3 2 2 3 2 3 3

Example 8 In Fig 8.17, AOBA is the part of the ellipse 9% + y*> = 36 in the first
quadrant such that OA = 2 and OB = 6. Find the area between the arc AB and the
chord AB.

2 2
Solution Given equation of the ellipse 9% + y*= 36 can be expressed as i + 36 1 or

Y
2 2
% + Z—z = land hence, its shape is as given in Fig 8.17. AB 0. 6)
Accordingly, the equation of the chord AB is
6-0
—0=——=(x-2
y 07 *x 2 X< . AQO
or y=—3(X-2)
or y=-3x+6
Area of the shaded region as shown in the Fig 8.17.
=3[ Na-eax-[ J(6-3xdx (Why?) \
Y/
- 2 2T Fig8.17
— 3| X e+ A X L ex— 2
1 2 2 2, 2 |,

— 320+ 2sin () |- 12- 22| 23x2x E 6 =316
2 2 2
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Example 9 Using integration find the area of region bounded by the triangle whose
vertices are (1, 0), (2, 2) and (3, 1). Y
Solution Let A(1, 0), B(2,2)and C(3, 1) be
the vertices of a triangle ABC (Fig 8.18).
Area of AABC
= Area of AABD + Area of trapezium
BDEC — Area of AAEC : :
Now equation of the sides AB, BC and X o A, O)i) E
CA are given by

B(2,2)

. Y Fig 8.18
y=2(X-1),y=4-Xxy= > (X = 1), respectively.

Hence, area of A ABC = I:Z(X—l) dX+I;(4_X) dX—I:XT_ldX
2 2 2 PP 2 3
e gl
2 1 21 2L2 1
:2[(2—2—2j—(l—lﬂ+[(4x3—£j—(4x2—zﬂ_l[(i_?,j_(l_lﬂ
2 2 2 2 21\ 2 2

3

2
Example 10 Find the area of the region enclosed between the two circles: X2 +y* =4

and (X—2)* +y* = 4.

Solution Equations of the given circles are

X+y =4 (1) %
and X=22+y*=4 .. (2)

Equation (1) is a circle with centre O at the A(1\3)
origin and radius 2. Equation (2) is a circle with :
centre C (2, 0) and radius 2. Solving equations
(1) and (2), we have

X
(X-2P +y =X +y \\0
or X —AX+ 4+ Y =X+ .
A'(1,\3)
or x =1 which gives y = +/3
Thus, the points of intersection of the given v
ircl Al dA(1, — h i
circles are A(1, /3 ) and A’(1, J3) as shown in Fig8.19

the Fig 8.19.



APPLICATION OF INTEGRALS 371

Required area of the enclosed region O ACA’O between circles
=2 [area of the region ODCAO] (Why?)
=2 [area of the region ODAOQ + area of the region DCAD]

= Z:J‘;ydx+j‘12ydx}
= 2_I;J4—(x—2)2dx+Lz\/4—x2dx} (Why?)

_ 1
=2 %(x—z)wm—(x—z)2 +%x4sin_1 (%2)}

0

2
+ ZB xV4—x +%x4sin1§}

1

_ 1
= | (x=2)\J4-(x—2)? +4sin_1(x;2ﬂ +[xx/4—x2 +4sin-1ﬂ
L 0

2

2

1

= (—\/5 +4sin”! (%)j —4sin™' (—1)} + [4sin1 1-+/3 —4sin™ %}

_ :(_ﬁ_4xgj+4xﬂ+[4xg_ﬁ_4xﬂ

(-3

:8?“'_2\/3

|EXERCISE 8.2

1. Find the area of the circle 4X2 + 4y? = 9 which is interior to the parabola X*= 4y.
2. Find the area bounded by curves (X — 1)>+y*=1and X* +y*=1.

3. Find the area of the region bounded by the curves y=x*+2, y=X, Xx=0 and
X =3.

4. Using integration find the area of region bounded by the triangle whose vertices
are (— 1, 0), (1, 3) and (3, 2).

5. Using integration find the area of the triangular region whose sides have the
equations y =2x+ 1, y=3x+ 1 and Xx=4.
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Choose the correct answer in the following exercises 6 and 7.

6. Smaller area enclosed by the circle X* + y* =4 and the line X +y =2 is

(A) 2(m—-2) B) n-2 (©) 2n—1
7. Area lying between the curves y* = 4X and y = 2X is

2 1 1
@) 3 ®) 3 © 5

Miscellaneous Examples

(D) 2 (m+2)

3
(D) n

Example 11 Find the area of the parabola y* = 4ax bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola Y
y* = 4ax is at origin (0, 0). The equation of the

latus rectum LSL” is X = a. Also, parabola is
symmetrical about the x-axis.

The required area of the region OLL’O

L
|~

(a,0)

= 2 (area of the region OLSO)
X<
= 2f Tydx = 2 "Vaax o o
0 0

zzxzﬁj;&dx

a

"<\

= 4\/5 x%{xz}

0
N~ P
3 3

Example 12 Find the area of the region bounded
by the line y = 3x+ 2, the x-axis and the ordinates
Xx=-1and x=1.

Ll
Fig 8.20

>X

Solution As shown in the Fig 8.21, the line X’ )
x=_

y = 3X+ 2 meets x-axis at X= _? and its graph

-2
lies below X-axis forXe[—l, ?) and above

-2
x-axis for X e[?, 1) .
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The required area = Area of the region ACBA + Area of the region ADEA

-2
- Ij(3x+ 2)dx

1
+j;2(3x+ 2)dx
3

Example 13 Find the area bounded by Y
N
the curve y = cos X between X = 0 and

A
X =2m.

Solution From the Fig 8.22, the required X<

area = area of the region OABO + area
of the region BCDB + area of the region

o I T 3n F X
2 2

C
v
DEFD. Y’ i 82
Thus, we have the required area 'gS
n 3n
Py B3 2
= I % cos XdX + J. * cos xdx +J. " cos xdx
0 L3 3=
2 2
T 3n
= [si x5+[' x]7+ inx|"
= [sm ]0 sin X]; [sm ]375 Y
2 o 1
R
=1+2+1=4

Example 13 Prove that the curves y* = 4x and X* = 4y

divide the area of the square bounded by x = 0, X = 4, X'<g

y =4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the
parabolas y? = 4x and X* = 4y are (0, 0) and (4, 4) as

v
Y/

Fig 8.23
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shown in the Fig 8.23.
Now, the area of the region OAQBO bounded by curves y?= 4x and X*= 4y.

4( xz\ 2 % X !
:jokzﬁ—T)dx:{zxgx __}

12
0

32 16 16

37373 .. (1)

Again, the area of the region OPQAO bounded by the curves X =4y, x=0,x=4
and Xx-axis

2 1 16
T e

Similarly, the area of the region OBQRO bounded by the curve y* = 4X, y-axis,
y=0andy=4

e[ e-s-Y o

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area of
the region OPQAO = area of the region OBQRO, i.e., area bounded by parabolas
y? = 4x and X2 = 4y divides the area of the square in three equal parts.

Example 14 Find the area of the region Y R/
{XY): 0y +1,0<y<x+1,0<x<2}

Solution Let us first sketch the region whose area is to

be found out. This region is the intersection of the x=2
following regions.
A = {(Xy):0<y<x+1}, X'<7 Ol, T s >X
A ={XYy):0<y<x+1} v
and A= {(XYy):0<x<2} Fig8.24

The points of intersection of y =X*+ 1 and y = X+ 1 are points P(0, 1) and Q(1, 2).
From the Fig 8.24, the required region is the shaded region OPQRSTO whose area
= area of the region OTQPO + area of the region TSRQT

1 b 2
- Io(x +1)dx+~|.1 (x+1)dx (Why?)
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11.
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(][5

e ferne]-2

Miscellaneous Exercise on Chapter 8

Find the area under the given curves and given lines:
(i) y=x,x=1,x=2 and x-axis
(i) y=x', x=1,x=5 and x-axis

Find the area between the curves y = X and y = X

Find the area of the region lying in the first quadrant and bounded by y = 4x°,
x=0,y=1andy=4.

Sketch the graph of y = |x+ 3| and evaluate J._06|X + 3| dx.

Find the area bounded by the curve y = sin X between X = 0 and X = 2.
Find the area enclosed between the parabola y* = 4ax and the line y = mx.

Find the area enclosed by the parabola 4y = 3x* and the line 2y = 3x + 12.

2 2
X
Find the area of the smaller region bounded by the ellipse ?+y7 =1 and the

X
line §+%=1 :
2 2
Find the area of the smaller region bounded by the ellipse ?JFFZI and the
Xy
line —+—=1.
ine —+3

Find the area of the region enclosed by the parabola x> =Yy, the line y= X+ 2 and
the x-axis.

Using the method of integration find the area bounded by the curve |X| + | y| =1.

[Hint: The required region is bounded by lines x+y=1,x-y=1,-x+y=1and
-Xx-y=1].
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12.
13.

14.

15.
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Find the area bounded by curves {(X, y) : y=X? and y = |X|}.

Using the method of integration find the area of the triangle ABC, coordinates of
whose vertices are A(2, 0), B (4, 5) and C (6, 3).

Using the method of integration find the area of the region bounded by lines:
2x+y=4,3x-2y=6and x-3y+5=0
Find the area of the region {(X, y) : y* < 4X, 4x* + 4y* < 9}

Choose the correct answer in the following Exercises from 16 to 20.

16.

17.

18.

19.

*

*

Area bounded by the curve y =X, the X-axis and the ordinates Xx=—2 and Xx=1 is
O L

(A) - (B) — ©) 5 D) -

The area bounded by the curve y = X | X|, x-axis and the ordinates X =— 1 and

x=11s given by

A) 0 B) 0 = D) %
(A) ®) 3 © 3 (D) 3
[Hint : y=x*if x>0 and y=— x* if x<0].

The area of the circle X* + y* = 16 exterior to the parabola y* = 6X is

(A) §(4n—x/§) (B) §(4n+x/§) () %(Sn—x/?) (D) %(8n+\/§)

T
The area bounded by the y-axis, y = cos X and y = sin X when 0 < X< 3 is

(A) 2(v2-1)  (B) 21 ©) V2+1 (D) 2

Summary
The area of the region bounded by the curve y = f (X), X-axis and the lines
x=aand x= Db (b> a) is given by the formula: Area= j: ydx = I: f(x)dx.
The area of the region bounded by the curve X = ¢ (y), y-axis and the lines

d d
y=c, y=dis given by the formula: Areazjc xdyzjc ¢ (y)dy.
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@ The area of the region enclosed between two curves y = f (X), y = g (X) and
the lines X = &, Xx= b is given by the formula,

Area= :[ F()—g(x)]dx, where, f (x) > g (¥) in [a, b]
®Iff(X)2g(x)in [a c] and f (X) £ g (X) in [c, b], a < c < b, then

Area:j:[f(x)—g(x)]dx+j:[g(x)— £ ()] ox.

Historical Note

The origin of the Integral Calculus goes back to the early period of development
of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus (440 B.C.) and Archimedes
(300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century.
In 1665, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol ‘.
In 1696, he followed a suggestion made by J. Bernoulli and changed this article to
Calculus integrali. This corresponded to Newton’s inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with Differential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.
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However, this justification by the concept of limit was only developed in the
works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the
following quotation by Lie Sophie’s:

“It may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis .... The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz”.

—_— % —
L <4



Chapter

(DIFFERENTIAL EQUATIONS)

+» He who seeks for methods without having a definite problem in mind
seeks for the most part in vain. — D. HILBERT <

9.1 Introduction

In Class X| and in Chapter 5 of the present book, we Ak Uit i,
discussed how to differentiate agiven function f with respect gt

to anindependent variable, i.e., how to find f’(x) for agiven
function f at each x in its domain of definition. Further, in
the chapter on Integral Calculus, we discussed how to find
afunction f whose derivative isthe function g, which may
also beformulated asfollows:

For agiven function g, find afunction f such that

dy _ _
i g(x), wherey = f(x) - (D RE
An equation of the form (1) is known as a differential Henri Poincare

equation. A formal definition will be given later. (1854-1912)

These equationsarisein avariety of applications, may it bein Physics, Chemistry,
Biology, Anthropol ogy, Geology, Economicsetc. Hence, anindepth study of differential
equations has assumed primeimportancein al modern scientific investigations.

In this chapter, we will study some basic conceptsrelated to differential equation,
general and particular solutions of a differential equation, formation of differential
equations, some methods to solve afirst order - first degree differential equation and
some applications of differential equationsin different areas.

9.2 Basic Concepts
We are already familiar with the equations of the type:
X*-3x+3=0 - (D)
snx+cosx=0 - (2
X+y=7 .. (3)
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Let us consider the equation:

Xﬂ.g. y = 0 (4)

dx
We seethat equations (1), (2) and (3) involveindependent and/or dependent variable
(variables) only but equation (4) involvesvariablesaswell asderivative of the dependent
variable y with respect to the independent variable x. Such an equation is called a

differential equation.

Ingeneral, an equationinvolving derivative (derivatives) of the dependent variable
with respect to independent variable (variables) is called adifferential equation.
A differential equation involving derivatives of the dependent variablewith respect
to only oneindependent variableiscalled an ordinary differential equation, e.g.,
d%y (dy) _ .. . . . .
2—5+ (—j =0 isanordinary differential equation .. (5)
dx dx
Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.
Now onward, we will use the term *differential equation’ for ‘ordinary differential
equation’.

1. Weshall prefer to use the following notations for derivatives:

ﬂ_ ! d_zy_yﬂ dsy_yﬂ/
dx " dx? ’

e
2. For derivativesof higher order, it will beinconvenient to use so many dashes
n
assupersuffix therefore, we usethe notationy for nth order derivative Cél 3/ :
X

9.2.1. Order of a differential equation

Order of adifferential equationisdefined asthe order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.

Consider thefollowing differential equations:

dy
Pl e ... (6)
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d2
d7¥+ y =0 - (7)
3
d3y dZy
(EJ—'— X2 (? =0 (8)

The equations (6), (7) and (8) involve the highest derivative of first, second and
third order respectively. Therefore, theorder of theseequationsare 1, 2 and 3 respectively.

9.2.2 Degree of a differential equation

To study the degree of a differential equation, the key point is that the differential
equation must be apolynomial equationinderivatives,i.e.,y,y”,y” etc. Consider the
following differential equations:

2
d’y _(d’y) dy
— 42— == = ... (9
o [dxz w0 ®
(ﬂjz{ﬂj—sinzy =0 (10)
dx)  Ldx
dy . (dy
—Z4d8in| 2| =
o ( dxj 0 . (1)

We observethat equation (9) isapolynomia equationiny”, y” andy’, equation (10)
isapolynomia equationiny” (not apolynomial iny though). Degree of such differential
equations can be defined. But equation (11) is not a polynomia equation in y" and
degree of such adifferential equation can not be defined.

By the degree of a differential eguation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral index) of the highest order
derivativeinvolvedinthegiven differential equation.

Inview of the above definition, onemay observethat differential equations(6), (7),
(8) and (9) each are of degree one, equation (10) is of degree two while the degree of
differential equation (11) isnot defined.

Order and degree (if defined) of a differential equation are always
positiveintegers.
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Example 1 Find the order and degree, if defined, of each of the following differential
equations:

0)
(i)

dy . d%y (dyj2 dy
——cosx=0 —+X|=| —y==0
dx ) Xydx2 Max)

y'+y*+e’ =0

Solution

@)

(i)

(i)

d
The highest order derivative present in the differential equation is &y S0 its

d
order isone. Itisapolynomial equationiny” and the highest power raised to &y

isone, so its degreeisone.
2

Thehighest order derivative present in the given differential equationis de , S0

d? d
its order is two. It is a polynomial equation in dTZ and &y and the highest

2

d
power raised to dTi’ isone, so itsdegreeis one.

The highest order derivative present in the differential equation is y”, so its

order isthree. Thegiven differential equation isnot apolynomial equationinits
derivatives and so its degree is not defined.

|[EXERCISE 9.1
Determine order and degree (if defined) of differential equations given in Exercises
1to 10.
dty . (dsj4 d%s

. —+d9n(y")=0 , = 3. | —=| +33—=0

L5 (y") 2. y+5y=0 & e

4 (d—zyjicos(ﬂj—o 5 d—Zy—cos3x+sin3x

NS dx) odx®

6. (Y +(Y)P+ ) +y¥=0 7oy 2 +y =0
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8. y+y=¢ 9. YV+(Y)?+2y=0 10. y+2y' +siny=0
11. Thedegree of the differential equation

2.\ 2
2] o)
X X X

(A) 3 B) 2 © 1 (D) not defined
12. Theorder of the differential equation
2x2d—2¥—3y+ y=0is
dx dx
(A) 2 B) 1 (© o (D) not defined
9.3. General and Particular Solutionsof a Differential Equation
In earlier Classes, we have solved the equations of the type:
x*+1=0 - (1)
s x—cosx=0 - (2
Solution of equations (1) and (2) are numbers, real or complex, that will satisfy the

given equation i.e., when that number is substituted for the unknown x in the given
equation, L.H.S. becomes equal to the R.H.S..
2

d
Now consider the differential equation dTZ +y=0 )]

In contrast to the first two equations, the solution of this differential equationisa
function ¢ that will satisfy iti.e., when the function ¢ is substituted for the unknowny
(dependent variable) inthe given differential equation, L.H.S. becomesequal toR.H.S..

The curvey = ¢ (x) is called the solution curve (integral curve) of the given
differential equation. Consider the function given by

y=¢ (X) =asin(x +hb), o (4
where a, b € R. When this function and its derivative are substituted in equation (3),
L.H.S.=R.H.S.. Soit isasolution of the differential equation (3).

Let a and b be given some particular values say a = 2 and bzg , then we get a

function y=60,(x = Zsin(x+%) .. (5

When this function and its derivative are substituted in equation (3) again
L.H.S. = RH.S.. Therefore ¢, is also a solution of equation (3).
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Function ¢ consists of two arbitrary constants (parameters) a, b and it is called
general solution of the given differential equation. Whereas function ¢, contains no
arbitrary constants but only the particular values of the parameters a and b and hence
is caled aparticular solution of the given differentia equation.

The solution which contains arbitrary constants is called the general solution
(primitive) of the differential equation.

Thesolution freefrom arbitrary constantsi.e., the solution obtained from the general
solution by giving particular values to the arbitrary constants is called a particular
solution of the differential equation.

Example 2 Verify that the function y = e* is a solution of the differential equation
d’y  dy

—+—-6y=0

o dx Y

Solution Givenfunctionis y = e *. Differentiating both sides of equation with respect
to x , we get

dy —3X
— =-3e (L
” D
Now, differentiating (1) with respect to x, we have

2

d_Z = Qe X

dx

d’y dy

Substituting the val ues of and y in the given differential equation, we get

¢
LHS =9e¥+ (3e¥*) -6.e*=9e*-9e*=0=RH.S.
Therefore, the given function isasolution of the given differential equation.

Example 3 Verify that the functiony = acosx + b sinx, where, a, be R isasolution

2
of the differential equation % +y=0
X

Solution Thegivenfunctionis
y=acosx+bsnx - Q)

Differentiating both sides of equation (1) with respect to x, successively, we get

dy .
— = —asinx + b cosx

— =—acosx—bsnx

dx
d?y
dx?
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2

d
Substituting the val ues of dTﬁ’ and y in the given differential equation, we get

LHS =(—acosx—bsinx)+(acosx+bsnx)=0=RH.S.
Therefore, the given function isasolution of the given differential equation.

| EXERCISE 9.2|

In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) isa
solution of the corresponding differential equation:

1.
2.
3.

10.
11.

12.

y=e+1 Dy’ -y =0
y=x+2x+C Dy =-2x-2=0
y=cosx+C Yy +snx=0
Xy
= ./ 2 : =
y = AX oxy =y (x=0)
y=xsinx DXy =Y+ X P —y? (x#0andx>yorx<-y)
2
xy=logy+C LY E Ty WD
y —COSY = X : (ysiny+cosy+xy =y
X+ y= tanrly Y'Y 4ty +1=0

y=4Ja?_x2xe (-4 a): x+y% =0(y=0)

The number of arbitrary constantsin the general solution of adifferential equation
of fourth order are:

(A) O (B) 2 ©) 3 (D) 4

Thenumber of arbitrary constantsinthe particular solution of adifferentia equation
of third order are:

(A) 3 (B) 2 © 1 (D) O
9.4 Formation of a Differential Equation whose General Solutionisgiven
We know that the equation
X¥+yY+2X—4y+4=0 - ()

represents a circle having centre at (—1, 2) and radius 1 unit.
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Differentiating equation (1) with respect to x, we get

dy X+1

o ZTy (y=2) .. (2

whichisadifferential equation. You will find later on [See (example 9 section 9.5.1.)]
that this equation represents the family of circles and one member of the family isthe
circlegiveninequation (1).
Let us consider the equation

X2+ y2=r2 - (3
By giving different values to r, we get different members of the family e.g.
X+y?=1 x+y* =4, x*+y*=9etc. (seeFig 9.1).

Thus, equation (3) represents afamily of concentric X
circlescentered at the origin and having different radii.

Weareinterested infinding adifferential equation
that is satisfied by each member of the family. The f

different for different members of the family. This
equationisobtained by differentiating equation (3) with
respect to x, i.e.,

differential equation must befreefromr becauseris X< g

2x+2y%:0 or x+y%:0 .. (4 Fig9.1

which represents the family of concentric circles given by equation (3).
Again, let us consider the equation
y=mx+c .. (5
By giving different valuesto the parameters m and c, we get different members of
thefamily, e.g.,

y=X (m=1, c=0)

y = V3x (m= 3, c=0)

y=x+1 (m=1, c=1

y=-X (m=-1, c=0)

y=-x-1 (m=-1, c=-1) etc. (seeFig 9.2).

Thus, equation (5) represents the family of straight lines, where m, ¢ are parameters.

We are now interested in finding a differential equation that is satisfied by each
member of the family. Further, the equation must be free from mand ¢ because mand
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c are different for different members of the family.
Thisis obtained by differentiating equation (5) with
respect to X, successively we get
2
dy _ dy_,

m _
dx and dx?

The equation (6) representsthe family of straight
lines given by equation (5).

Note that equations (3) and (5) are the genera \
solutions of equations (4) and (6) respectively.

Fig9.2

9.4.1 Procedure to form a differential equation that will represent a given
family of curves

(@) If the given family F, of curves depends on only one parameter then it is
represented by an equation of the form

F,(xy,a=0 - (D
For example, the family of parabolasy? = ax can be represented by an equation
of theform f(x,y, @) : y* = ax.
Differentiating equation (1) with respect to x, we get an equation involving

Y.V, x,and a, i.e,

gxyy,a=0 (2
Therequired differential equation isthen obtained by eliminating afrom equations
(D) and (2) as

Fx,y,y)=0 .. (3
(b) If the given family F, of curves depends on the parameters a, b (say) thenitis
represented by an equation of the from

F,(x,y,ab)=0 .. (4

Differentiating equation (4) with respect to x, we get an equation involving
Y, XY, ab,i.e,

gxyy,ab=0 .. (5)

But itisnot possibleto eliminate two parametersa and b from the two equations
and so, we need a third equation. This equation is obtained by differentiating
equation (5), with respect to x, to obtain arelation of the form

hx,y,Y,y’ ab) =0 ... (6)
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The required differential equation isthen obtained by eliminating a and b from
equations (4), (5) and (6) as

Fxy,Y,y)=0 .. (1)

|@— Note | The order of adifferential equation representing a family of curves is

same as the number of arbitrary constants present in the equation corresponding to
the family of curves.

Example 4 Form the differential equation representing the family of curvesy = mx,
where, mis arbitrary constant.

Solution We have

y = mx . (D

Differentiating both sides of equation (1) with respect to x, we get

d

2o

d
Substituting the value of min equation (1) weget y = d—i X
dy
X— —-y=0

or o y

which isfreefrom the parameter mand hencethisistherequired differential equation.

Example 5 Form the differential equation representing the family of curves
y =asin (x + b), where a, b are arbitrary constants.

Solution We have

y=asn(x+b) - (D)
Differentiating both sides of equation (1) with respect to x, successively we get
& acos(x+hb 2
i S( )
d2
dTZ = _asin(x+b) e
Eliminating a and b from equations (1), (2) and (3), we get
d2
Yiy-o ()

dx?
whichisfreefromthearbitrary constantsa and b and hencethistherequired differential
equation.
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Example 6 Form the differential equation Y
representing the family of ellipses having foci on

x-axis and centre at the origin.
@$ :
N

Solution Weknow that the equation of said family X'€
of ellipses(seeFig 9.3) is

X2 y2 ( ) Y,I
—t+t= =1 (1
a’ b? Fig9.3
. i . . 2x 2y dy
Differentiating equation (1) with respect to x, we get — + B i =0
a X
y ﬂj_ -
or x(dx =7 .. (2
Differentiating both sides of equation (2) with respect to x, we get
(dy )
D) -
x/ \ dx? X2 Jdx
d?y (dyjz dy _
or Xy e + X ix ydx =0 - (3

whichistherequired differential equation.

Example 7 Formthedifferentia equation of thefamily
of circlestouching the x-axis at origin.

o)
rdad

Solution Let C denote the family of circles touching
x-axis at origin. Let (0, @) be the coordinates of the
centre of any member of the family (see Fig 9.4).
Therefore, equation of family Cis

X2+ (y—a) = a2 orx* +y>* = 2ay - () X
where, aisan arbitrary constant. Differentiating both
sides of equation (1) with respect to x,we get

dy . dy Y
2x+2y& = Za& Fig9.4
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X+ y@
by T Tk
or X+ydx—adxora- dy
dx
Substituting the value of a from equation (2) in equation (1), we get
{x+ygly}
X
X2 + y2 = ZyT
dx
or ﬂ(x2+ y?) = 2xy+2y2ﬂ
dx dx
dy 2y
or X oy

Thisistherequired differential equation of the given family of circles.

- (2

Example 8 Form the differential equation representing the family of parabolas having

vertex at origin and axis along positive direction of x-axis.

Solution Let Pdenote thefamily of above said parabolas (see Fig 9.5) and let (a, 0) bethe
focus of amember of thegiven family, whereaisan arbitrary constant. Therefore, equation

of family Pis
y? = 4ax
Differentiating both sides of equation (1) with respect to x, we get

>

Substituting the value of 4a from equation (2) 1
in equation (1), we get

- (D

- (2

dyj
2= | 2y =2 ,
y ( Y ) X'

d
or v -2y _g
dx
whichisthedifferentia equation of thegivenfamily Y’

of parabolas. Fig9.5
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| EXERCISE 9.3|

In each of the Exercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants a and b.

1.

4.
6.

10.

11.

12.

§+X=1
a b

y = €* (a+ bx) 5. y=e(acosx+bsinx)

Form the differential equation of the family of circles touching the y-axis at
origin.

Form the differential equation of thefamily of parabolas having vertex at origin
and axisalong positive y-axis.

Formthedifferential equation of the family of ellipseshaving foci on y-axisand
centreat origin.

Form the differential equation of thefamily of hyperbolashaving foci on x-axis
and centre at origin.

Form the differential equation of the family of circles having centre on y-axis
and radius 3 units.

Which of the following differential equationshasy = c, e + ¢, e*asthe general
solution?

d?y d?y d?y d?y

A) —+y=0 (B) —-y=0 —+1=0 (D) —-1=0
Which of the following differential equations hasy = x as one of its particular
solution?

2. y¥=a(k*-x? 3.y=—ae*+be*

d? d d? d

(A) —Z—xz—y+xy=x (B) —¥+x—y+xy=x
dx dx dx dx
d’y ,dy d’y _dy

(C) W_XZ&'FXy:O (D) W'FX&'FXy:O

9.5. Methodsof Solving First Order, First DegreeDifferential Equations

In thissection we shall discussthree methods of solving first order first degreedifferential
equations.

9.5.1 Differential equations with variables separable
A first order-first degree differential equation isof the form

dy _
i F(X,y) . (D
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If F(X, y) can be expressed as a product g (xX) h(y), where, g(x) is a function of x
and h(y) isafunction of y, then the differential equation (1) is said to be of variable
separable type. The differential equation (1) then has the form

dy

vl h(y) . g(x) - (2
If h(y) # O, separating the variables, (2) can be rewritten as
1
hy) dy = g(x) dx .. (3
Integrating both sides of (3), we get
1
I@dyz [ 909 dx .. (4

Thus, (4) providesthe solutions of given differential equationintheform
H(y) =G(x) +C
1
Here, H (y) and G (x) are the anti derivatives of h(y) and g(x) respectively and

C isthe arbitrary constant.

Example 9 Find the general solution of the differential equation % - ;‘—” (y#2)
X 2-y

Solution We have

dy x+1
i = Ty . (D
Separating the variablesin equation (1), we get
(2-y)dy=(x+1)dx - (2

Integrating both sides of equation (2), we get
[@-y)dy= [(x+1)dx

2 2

y X
o 2y —— = —+ X+
r y-5 =7 C
or X+y +2x—4y+2C =0
or X*+y?+2x—4y + C=0, where C = 2C,

which isthe general solution of equation (1).
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dy 1+y
1+ x2

Example 10 Find the general solution of the differential equation —

Solution Since 1 + y? # 0, therefore separating the variables, the given differential
equation can be written as

dy  dx
1+y*  1+x°
Integrating both sides of equation (1), we get

- (D

J.1+ y J.1+ NG
or tanty=tanx + C
which isthe general solution of equation (1).

Example 11 Find the particular solution of the differential equation % = —4xy? given
X

thaty =1, when x = 0.

Solution If y # 0, the given differential equation can be written as
dy
_2 -

= —4x dx - ()
Integrating both sides of equation (1), we get
Id—z = —4dex
y
or 1o 2>+ C
or - 2
Y22 ¢ )

Substitutingy = 1 and x = 0 in equation (2), we get, C=—1.
Now substituting the value of Cin equation (2), we get the particular solution of the

1
22 +1

givendifferential equationas y =

Example 12 Find the equation of the curve passing through the point (1, 1) whose
differential equation isx dy = (2x* + 1) dx (x # 0).
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Solution The given differential equation can be expressed as

2
oy = (2x +1jdxk

X

1
or dy = (ZX+;jdx . (1)

Integrating both sides of equation (1), we get

Idy = I(2x+%jdx

or y=x*+log|x|+C - (2
Equation (2) representsthefamily of solution curvesof thegiven differential equation
but we areinterested in finding the equation of aparticular member of the family which
passes through the point (1, 1). Therefore substituting x =1, y = 1 in equation (2), we
getC=0.
Now substituting the value of C in equation (2) we get the equation of therequired
curveasy = x* +log | x|.

Example 13 Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point (x, y) is 2_)2( :
y

Solution We know that the slope of the tangent to a curve is given by ;ﬂ :
X

o X o
Separating the variables, equation (1) can be written as
y? dy = 2x dx .. (2)
Integrating both sides of equation (2), we get
I y’dy = I 2x dx
3
or y? =x¢+C - (3

dy . .
*  The notation— due to Leibnitz is extremely flexible and useful in many calculation and formal
X
transformations, where, we can deal with symbolsdy and dx exactly asif they were ordinary numbers. By
treating dx and dy like separate entities, we can give neater expressions to many calculations.

Refer: Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant,
Fritz John Spinger —Verlog New York.
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Substituting x = -2, y = 3in equation (3), weget C = 5.
Substituting the value of Cin equation (3), we get the equation of therequired curve as

3 1

y?:x2+5 or y=(3x*+15)3

Example 14 In abank, principal increases continuously at the rate of 5% per year. In
how many years Rs 1000 doubleitself?

Solution Let P bethe principal at any timet. According to the given problem,

% = (ij x P
dt 100

®.~ @
or G - 20
separating the variables in equation (1), we get
dp dt
P~ 20 - (2
Integrating both sides of equation (2), we get
t
= —+
logP 0 C,
or p= e®.e&
t
or P= Ce?® (where e~ =C) .. (3
Now P=1000, whent=0

Substituting the values of Pandt in (3), we get C = 1000. Therefore, equation (3),
gives
1
P=1000 €®
Let t years be the time required to double the principal. Then

t
2000=1000e® = t=20l0g?2

EXERCISE 94|
For each of the differential equationsin Exercises 1 to 10, find the general solution:
dy 1-cosx dy >
=~ _ — =,/4- -2<y<?2
dx 1+ cosx 2 dx y y<2)
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d
d—i+Y=1(Y¢1) 4. se®xtanydx +sec?ytanxdy =0
_ dy 2 2
(e+e)dy—(ec—e)dx=0 6. &—(1+x)(1+y)
5 dy 5
— = X — ==
ylogydx—xdy=0 8. X y
dy . 4 _
&_sm X 10. etanydx+(1—e)sec’ydy=0

For each of the differential equations in Exercises 11 to 14, find a particular solution
satisfying the given condition:

11.

12.

13.

14.

15.

16.

17.

18.

19.

d
(X3+X2+X+l)d_§/( =2¢+x y=1whenx=0
d
x(xz—l)&y=l;y:0whenx:2

cos(%j:a (ae R);y=1whenx=0
X

ﬂ:ytanx;yzlwhenxzo

dx
Find the equation of acurve passing through the point (O, 0) and whose differential
equationisy’ = e<sin x.

For the differential equation xy%: (x+2) (y+2), find the solution curve
X

passing through the point (1, —1).

Find the equation of a curve passing through the point (0, —2) given that at any
point (X, y) on the curve, the product of the slope of its tangent and y coordinate
of the point isequal to the x coordinate of the point.

At any point (X, y) of acurve, the slope of the tangent is twice the slope of the
line segment joining the point of contact to the point (— 4, —3). Find the equation
of the curve given that it passes through (-2, 1).

The volume of spherical balloon being inflated changes at a constant rate. If
initially itsradiusis 3 units and after 3 secondsiit is 6 units. Find the radius of
balloon after t seconds.
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20. Inabank, principal increases continuously at the rate of r% per year. Find the
value of r if Rs 100 doubleitself in 10 years (log 2 = 0.6931).

21. Inabank, principal increases continuously at the rate of 5% per year. An amount
of Rs 1000 is deposited with this bank, how much will it worth after 10 years
(e"5=1.648).

22. Inaculture, the bacteriacount is 1,00,000. The number isincreased by 10%in 2
hours. In how many hourswill the count reach 2,00,000, if the rate of growth of
bacteriais proportiona to the number present?

23. Thegeneral solution of the differential equation % =V is
X

(A) ee+ey=C (B) e+e=C
C) ex+e&=C (D) ex+e¥=C
9.5.2 Homogeneous differential equations
Consider thefollowing functionsin x and y

F (% y) =y + 2y, F, (X, y) = 2x— 3y,
_ y .
F,(xy) = COS(;) , F, (X, y) =sinx+ cosy

If wereplace x andy by Ax and Ay respectively in the above functions, for any nonzero
constant A, we get

F, (A Ay) =22 (Y + 2xy) = A2 F (X, )
F, A, Ay) = A (2x=3y) = A F, (X, y)

AX

F, (A%, Ay) =sin Ax+ cos Ay # A" F, (x, y), foranyne N

Here, we observe that the functions F,, F,, F, can be written in the form
F(Ax, Ay) = A" F(x, y) but F, can not be writtenin thisform. Thisleadsto thefollowing
definition:

A function F(x, y) is said to be homogeneous function of degree n if

F(Ax, Ay) = A" F(x, y) for any nonzero constant A.

We note that in the above examples, F,, F,, F, are homogeneous functions of
degree 2, 1, O respectively but F, is not ahomogeneous function.

F, O, Ay) = cos(xyj = cos(%) =10 F(xy)
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We also observe that
F(xy = Xz(y_z_,_z_j: in(zj
1\ Z < .
’ Fvy) =Y (1+ 2—;] =y’h, (3]
=<5
Ao
* FZ(X, y) yl( y yl v
Fxy) =X COSG) =0 h{%)
Fx ) # X he(%j forayne N
n X
or Fxy) =Y hy(;j,foranyne N

Therefore, afunction F (X, y) is ahomogeneous function of degreen if

F(x, y):Xng(§j or y”h(%)

d
A differential equation of the form Y- F (x, y) issaid to be homogenous if

dx
F(x, y) isahomogenous function of degree zero.

To solve a homogeneous differential equation of the type

Y _E(xy) = g(yj

dx X

We make the substitution y=V.X
Differentiating equation (2) with respect to x, we get
Y = V+ xﬂ
ax dx

d
Substituting the value of &y from equation (3) in equation (1), we get

- (D
e

. (3
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V+ Xﬂ =g (V)
dx
or Xﬂ =g((v) —v o (4
dx
Separating the variablesin equation (4), we get
v = L .. (5)
gv)—v X
Integrating both sides of equation (5), we get
dv 1
jg(v)_v = I;dX+C .. (6)
Equation (6) givesgeneral solution (primitive) of the differential equation (1) when

we replace v by X.
X

If the homogeneous differential equation is in the form ? =F(x,y)
y
where, F (X, y) is homogenous function of degree zero, then we make substitution

X_y i.e., X = vy and we proceed further to find the general solution as discussed
y

above by writing & = F(x.y) = h(fj.
dy y

d
Example 15 Show that the differential equation (X—Y) &y =X+ 2y ishomogeneous

and solveit.
Solution The given differential equation can be expressed as
% _ %2;’ (D)
Let F(x,y) = %
Now F(AX, Ay) = Mﬂ»o'f(x, y)

AL(X=y)
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Therefore, F(x, y) isahomogenousfunction of degreezero. So, the given differential
equation isahomogenousdifferential equation.

Alternatively,

a1 x | (zj
dx —y [T X -2
R.H.S. of differential equation (2) isof theform g[%) and soitisahomogeneous

function of degree zero. Therefore, equation (1) isahomogeneousdifferential equation.
To solve it we make the substitution

y = VX - (3
Differentiating equation (3) with respect to, x we get
ﬂ = v+xﬂ 4
v ix . (4
- dy . .
Substituting the value of y and i in equation (1) we get
dv 1+2v
V+X— =
dx 1-v
or xﬂ = 1+2v_v
dx  1-v

dv  vP+v+1l

or =
dx 1-v
v-1 —dx
dv =
or VZ+v+1l X

Integrating both sides of equation (5), we get

v-1 dx
[t v [
vVe+v+1 X
2v+1- 3 Y log |x| + C
or I =—log |x]| + C,

VZrv+l
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10 2v+1 3 1
= v 2 [ —av=-1
o Zj.v2+v+1 2Iv2+v+1dv og) x|+ &,
1 3 1
or EIOg|V2+V+1|—EI 1 5 (\/é\de=—|Og|X|+C1
(v+2) +L—)
2
L1oglv? 32 1[2V_+1]__
or 2Iog|v +v+1| 2.\/étan B log| x|+ C,
1 > 1 2 1[2v+1] 5
or 2Iog|v +v+1|+2Iogx =/3tan 73 +C, (Why?)
y

Replacing v by N we get

1, |y* vy 1., 1[2y+xj
—log|—~+=+1|+=1lo =+/3tan

or 2 gX2+X+ +2 gXx \/_ \/éX +C1
LY Y. . L 2y+x
—log|| == +Z+1|x°|=+/3tan

or 2 g(xz"'x"'j \/7 \/éx +C1

or Iog|(y2 XY+ x2)| = Zﬁtanl[zgxxj+201

or Iog|(x2 + XY+ y2)| = 2\/§tan1[ Xjéiyj+c

which isthe general solution of the differential equation (1)

Example 16 Show that the differential equation xcos(%j%: ycos(%)+ X is
homogeneous and solveit.

Solution The given differential equation can be written as

% _ ycos(i)yax o

X COS(
X
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It isadifferential equation of the form %z F(x, ) -

X
yoo{ ¥ +x
Here F(x,y) = — X
X cos(y)
X
Replacing x by Ax and y by Ay, we get
Al ycos(yj+ X]
F(Ax, Ay) = =\ [F(xy)]
x(xcosij

Thus, F(x, y) is ahomogeneous function of degree zero.

Therefore, the given differential equation isahomogeneous differential equation.
To solve it we make the substitution

y = VX .. (2
Differentiating equation (2) with respect to x, we get

dy dv
— = V+ X—
dx dx )
. dy . .
Substituting the value of y and i in equation (1), we get
dv  vcosv+1
VFX— = — =
dx cosv
dv  vcosv+1
or X— = ————V
dx CcosV
v _ 1
o dx ~ cosv
or cosv dv = —
X
1
Therefore f cosvdv = I —dx
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or snv=1log|x|+log|C]|
or sinv=log |Cx|

Replacing v by % we get

LY
Sin| = | =
(xj log | Cx|

which isthe general solution of the differential equation (1).

X X
Example 17 Show that the differential equation 2yeYdx+ (y— 2X ey)dy =0is
homogeneous and find its particular solution, given that, x=0wheny = 1.
Solution The given differential equation can be written as

X

dx  2xe’ -
& = ()
2y e’
2xeY — y
Let F(x, y) = <
2ye’
A 2xey—yJ
Then F(x, Ay) = ———<2=A°[F(x,Y)]
X[ZyeyJ

Thus, F(x, y) is a homogeneous function of degree zero. Therefore, the given
differential equationisahomogeneousdifferential equation.

To solveit, we make the substitution

X =Vy .. (2
Differentiating equation (2) with respect to y, we get
dx dv

_= V+y—
dy dy
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Substituting the value of x and (% in equation (1), we get

dv  2ve'-1
V+y— =
d 2¢e’
or dv _ 2ve"—1_V
ydy -2
@ L 1
o dy  2¢'
or 2¢e' dv = —¥
y
dy
or 2¢’-dv = —-|—
fosov = -]
or 2e'=—logly|+C
X
and replacing v by ; , we get
2e +logly|=C - Q)

Substituting x =0and y = 1 in equation (3), we get
2é+log|l|=C=C=2
Substituting the value of Cin equation (3), we get
x
2e’ +log|y|=2
which isthe particular solution of the given differential equation.

Example 18 Show that the family of curvesfor which the slope of the tangent at any

2 2
point (x, y) onitis X Y isgivenby x2—y?=cx.

d
Solution We know that the slope of the tangent at any point on acurveis &y :

dy xX2+y?
Therefore, — = —
dx 2xy
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2
or % = X - (D

Clearly, (1) isahomogenous differential equation. To solve it we make substitution

y = VX
Differentiating y = vx with respect to x, we get
& = V+ xﬂ
dx dx
or v+ xﬂ _ v
dx  2v
or &V 1oV
dx  2v
2v2 dv = dx
1-v X
2 dx
or 2V av = —
vo -1 X
2 1
Therefore [ v = ~[=dx
vo -1 X
or log [v*—1|=~log|x|+log|C,|
or log [(v*—1) (x)| =log|C]
or (V-1 x=xC

Replacing v by % , we get

2
y -
(7-1} X == Cl

or (y*=x) =+ C xorx*—y*=Cx
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EXERCISE 9.5

In each of the Exercises 1 to 10, show that the given differential equationishomogeneous
and solve each of them.

Xty
1. (@ +xy)dy=(c+y?) dx 2. Y= »
3. X=y)dy—(x+y)dx=0 4. —-y)dx+2xydy=0
d
5. xzd—i=x2—2y2+xy 6. xdy—ydx=/x%+y? dx
7. {xcos(zj +ysi n(zj} ydx= {ysi n(lj - xcos(zj} x dy
X X X X
8. xﬂ—y+xsin(zj=0 9. ydx+ xlog(ljdy—ZXdyzo
dx X X
(X X
10. L1+ eyJ dx+eY (1—3} dy=0

For each of the differential equations in Exercises from 11 to 15, find the particular
solution satisfying the given condition:

11. x+y)dy+(x—-y)dx=0;y=1whenx=1

12 x®dy+(xy+y)dx=0;y=1whenx=1

[xsinz[%j —y}dx+ xdy=0; y:% when x = 1

13.
d
14. —y—l+cosec(lj=0; y=0whenx=1
dx x X
2 » dy
15. 2xy+y —2X &=0; y=2whenx=1

dx X
16. A homogeneous differential equation of the from d_y = h(;] can be solved by

making the substitution.
(A) y=wx (B) v=yx (C) x=vy (D) x=v
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17. Whichof thefollowing isahomogeneousdifferential equation?
(A) Ax+6y+5) dy—(By+2x+4)dx=0
(B) (xy) dx— (¢ +y’)dy=0
C) (+2y)dx+2xydy=0
(D) y?dx + (x*—xy —y?) dy =0
9.5.3 Linear differential equations
A differentia equation of the from

Y py -
ST =Q

where, P and Q are constants or functions of x only, is known as afirst order linear
differential equation. Some examples of the first order linear differential equation are

dy . _
dx+y =snx

2.(2) e
dx \x)~ ~

dy (_y (_1
dx | xlogx ) x

Another form of first order linear differential equationis

1

%+Plx =Q
dy

where, P, and Q, are constants or functions of y only. Some examples of this type of
differential equation are

%+ X= c0oS
dy y

%J,.__ZX e y2e—y
dy vy
To solvethefirst order linear differential equation of the type
dy _
I +Py =Q - (1)

Multiply both sides of the equation by afunction of x say g (x) to get

g(x) % +P.(g(¥)y=Q.9(x) - (2
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Choose g(x) in such away that R.H.S. becomes a derivative of y . g (X).

| dy d
e 9 g T P9R Y =5 V.9 (]
d
or 909 2 + P00y =009 2 +y (9
= P.g(¥) =g (x)
_ 9K
o T,

Integrating both sides with respect to x, we get

Ide = dex

9(x)
or [P-dx = log (g ()
or g(x) = e[de

On multiplying the equation (1) by g(x) = e[ P , theL.H.S. becomesthederivative

of some function of x and y. This function g(x) = e[ P& iscalled Integrating Factor
(I.F.) of the given differential equation.

Substituting the value of g (X) in equation (2), we get

ejpdx erPejdey _ Q‘eJ.de
dx
d dex
—lvye - J'de
or dx(y ) Qe

Integrating both sides with respect to x, we get
X _ Pdx
y-el7 = [[Qel™) ox

or y= efIPdX-I(Q-eIPdX)dx+C

which isthe general solution of the differential equation.



DIFFERENTIAL EQUATIONS 409

Seps involved to solve first order linear differential equation:

d

(i) Write the given differential equation in the form i

+Py=Q where P, Q are
constants or functions of x only.

(i) Find the Integrating Factor (I.F) = o/P%*.

(i) Writethe solution of the given differential equation as

y (I.LF) = [(QxI.F)dx+C
dx
In case, the first order linear differential equation isin the form d_y+ Px=Qy,

where, P, and Q, are constants or functions of y only. Then I.F = ef RY and the
solution of thedifferential equationisgiven by

x. (1.F) = [(Qx1.F)dy+C
Example 19 Find the general solution of the differential equation %_ Yy = COSX -
X

Solution Given differential equation isof theform
dy

P +Py=Q,whereP=-1and Q = cosx
I—ldx X
Therefore I.F=¢€ =€
Multiplying both sides of equation by I.F, we get
xdy o x
e —-—e’y =e*cosx
dx
-
or —(ye™)=e>cosx
5 e

On integrating both sides with respect to x, we get
yex = Ie’xcosxdx+C - (D)

Let | = Ie’x cosx dx

— X

= cosx(e 1) - f(—sin X) (—e7) dx
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—cosxe* —Isinxe’X dx

—cosx e —[si nx(-e ) - jcosx (-€7) dx]

—cosxe* +s‘inxe’x—j.cosxe’x dx

or |=—e*cosx+sinxe*—|
or 2l = (sinx—cosx) e*
_ (dnx-—cosx)e*
2
Substituting the value of | in equation (1), we get

SINX—COSX | _
yerxz(Tje +C

or |

SN X —CoSX
or = | —

2
whichisthe general solution of the given differential equation.

j+C€

d
Example 20 Find thegeneral solution of the differential equation xd—i+ 2y =x* (x0).
Solution Thegiven differential equationis

dy

X—+2y =x?

i y =x - (D
Dividing both sides of equation (1) by x, we get

dy 2

— 4+ — =

dx xy X

d 2
whichisalinear differential equation of thetype d_2/<+ Py=Q, where P=; andQ=x.

So |.F= effdxzezlogu d9% = x2[as €91 = f (x)]
Therefore, solution of the given equation isgiven by
y.x2= I(x) (®)dx+C = [x3dx+c

2
or y= XZ+CX’2

whichisthe general solution of the given differential equation.
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Example 21 Find the genera solution of the differential equationy dx— (X + 2y?) dy = 0.
Solution The given differential equation can be written as
dx X

—_——— =2
dy vy Y

1
Thisisalinear differential equation of thetype %+ Px=Q,,where P =—§ and
y

1
—Zdy .
Q, = 2y. Therefore I.F= eI v _gtoay oot 1
y

Hence, the solution of the given differential equationis

xX = [@y) dow c

y
or 5:[(2dy)+C
y
X 2y+C
or —=2y+
y y
or X=2y?+ Cy

which isagenera solution of the given differential equation.

Example 22 Find the particular solution of the differential equation

%+ ycot X = 2x + x? cot x (x # 0)
dy
given that y = 0 when x=g.

d
Solution The given equation isalinear differential equation of the type d_2/<+ Py=Q,

where P = cot x and Q = 2x + x2 cot x. Therefore

eICOtX dX= logsinx__

I.F= e =9nx

Hence, the solution of the differential equation isgiven by
y.sinx=[(2x+x2cot x) sin xdx + C
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or ysinx=/2xsinxdx + [x2 cosx dx + C
2 2
or ysinx= sinx[zij—jcosx(zij dx+jx2cosxdx+C
2 2
or ysinx= xzsinx—Ixzcosxdx+jx2cosxdx+C
or ysnx=x*sinx+C - ()

Substituting y = 0 and x=g in equation (1), we get

2
0= (_j sn 2+ c
2 2
2
—T
4
Substituting the value of Cin equation (1), we get

or C=

2
. . T
ysinx= xzsmx—T

2
T

4sinx
which isthe particular solution of the given differential equation.

or y= X - (sinx=0)

Example 23 Find the equation of a curve passing through the point (0, 1). If the slope
of the tangent to the curve at any point (X, y) is equal to the sum of the x coordinate
(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

d
Solution We know that the slope of the tangent to the curveis &y :
Therefore, — =X+Xxy

or — =Xy =X . (D

Therefore, | F=d *®-e2
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Hence, the solution of equation isgiven by

— XZ

ye2 = [(x) (e;f)dx+C .. (2)

Let 1= [(e2 dx

2
Let %:t,then—xdxzdtorxdxz—dt.

-X
Therefore, | =—[ddt=—€' =—¢ 2

Substituting the value of | in equation (2), we get

—x? 2

ye2 = _e7+C

XZ

or y=-1+Ce? .. (3
Now (3) represents the equation of family of curves. But we are interested in
finding a particular member of the family passing through (0, 1). Substituting x=0and
y = 1in equation (3) we get
1=—1+C.€" or C=2
Substituting the value of Cin equation (3), we get

XZ

y=-1+2e2
which isthe equation of the required curve.

EXERCISE 9.6

For each of the differential equationsgivenin Exercises 1to 12, find the general solution:
1. ﬂ+2y=sinx 2. ﬂ+3y=e’2" 3. Y, Y_p

dx dx dx x

dy T , dy T
4. —+secxy=tanx| 0< x<—= 5. cos"X—+y=tanx [ 0<x<—

dx 2 dx 2
6. xﬂ+2y=leogx 7. xlogxﬂ+yzglogx

dx dx X

8. (1+x3dy+ 2xy dx = cot x dx (x # 0)
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0. xﬂ+y—x+xycotx=0(x¢0) 10. (x+y)ﬂ=1
dx dx
2 dy
11. ydx+ (x—y) dy=0 12. (x+3y )&=y(y>0).

For each of the differential equations given in Exercises 13 to 15, find a particular
solution satisfying the given condition:

13. ﬂ+2ytanx=sinx; y=0 when x="1
dx 3

14, @+ xz)ﬂ+ 2xy=i2; y=0 when x=1
ax 1+x

15. ﬂ—3ycotx=sin2x; y =2 when x="1
dx 2

16. Findtheequation of acurve passing through the origin given that the slope of the
tangent to the curve at any point (x, y) is equal to the sum of the coordinates of
thepoint.

17. Findtheequation of acurve passing through the point (0, 2) given that the sum of
the coordinates of any point on the curve exceeds the magnitude of the slope of
the tangent to the curve at that point by 5.

d
18. The Integrating Factor of the differential equation Xd—i— y=2%is
1

(A) e (B) e © % (D) x
19. TheIntegrating Factor of the differential equation

a- yz)%+ yx = ay(-1<y<1) is

dy
1

1 1 1
(A) V-1 (B) /—yz_1 © 1-y? (D) /—1—y2

Miscellaneous Examples

Example 24 Verify that the functiony = ¢, €* cosbx + ¢, e sinbx, wherec , ¢, are
arbitrary constantsisasolution of the differential equation

d’y __dy (2. .2
2 2a2 i (a%+p?)y=0
dx? dx y
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Solution Thegivenfunctionis
y =¥ [c, cosbx + ¢, sinbx] - Q)
Differentiating both sides of equation (1) with respect to x, we get

vl e™[—bc, sinbx + bc, cosbx| + [, cosbx + ¢, sinbx|e™ - a

or % = e®[(bc, + ac,) cosbx+ (ac, —bg ) sinbx] - (2)

Differentiating both sides of equation (2) with respect to x, we get

2
% = e*[(bc, + ac,) (~bsinbx) + (ac, —bc,) (bcosbx)]

+ [(bc, + ac,) cosbx+ (ac, —bc) sinbx] €*.a
= e™[(a®c, - 2abc, —b%c,) sinbx + (a® ¢, + 2abc, —b?c;) cosbx]
2

dy dy : - . _
and y in the given differential equation, we get

Substituting the val ues of B dx

L.H.S. = e*[a’c,—2abc, —b?c,) sinbx+ (a’c, + 2abc, —b?c;) cosbx]
—2ae™[(bc, + ac;) cosbx+ (ac, —bc; ) sinbx]

+(a? +b%)e™[c, cosbx+ ¢, Sinbx]

o (azc2 —2abc, —b’c, —2a’c, + 2abc, +a’c, +b’c, )si nbx

+(a’c + 2abc, —b’c, — 2abc, — 2a°c, + a’c, + b®c, ) cosbx

= e*[0xsinbx+0coshx] =e*x0=0 =RH.S.
Hence, the given function isasolution of the given differential equation.

Example 25 Form the differential equation of the family of circles in the second
quadrant and touching the coordinate axes.

Solution Let C denote the family of circles in the second quadrant and touching the
coordinate axes. Let (—a, a) be the coordinate of the centre of any member of
thisfamily (see Fig 9.6).
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Equation representing thefamily Cis

(x+a)2+(y—ay@?=2a? - (1) X
o x*+y +2ax—2ay+a’=0 - (2
Differentiating equation (2) with respect to x, we get (-a, a)
o+ 2y ¥ i 2a-2a¥ _ g X' ) >X
dx dx
o= o
— =-al—-1
o X ydx dx J
! Y'
or a= X+yy Fig9.6
y-1

Substituting the value of a in equation (1), we get

12 92 12
[X+X+yy} +[y_><+yy} =[X+yy}
y -1 y' -1 y -1

or XY =X+ X+yYP+[yy —y—-x-yyP=[x+yyT]
or X+y)Py?+[x+yPP=[x+yy]
or x+y?[yy+1 =[x+yy]?

whichisthe differential equation representing the given family of circles.

Example 26 Find the particular solution of the differential equation Iog(%j =3x+4y
X

given that y = 0 when x = 0.

Solution The given differential equation can be written as

dy

— = e(3x + 4y)

dy
— =X, & . (2
or o (D)

Separating the variables, we get

ﬂ=e3x dx

eV

Therefore I e Ydy= I e¥*dx
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e e3x
or = +C
3

-4
or 4e*+3e¥+12C=0
Substitutingx =0andy =0in (2), we get

4+3+12C=00rC=E

Substituting the value of Cin equation (2), we get
4e*+3e¥-7=0,
which isaparticular solution of the given differential equation.

Example 27 Solve the differential equation

(xdy—ydx)ysn (%) = (y dx + x dy) x cos (%)

Solution The given differential equation can be written as
[x ysin (lj —x? cos(lﬂ dy = [xycos(lJ +y?sin (lﬂ dx
X X X X
dy xycos(i) +y?si n(i)

or & =
xysin(y) - X cos(y)
X X

Dividing numerator and denominator on RHS by X2, we get
2
y y Y lanlY
2cos|  |+| %5 |sin| =
dy _ x (x) [xzj (x)
dx ysin(y) - cos(y)
X X X

dy

Clearly, equation (1) isahomogeneous differential equation of theform —==9

dx

To solveit, we make the substitution
y = VX

or — = V4+ X—
dx dx

417
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dv  veosv+visiny ,
or Vb X— = —— (using (1) and (2))
dx VSinv— cosv

dv 2V Cosv
or X— = —/———
dx vsinv—cosv

(vsinv—cosvj 2dx
or = = > ldv=——

VCOSV X
vsinv — cosv 1
Therefore I(—jdv = Zj—dx
VCOSV X
1 1
tanvdv—| =dv = 2| —dx
or I v dv Iv \Y Ix
or loglsecv—log|v| = 2log| x|+log|C, |
log secv ~loglC
or VX2 - Ogl 1|
Secv
or > =t C - (3
V X

Replacing v by % in equation (3), we get

=)
T

or sec(lj =Cxy

=Cwhere, C=+C,

X
whichisthe general solution of the given differential equation.

Example 28 Solve the differential equation
(tanly —x) dy = (1 +y?) dx.
Solution The given differential equation can be written as

dx X tanty
dy 1+y 1+y

- (D
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Now (1) isalinear differential equation of the form %+ R x=Q,

dy
_ tan"'y
where, P, = 1+ y? and Q, = ey :
Therefore,  |.F= ej g _ gty

Thus, the solution of the given differential equationis

tan'y o
xS I(WJ e

-1
Let | = f(ti—y);j eV dy

1
Substituting tan™ y = t so that (1+ ¥ jdy =dt, we get

|=[tedt=te-[1.ed=te—e=¢ (-1

or | = gy (tanly —1)
Substituting the value of | in equation (2), we get

x. €™V =™ V(tanly-1)+ C

or X = (tany-1)+Ce™

whichisthe general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9

419

- (2

1. For each of the differential equations given below, indicateits order and degree

(if defined).

() d—w+5><(ﬂj2—6y=logx (ii) (%)3_4(ﬂj2+7y: sinx

dx dx

4 3
(i) M—sin(ﬂ}o
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2. For each of the exercises given below, verify that the given function (implicit or
explicit) isasolution of the corresponding differential equation.

() y=ae+be*+x? : x3—3+2%—xy+x2_2=0
(i) y=e(acosx+bsnx) : ay_ Q+ZY=0
T dx
. d’y
(i) y=xsin3x : W+9y—6c053x=0
(V) % =2 logy ()Y wy=0

3. Form the differential equation representing the family of curves given by
(x—a)? + 2y? = &, where ais an arbitrary constant.

4. Provethat x2—y? = c (X% + y?)? is the general solution of differential equation
(@ = 3x y?) dx = (y® — 3x%) dy, where c is a parameter.

5. Formthedifferential equation of thefamily of circlesinthefirst quadrant which
touch the coordinate axes.

: : : : . dy [1-y
6. Findthegeneral solution of the differential equation &+ 152 =0,

. . . _dy | yi+y+l
7. Show that the general solution of thedifferential equation —+-~————=0is
dx x“+x+1

givenby (x+y+ 1) =A (1 -x-y—2xy), where A is parameter.

8. Findtheequation of the curve passing through the point (0, gj whose differential

equationissin x cosy dx + cosx siny dy = 0.
9. Findthe particular solution of the differential equation
1+e*)dy+(1+y?)edx=0,gventhay=1whenx=0.

10. Solvethedifferential equation yeydxz(xey + yz)dy(y;tO) }

11. Find aparticular solution of the differential equation (x—y) (dx + dy) = dx—dy,
giventhat y = -1, when x = 0. (Hint: put x —y =t)



12.

13.

14.

15.

16.

17.

18.
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_2./x
Solvethe differential equation {e——i}%zl(x;t 0).

Jxo Wxdy

d
Find a particular solution of the differential equation d_2/<+ YCOt X = 4x cosec x

(x# 0), given that y = 0 when ng.

d
Find aparticular solution of thedifferential equation (x+ 1) &y =2eY-1, given

that y = 0 when x = 0.

The population of avillageincreases continuously at therate proportional to the
number of itsinhabitants present at any time. If the population of thevillagewas
20, 000 in 1999 and 25000 in the year 2004, what will be the population of the
villagein 20097

The general solution of the differential equation Y= XY _o is
y
(A) xy=C (B) x=Cy? (C) y=Cx (D) y=0Cx

The general solution of adifferential equation of thetype g—; +Bx=Q is
@A) yel* = [(Qel*®)ay+c
® y.d"*-[(Qe**)ax+c
© xéady:j(Ql ") dy+C

(0) xd"* = [(Qd"*)ax+c

The genera solution of the differential equation e*dy + (y e+ 2x) dx=0iis
(A) xeg+x*=C (B) xe&+y*=C

C) ye+xe=C (D) ye+xt=C
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Summary
An equation involving derivatives of the dependent variable with respect to
independent variable (variables) isknown as adifferential equation.

Order of adifferential equation is the order of the highest order derivative
occurringin thedifferential equation.

Degree of adifferential equation isdefined if itisapolynomial equationinits
derivatives.

Degree (when defined) of adifferential equation isthe highest power (positive
integer only) of the highest order derivativeinit.

A function which satisfiesthe given differential equationiscalled itssolution.
The solution which contains as many arbitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constantsis called particular solution.

To form a differential equation from a given function we differentiate the
function successively as many times as the number of arbitrary constantsin
the given function and then eliminate the arbitrary constants.

Variable separable method i s used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing x should remain with dx.

A differential equation which can be expressed in the form

% =f(xy) or 3—; = g(x,y) where, f (x, y) and g(x, y) are homogenous

functions of degree zero is called ahomogeneous differential equation.
A differential equation of theform % +Py=Q,wherePand Q are constants

or functionsof x only iscalled afirst order linear differential equation.

Historical Note
One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equationsis taken to be November,
11,1675, when Gottfried Wilthelm Freiherr Leibnitz (1646 - 1716) first put in black

and whitetheidentity I ydy= % y? , thereby introducing both thesymbols] and dy.
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L eibnitz was actually interested in the problem of finding acurve whose tangents
were prescribed. Thisled him to discover the * method of separation of variables
1691. A year later he formulated the ‘ method of solving the homogeneous
differential equations of the first order’. He went further in a very short time
to the discovery of the ‘method of solving a linear differential equation of the
first-order’. How surprising isit that all these methods came from a single man
and that too within 25 years of the birth of differential equations!

In the old days, what we now call the ‘solution’ of a differential equation,
was used to be referred to as ‘integral’ of the differential equation, the word
being coined by James Bernoulli (1654 - 1705) in 1690. The word ‘ solution was
first used by Joseph Louis Lagrange (1736 - 1813) in 1774, which was almost
hundred years sincethe birth of differential equations. It was JulesHenri Poincare
(1854 - 1912) who strongly advocated the use of theword ‘ solution’ and thusthe
word ‘solution’ hasfound its deserved placein modern terminology. The name of
the ‘method of separation of variables' is due to John Bernoulli (1667 - 17438),
ayounger brother of James Bernoulli.

Application to geometric problems were also considered. It was again John
Bernoulli who first brought into light the intricate nature of differential equations.
In a letter to Leibnitz, dated May 20, 1715, he revealed the solutions of the
differential equation

Xy’ =2y,

which led to three types of curves, viz., parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn to the investigation of this complicated nature of the solutions of
differential equations, under the heading ‘qualitative analysis of differential
equations' . Now-a-days, this has acquired prime importance being absolutely
necessary inalmost all investigations.

—_— % —
L4



Chapter 10
(VECTOR ALGEBRA)

+«* In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation
builds a new story to the old structure. — HERMAN HANKEL

10.1 Introduction

In our day to day life, we come across many queries such st il iiddidiish:
as—What isyour height? How should afootball player hit
theball to giveapassto another player of histeam? Observe
that apossible answer to thefirst query may be 1.6 meters,
aquantity that involves only one value (magnitude) which
is a real number. Such quantities are called scalars.
However, an answer to the second query isaquantity (called
force) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
guantities are called vectors. In mathematics, physics and
engineering, we frequently come across with both types of
guantities, namely, scalar quantities such as length, mass,
time, distance, speed, area, volume, temperature, work,
money, voltage, density, resistance etc. and vector quantitieslike displacement, vel ocity,
acceleration, force, weight, momentum, electric field intensity etc.

=

L L N U el G et

W.R. Hamilton
(1805-1865)

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebrai c and geometric properties. These two type of
properties, when considered together give afull realisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

10.2 Some Basic Concepts

Let ‘I’ beany straight linein plane or three dimensional space. Thisline can be given
two directions by means of arrowheads. A line with one of these directions prescribed
iscaled adirected line (Fig 10.1 (i), (ii)).
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)] (i) (iii)
Fig 10.1

Now observethat if werestrict thelinel to the line segment AB, then amagnitude
is prescribed on the line | with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.

Definition 1 A quantity that has magnitude as well as direction is called a vector.
Notice that a directed line segment is a vector (Fig 10.1(iii)), denoted as AB or
simply as a, and read as ‘vector AB’ or ‘vector 3’.
The point A from where the vector AB starts is called its initial point, and the

point B where it ends is called its terminal point. The distance between initial and
terminal points of avector iscalled the magnitude (or length) of the vector, denoted as

|AB |, or ||, or a. The arrow indicates the direction of the vector.

Sincethelength is never negative, the notation | 4 | < 0 has no meaning.

Position Vector
From Class XI, recall the three dimensional right handed rectangular coordinate
system (Fig 10.2(i)). Consider a point P in space, having coordinates (X, Yy, 2) with

respect to the origin O(0, 0, 0). Then, the vector OP having O and P asitsinitial and
terminal points, respectively, is called the position vector of the point P with respect

to O. Using distance formula (from Class X1), the magnitude of Op (or 7 ) isgiven by

|OP| = X®+ y? + 72
In practice, the position vectors of pointsA, B, C, etc., with respect to the origin O

aredenoted by &, b, ¢, etc., respectively (Fig 10.2 (ii)).
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Z Z
o B
P(x,,2) 7 B
- 2 ¢
r
0(0,0,0) Y (0) Y
X 0] X (ii)
Fig 10.2

Direction Cosines

Consider the position vector 6I5(or F') of apoint P(x, y, z) asin Fig 10.3. Theanglesc,
B, Yy made by the vector 7 with the positive directions of x, y and z-axes respectively,
are called itsdirection angles. The cosine values of these angles, i.e., cosa, cosf3 and
cosy are called direction cosines of the vector 1, and usualy denoted by I, mand n,

respectively. Z

C,.,\:I _________________________
: Z
. r e
' ,'
: o) LTy
1 "
: x "
2
A: : __________________________
X
. IESY
Fig 10.3 X

From Fig 10.3, one may note that the triangle OAP isright angled, and in it, we
have cosa == (r standsfor |F[). Similarly, from the right angled triangles OBPand
r

OCP, wemay write cos 3 = y and cosy = z, Thus, the coordinates of the point Pmay

r r
also beexpressed as(Ir, mr,nr). Thenumberslr, mr and nr, proportional to thedirection
cosinesarecalled asdirection ratiosof vector i, and denoted asa, b and ¢, respectively.
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One may note that |2 + m? + n? = 1 but & + b? + ¢ # 1, in general.

10.3 Typesof Vectors

Zero Vector A vector whose initial and terminal points coincide, is caled a zero
vector (or null vector), and denoted as (. Zero vector can not be assigned a definite
direction asit has zero magnitude. Or, alternatively otherwise, it may be regarded as
having any direction. The vectors AA, BB represent the zero vector,

Unit Vector A vector whose magnitudeisunity (i.e., 1 unit) iscalled aunit vector. The
unit vector in the direction of agiven vector a isdenoted by a.

Caoainitial Vector sTwo or more vectors having the sameinitial point are called coinitial
vectors.

Coallinear Vectors Two or more vectors are said to be collinear if they are parallel to
the sameling, irrespective of their magnitudes and directions.

Equal Vectors Two vectors d and b are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written
as a=b.

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, AB), but direction isoppositeto that of it, is called negative of the given vector.
For example, vector BA is negative of the vector AB, and written as BA = — AB .

Remark The vectors defined above are such that any of them may be subject to its
paralel displacement without changing its magnitude and direction. Such vectors are
called free vectors. Throughout this chapter, we will be dealing with free vectors only.

N

Example 1 Represent graphically a displacement
of 40 km, 30° west of south. W<

Solution The vector Op represents the required Scale

displacement (Fig 10.4). — 300
10 km
Example 2 Classify the following measures as
scalars and vectors.
(i) 5 seconds

(i) 1000 cm? P S
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(iiiy 10 Newton (iv) 30km/hr (v) 10g/cm?
(vi) 20 m/stowards north
Solution
(i) Time-scalar (i) Volume-scalar (iii) Force-vector
(iv) Speed-scalar (v) Density-scalar (vi) Velocity-vector
Example 3 In Fig 10.5, which of the vectors are:
(i) Collinear (i) Equa (i) Coinitia
Solution
(i) Collinear vectors: &, ¢ and d .
Scale
(i) Equal vectors: da and ¢. —
1 unit

(iii) Coinitial vectors: b, ¢ and d.

Fig 10.5

| EXERCISE 10.1]

1. Represent graphically adisplacement of 40 km, 30° east of north.
Classify the following measures as scalars and vectors.

(i) 10kg (i) 2 meters north-west (i) 40°
(iv) 40 watt (v) 107 coulomb (vi) 20 m/s?
3. Classify thefollowing as scalar and vector quantities.
(i) timeperiod (i) distance (iiiy force
(iv) veacity (v) work done r
4. InFig10.6 (asguare), identify thefollowing vectors.
(i) Coinitid (i) Equa
(iii) Collinear but not equal = e
5. Answer the following as true or false.
(i) aand —a arecollinear.
(i) Two collinear vectors are dways equal in 2z
magnitude. Fig 10.6

(iii)y Two vectors having same magnitude are collinear.
(iv) Two collinear vectors having the same magnitude are equal.
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10.4 Addition of Vectors C

A vector AB simply means the displacement from a
point A to the point B. Now consider a situation that a
girl moves from A to B and then from B to C
(Fig 10.7). The net displacement made by the girl from P

point A to the point C, is given by the vector AC and Fig 10.7
expressed as
AC = AB+BC
This is known as the triangle law of vector addition.

In general, if we have two vectors & and b (Fig 10.8 (i)), then to add them, they
are positioned so that the initial point of one coincides with the terminal point of the
other (Fig 10.8(ii)).

C
\,7 ¢
3
<% e it
: 2
A Tl) B A 2B

o) (i) (i)
Fig 10.8

For example, in Fig 10.8 (i), we have shifted vector b without changing itsmagnitude
and direction, sothat it'sinitial point coincideswith theterminal point of 3. Then, the

2y

vector a+b, represented by the third side AC of the triangle ABC, gives us the sum
(or resultant) of the vectors & and bi.e., intriangle ABC (Fig 10.8 (ii)), we have
AB+BC = AC
Now again, since AC=—CA , from the above equation, we have
AB+BC+CA = AA=0

This means that when the sides of a triangle are taken in order, it leads to zero
resultant astheinitial and terminal points get coincided (Fig 10.8(iii)).



430 MATHEMATICS

Now, construct avector BC' so that its magnitude is same as the vector BC, but
thedirection oppositeto that of it (Fig 10.8 (iii)), i.e.,

BC = -BC
Then, on applying triangle law from the Fig 10.8 (iii), we have
AC =AB+BC = AB+(-BC) =a-b

The vector AC' is said to represent the difference of 3 and b .

Now, consider aboat in ariver going from one bank of the river to the other in a
direction perpendicular to the flow of theriver. Then, it is acted upon by two velocity
vectors—-one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. Under the simultaneous influence of these two
velocities, the boat in actual startstravelling with adifferent velocity. To have aprecise
idea about the effective speed and direction
(i.e., theresultant vel ocity) of the boat, we have
thefollowing law of vector addition.

If wehavetwo vectors 3 and b represented

by thetwo adjacent sides of aparallelogramin
magnitude and direction (Fig 10.9), then their

sum a+b is represented in magnitude and o

direction by the diagonal of the parallelogram 4
through their common point. Thisisknown as Fig 10.9
the parallelogram law of vector addition.

From Fig 10.9, using the triangle |aw, one may note that
OA +AC = OC

or OA + OB = OC (since AC=0B)

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

Properties of vector addition
Property 1 For any two vectors & and b,

a+b=Db+a (Commuitative property)
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Proof Consider the parallelogram ABCD b e
(Fig10.10). Let AB=aand BC=b, thenusing
the triangle law, from triangle ABC, we have 7

—_— — a X o ."'

AC = a+b ‘o‘,/';\r)

Now, since the opposite sides of a A

parallelogram are equal and parallel, from P
Fig10.10, we have, AD=BC=b and zi- =
DC=AB=4 .Agan using triangle law, from Fig 10.10
triangle ADC, we have

AC = AD+DC=b+a
Hence  da+b =b+a
Property 2 For any three vectors &b and ¢

(a+b)+¢ = a+(b+¢c) (Associative property)

Proof Let the vectors &,b and € be represented by PQ, QR and RS, respectively,
asshowninFig 10.11(i) and (ii).

Fig 10.11
Then a+b = PQ+QR=PR
and b+¢ = QR+RS=QS
So (@+b)+ ¢ = PR+RS=PS
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and a+(b+c) = PQ+QS=PS

a+(b+c)

Hence (a+b)+¢
Remark The associative property of vector addition enables us to write the sum of
three vectors a ,b, ¢ as a+b +¢ without using brackets.
Note that for any vector 3, we have

d+0=0+4a=4a
Here, the zero vector 0 is called the additive identity for the vector addition.
10.5 Multiplication of aVector by a Scalar

Let @ beagiven vector and A ascalar. Then the product of the vector a by the scalar
A, denoted as A @, is called the multiplication of vector a by the scalar A. Note that,
A & isalso avector, collinear to the vector a. The vector A @ has the direction same
(or opposite) to that of vector a according asthe value of A is positive (or negative).
Also, the magnitude of vector A a is|A|times the magnitude of the vector a,i.e.,
|2al = |xllal

A geometric visualisation of multiplication of a vector by a scalar is given

inFig10.12.

%y *

Fig 10.12
When A = -1, then Aa=-a, which is a vector having magnitude equal to the
magnitude of @ and direction opposite to that of the direction of a. Thevector —a is
called the negative (or additive inverse) of vector @ and we aways have
a+(-a) = (-a)+a=0

Also, if kzé, provided =0, i.e. @ isnotanull vector, then

|al

= = 1 al=1
Ikal=l7vllal=ﬁ|a|—
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So, A& represents the unit vector in the direction of a. We write it as

|

a= a

For any scalar k, k0=0.

10.5.1 Components of a vector

Let us take the points A(1, O, 0), B(O, 1, 0) and C(0, 0, 1) on the x-axis, y-axis and
z-axis, respectively. Then, clearly

Q}

|OAE1|OB| =1 and |OC|=1

Thevectors OA, OB and OC , each having magnitude 1,
are called unit vectors along the axes OX, OY and OZ,

respectively, and denoted by {,] and k, respectively X
(Fig10.13). Fig 10.13

Now, consider the position vector OP of apoint P(x, y, 2) asin Fig 10.14. Let P,
be the foot of the perpendicular from P on the plane XOY. We, thus, see that P, Pis

Z
N

P (x,,7)

-y

X Fig 10.14
parallel to z-axis. As i, | andk are the unit vectors along the x, y and z-axes,
respectively, and by the definition of the coordinates of P, we have BP=OR = zK.
Similarly, QR = 0S=yj and OQ=xi -
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Therefore, it follows that OR = 0Q+QR=x +}j

and OP = OB + PP=xi +Vj + zk
Hence, the position vector of P with reference to O is given by
OP(or F) = X +Vj +
Thisform of any vector is called its component form. Here, x, y and z are called

asthe scalar componentsof 7, and xi, yj and Zk are called the vector components

of I aong the respective axes. Sometimes X, y and z are also termed as rectangular
components.

The length of any vector 7 = xi + yj + Zk , is readily determined by applying the
Pythagoras theorem twice. We note that in the right angle triangle OQP, (Fig 10.14)
|OP, | = {/IOQP+[QRF =yx? +y?,
and in the right angle triangle OP,P, we have

|OP, | = \[|OR P +|RPP = (¢ + y?) + 22
1 1

Hence, the length of any vector 7 = xi + yj + Zk isgiven by
|F|=|x +vVj+ zI2|=\/m
If @andb areany two vectors given in the component form aji +a, ] +a,k and
bi +b,] +byk , respectively, then
(i) thesum (or resultant) of the vectors & and b isgiven by
a+b = (a+h)i + (@ +b)+ (@ +b)k
(i) thedifference of the vector a and b is given by
a-b= (a-h)i +(a~b,) ]+ (@ ~by)k
(i) thevectors @ andb are equal if and only if

a =b,a=b, ad a,=b,
(iv) themultiplication of vector a by any scalar A isgiven by

Aa = ()i + (Aa,) ]+ (hag)k
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The addition of vectors and the multiplication of avector by a scalar together give

thefollowing distributivelaws:

(i)
(ii)
(ii)

Let aandb be any two vectors, and k and m be any scalars. Then
ka+ma=(k+m)a
k(ma) = (km)a

k(a+b) = ka+ kb

Remarks

(i)

(ii)
(ii)

One may observe that whatever be the value of A, the vector A3 is aways
collinear to the vector a. In fact, two vectors a and b are collinear if and only

if there exists a nonzero scalar A such that b =24. If the vectors a and b are

~

given in the component form, i.e. &=ai +8,] +a;K and b =bf +b,] + bk,
then the two vectors are collinear if and only if

bi +b,]+bk = Al +a,] +ak)
bi +b,] +bk = (@)l +(ay) ] +(hag)k

L
& b =%a, b, =1a,, by;=2a
_ b b b,

4 a a3

If é:alf+ a2f+ a3I2 ,thena,, a,, a, are also called direction ratios of 3.

Incaseif itisgiventhat |, m, naredirection cosinesof avector, then |i + mj +nk

= (cosa)i +(cosp) j + (cosy)K isthe unit vector in the direction of that vector,

where o, B and vy are the angles which the vector makes with x, y and z axes
respectively.

Example 4 Find the values of x, y and z so that the vectors a=xi +2] + zZk and

6:

20 +vyj +Kk are equal.

Solution Notethat two vectorsare equal if and only if their corresponding components

are equal. Thus, the given vectors @ and b will be equal if and only if

x=2,y=2,z=1
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Example 5 Let a={+2] and b=2i+ . Is |a]=|b|? Are the vectors & and b
equal?

Solution We have |a|=v1? +22 =+/5 and |b|=~v22+22 =/5

So, |a|=|b|. But, thetwo vectorsare not equal sincetheir corresponding components
aredistinct.

Example 6 Find unit vector in the direction of vector &= 2f + 3] +k

Solution The unit vector in the direction of avector 3 isgiven by é:r;la.
Now la| = {22+ +12 =14
Theref ot (2 +3]+K) = 2.3 5. 5
oo = T Y T e e s
Example 7 Find a vector in the direction of vector a=i — 2] that has magnitude
7 units.
Solution The unit vector in the direction of the given vector 3 is
~ 1 1 -~ .- 1~ 2
a=—a=—F(-2])=—F4i-—F]
R NERING
Therefore, the vector having magnitude equal to 7 and in the direction of g is
A 1 a 2 A 7+~ 14 -
la=7—=i-—| |="F=—7F!I
[ﬁ ﬁJJ NENC

Example 8 Find the unit vector in the direction of the sum of the vectors,
a=21+2] -5k and b=2 + ] +3K.
Solution The sum of the given vectorsis

d+b (=3¢ sy) =4 +3] -2k

and Ic| = 42 +3+(-2)? =v29
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Thus, the required unit vector is

A 1 1 o~ 2 " 4 - 3 - 2 -~
C=—~C=——=(4i +3j-2K) = i+ j— k
ISl v29 V29  v29° V29
Example9 Writethedirection ratio’s of thevector a =1 + j — 2k and hence calculate

itsdirection cosines.

Solution Note that the direction ratio’'s a, b, ¢ of avector F=x +Vj +zK are just

the respective components x, y and z of the vector. So, for the given vector, we have
a=1, b=1andc=-2 Further, if |, mand n are the direction cosines of the given
vector, then

a 1 b 1 c -2
l=—=—F+, M=—=—F%, Nn=—=—7 as |r”|:\/é
7| /6 7| 6 Ir| 6

2
Thus, the direction cosines are
[f 76 IJ

10.5.2 Vector joining two points
If P(x,, y,, z) and P,(x,, ¥,, Z,) are any two points, then the vector joining P, and P,

isthe vector PP, (Fig 10.15). Z
L. . . L. , P, (x3,55,2,)

Joining the points P, and P, with the origin
O, and applying triangle law, from the triangle
OP.P,, we have

12’ I/E
. . A :
OP, +BP, = OP,. 0 Pl(xpipzl)
A > —>
Using the properties of vector addition, the i ¥O0 ;
above equation becomes
X .
RP, = OP,—OP, Fig 10.15

(XziA"r yzj+ Zziz) - ()(1|A+ ylj+ ziiz)

(0]
V)
)

1

= (% —X) + (Yo~ W) ] +(z - 2K

The magnitude of vector @3; isgiven by

RP, = (% — %) + (Y — Y)* + (2, 2)?
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Example 10 Find the vector joining the points P(2, 3, 0) and Q(— 1, — 2, — 4) directed
fromPto Q.
Solution Since the vector is to be directed from P to Q, clearly P isthe initia point
and Q isthe terminal point. So, the required vector joining P and Q isthe vector PQ,
givenby

PO = (-1-2)i +(-2-3)] + (-4-0)k
ie. PQ = -3 -5] - 4k.
10.5.3 Section formula

Let Pand Q betwo pointsrepresented by the position vectorsOP and OQ, respectively,

with respect to the origin O. Then the line segment Q
joining the points P and Q may be divided by athird
point, say R, in two ways — internally (Fig 10.16)
and externally (Fig 10.17). Here, we intend to find

the position vector OR for the point R with respect o
to the origin O. We take the two cases one by one. >

Case | When R divides PQ internally (Fig 10.16). P
. T Fig 10.16
If Rdivides PQ suchthat mRQ = nPR,

wheremand n are positive scalars, we say that the point R divides PQ internaly inthe
ratio of m: n. Now from triangles ORQ and OPR, we have

RQ = OQ-OR=b-r

and PR = OR-OP=r-a:

Therefore, we have m(b-r) = n(F-a) (Why?)

or - o b+ (onsimplification)
" m+n &

Hence, the position vector of the point R which divides P and Q internally in the
ratio of m: nisgiven by

_ mb+na

OR = "min
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Case |l When R divides PQ externally (Fig 10.17).
We leave it to the reader as an exercise to verify
that the position vector of the point R which divides
the line segment PQ externally in the ratio
(0]

m:n|i.e E—m isgivenb
: © R g Y

__._mb-na
OR = "_n

Remark If R is the midpoint of PQ , then m = n. And therefore, from Case I, the

Fig 10.17

midpoint Rof PQ, will haveitsposition vector as

a+b
2

Example 11 Consider two points P and Q with position vectors OP=33—2b and

OR =

OQ=4a+b . Findtheposition vector of apoint R which dividesthelinejoining Pand Q
intheratio2:1, (i) internally, and (ii) externally.

Solution
(i) The position vector of the point R dividing thejoin of Pand Q internally in the
ratio2:1is
__ _ 2a+b)+(3a-2b) 5a
OR = 2+1 "3
(i) The position vector of the point R dividing thejoin of Pand Q externaly in the
ratio2:1is
=5 = 2(a+b)2—(fa—2b):46_51

Example 12 Show that the points A(2f — | +K), B(i —3] —5k), C(3 —4j — 4k) are
the vertices of aright angled triangle.

Solution We have
AB = (1-2)f +(-3+1)] +(-5-1k =—i — 2] —6k
BC = (3-1i +(-4+3)]+(-4+5k =2/ - j+k
and CA = (2-3) +(-1+4) ] +(+ 4k =i +3]+5kK
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Further, note that

|AB|? = 41=6+35=|BC| +|CA P

Hence, thetriangleisaright angled triangle.

o s~ b

o

10.
11.

12.
13.

14.
15.

| EXERCISE 10.2|

Compute the magnitude of the following vectors:

o~ ~ e ~ 2 ~ 1 ~ 1 2 1 ~
a=i+j+k b=2-7j-3k C=—i+—j——Kk
J J NN J NE
Write two different vectors having same magnitude.
Write two different vectors having same direction.
Find the values of x and y so that the vectors 2i +3] and xi + yj are equal.

Find the scalar and vector components of the vector with initial point (2, 1) and
terminal point (-5, 7).

Findthesumofthevectors a=1 — 2] + K, b=-2 + 4] +5kand ¢=1 - 6] — 7K.
Find the unit vector in the direction of the vector a=1 + |+ 2K .

Find the unit vector in the direction of vector PQ, where Pand Q are the points
(1,2,3)and (4,5, 6), respectively.

For givenvectors, =21 — ] + 2k and b=—i + | — K, findtheunit vector inthe
direction of the vector d+b.

Find avector inthedirection of vector 5/ — j + 2k which hasmagnitude 8 units.
Show that the vectors 2{ —3] + 4k and -4 + 6] —8k are collinear.

Find the direction cosines of the vector | + 2] + 3K .

Find the direction cosines of the vector joining the points A (1, 2, -3) and
B(-1, -2, 1), directed from A to B.

Show that the vector | + ] +k isequally inclined to the axes OX, OY and OZ.
Find the position vector of apoint R which dividesthelinejoining two points P
and Q whose position vectorsare  + 2] —k and —i + ] + K respectively, in the
ratio2:1

(i) internally (i) externaly
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16. Findthe position vector of the mid point of the vector joining the points P(2, 3, 4)
and Q(4, 1, -2).

17. Show that the points A, B and C with position vectors, a=3/—4] -4k,

b=2-]+k and ¢ =i —3] -5k, respectively form thevertices of aright angled
triangle.
18. Intriangle ABC (Fig 10.18), which of thefollowing isnot true:

(A) AB+BC+CA=0
(B) AB+BC-AC=0

(©) AB+BC-CA=0 A B

(D) AB-CB+CA=0 Fig 10.18
19. If aand b aretwo collinear vectors, then which of the following are incorrect:

(A) b=2a, for somescaar A
(B) a=+b
(C) the respective componentsof 3 and b are proportional

(D) both the vectors a and b have same direction, but different magnitudes.

10.6 Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectorsis their product. We may
recall that product of two numbersisanumber, product of two matricesisagain a
matrix. But in case of functions, we may multiply them in two ways, namely,
mulltiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectorsis also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. Based upon these two types of products for vectors, they have
found various applicationsin geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1 Scalar (or dot) product of two vectors
Definition 2 The scalar product of two nonzero vectors 3 and b , denoted by - b, is
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defined as -5 = |a||b|cose, A
where, 6 isthe angle between aand b,0<0<r (Fig 10.19). 9
=
) . ) . . a
If either 2=0 or b =0, then 0 is not defined, and in this case, Fig 10.19

we define @-b=0
Observations

1. &-.b isarea number.

2. Let @ and b be two nonzero vectors, then a-b =0 if andonly if aandb are
perpendicular to each other. i.e.

d-b=0s alb
3. 1f6=0,then a-b=|a||b|

In particular, a-a=|af, as6inthiscaseisO.
4. 1f@=m,then a-b=-|a||b|

In particular, a.(-a) =—|af?, as@inthiscaseism.
5. Inview of the Observations 2 and 3, for mutually perpendicular unit vectors
i, ] and k, we have

A A

~>

—_— =

> =

=1
=0

-

~)

]

6. The angle between two nonzero vectors d and bis given by

cosez—?'ti , or 9 :cos‘l[ ﬂa.bﬁ J
lallb] lallb]
7. Thescalar product is commutative. i.e.
a-b=b-a (Why?)
Two important properties of scalar product

Property 1 (Distributivity of scalar product over addition) Let &, b and ¢ be
any three vectors, then
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Property 2 Let aandb be any two vectors, and A be any scalar. Then

(0d)-b = (2@)-b=A(a-b)=a-(\b)

If two vectors dandb are given in component form as aji +a,] +ak and

byi +b,] +bsk , then their scalar product is given as

ab = (al +a,] +ak)-(bi +b,] +bk)

ai - (of +b,] +b,K)+a,]-(of +b,]+bk) +ak-(bi +b,j +bk)
aby(T-1)+ab, (- ) +abs(-K) +ab (7-1) +ab,(J- 1)+ abs(j-K)

+ aghy (K- 1) +agb, (K- ]) + agb, (K - K) (Using the above Properties 1 and 2)

Thus

albl + a2b2 + a3b3
a-b = ab +a,b, +a5h

10.6.2 Projection of a vector on aline

(Using Observation 5)

Suppose a vector AB makes an angle 6 with a given directed line | (say), in the
anticlockwise direction (Fig 10.20). Then the projection of AB on | isavector P
(say) with magnitude | AB | cos6, and thedirectionof P being the same (or opposite)

tothat of thelinel, depending upon whether cos6 ispositive or negative. Thevector p

27
0

A ? “C
(0°<0<90"
()
= 0
C. P —~
A
¢
B
(180°< 6 < 270"

(iii)

Fig 10.20

c 7 A
(90'< 6 < 180")
(i)

Rl I
h Q)
4
D

0 ->
P C l

@-’I\:
SN

B
(270°< 6 < 360")
(iv)
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iscalled the projection vector, and its magnitude | P | issimply called asthe projection

of the vector AB on the directed linel.
For example, in each of thefollowing figures (Fig 10.20(i) to (iv)), projection vector

of AB along thelinel is vector AC.
Observations
1. If P istheunitvector aongalinel, thenthe projection of avector  ontheline
lisgivenby a- p.
2. Projection of avector g on other vector b, isgiven by

a-b, or é-[gJ, or i(é-B)
|b| |b|

3. If 8=0, thentheprojection vector of AB will be AB itself andif 6 = i, then the
projection vector of AB will be BA .

3 -
4. 1f 0 =g or © =7n , then the projection vector of AB will be zero vector.

Remark If o, B and y are the direction angles of vector a=a,i +a,] +ak , then its
direction cosines may be given as

a-i
cosa = = =i, Cosp =

lafi| fal I

a
, and cosy = —
| EY

&

Q|

Also, notethat |a|cosa, |a|cosB and |a|cosy arerespectively the projections of
a along OX, OY and OZ. i.e,, the scalar components a,, a, and a, of the vector &,
areprecisely the projectionsof a along x-axis, y-axisand z-axis, respectively. Further,
if a isaunit vector, then it may be expressed in terms of its direction cosines as

a=coso + Cosp] + cosyk
Example 13 Find the angle between two vectors a and b with magnitudes 1 and 2
respectively and when a-b=1.
Solution Given a-b=1,|a|=1and|b|= 2. We have

QD

_1( b ) afl) o«
0 = cos LIEIIIBIJ:COS (EJ‘E
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~ ~

Example 14 Find angle ‘6’ between the vectors a=i + j—Kk and b=i — ] +k.

Solution The angle 8 between two vectors d and b s given by

a-b
CosO = ——=
lallb]
Now ab=(@{+]-K-(-j+k=1-1-1=-1.
-1
Therefore, we have cosb = 3
. . a1
hence the required angleis 6 = cos (——J

Example 15 If a=5—]-3k and b=1 +3] -5k, then show that the vectors
a+b and a—b are perpendicular.

Solution We know that two nonzero vectors are perpendicular if their scalar product
iszero.

Here a+b = (5 — ] —3K)+ (i +3]—5K) =61 +2] -8k
and a-b = (5 —]—3K) - (i +3]-5Kk) =4 —4] + 2k
So (d+Db)-(3—b) = (61 +2] —8K)- (4 —4] +2k)=24-8-16=0.

Hence  a+b and a-b are perpendicular vectors.

Example 16 Find the projection of the vector a=2f +3]+2k on the vector
b=i+2]+K.
Solution The projection of vector & on the vector b isgiven by
1 (2x1+3x2+2x1) 10 5
@b = e = e
b JO?+ 2%+ 6

Example 17 Find |a—b|, if two vectors aand b are such that |d|=2, |b|=3

and a-b=4.
Solution We have

|
—~~
Q|
|
(o]
N—r
—
Q|
|
(=)
N

|a_6|2 —
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|af -2(a-b)+|b [
(2 -2(4) +(3)°
Therefore la-b| =5

Example 18 If a isaunit vector and (X—4a)-(X+a) =8, thenfind | X|.

Solution Since & isaunit vector, |d}=1. Also,
(X—a)-(x+a) =8

or X-X+X-d-4-X-4-a =8
or |XP-1=8 ie |X[?=9
Therefore | X| = 3 (as magnitude of avector is non negative).

Example 19 For any two vectors a and b , weawayshave | a- b |s|a||6| (Cauchy-
Schwartz inequality).

Solution Theinequality holdstrivially wheneither a=0 or b=0.Actualy,insucha
situation we have |a-b|=0=|a||b]|. So, let us assume that |a|=0=|b] .
Then, we have

a-b|
1a|lb| = |cosB|<1
Therefore |a-b|< |a]||b]
Example 20 For any two vectors 3 and b, weaways > C
have |a+b|<|a|+|b|(triangleinequality). g >
Solution Theinequality holdstrivially in case either A 7 B
a=0orb=0 (How?). So, let |a|=0=|b]|. Then,
|a+BF = (a+B)2 =(a+b)-(a+b) Fig 10.21
=&a.d+a-b+b-a+b-b
= |af +2a-b+|b (scalar product is commutative)
< |af +2]a-b|+|bf (since x<|x|VxeR)

|
|

< |af+2lalbl+|bf (from Example 19)
(
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Hence |a+b|< |a|+|b]|
Remark If the equality holdsin triangleinequality (in the above Example 20), i.e.
|a+b|= |a|+|b],
then |AC| = |AB|+|BC]|
showing that the points A, B and C are collinear.
Example 21 Show that the points A (-2f +3] +5K), B( T + 2] +3k) and C(7 —K)
arecollinear.
Solution We have
AB = (1+2)i +(2-3)]+ (3-5)k=3 - ] - 2k,
BC = (7-Di +(0-2) ] +(-1-3)k=61 - 2] — 4K ,
AC = (7+2)i +(0-3)] + (-1-5)k =9 —3] — 6k
|AB| = V14, |BC|= 214 and |AC|-3/14
Therefore |AC| = |AB|+|BC|
Hence the points A, B and C are callinear.

In Example 21, one may note that although AB + BC + CA = 0 but the
pointsA, B and C do not form the vertices of atriangle.

| EXERCISE 10.3

1. Find the angle between two vectors & and b with magnitudes J3 and 2,
respectively having 3.b =+/6.-

Find the angle between the vectors i — 2i +3K and 3 — 21? +k

Find the projection of the vector { — j onthevector i + j .

Find the projection of the vector | + 3] + 7k onthevector 7{ — j +8k -
Show that each of the given three vectorsis a unit vector:

a s b

%(2?+3J°+6I2), %(3?-61% 2k), %(sh 2] —3k)

Also, show that they are mutually perpendicular to each other.
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10.

11.

12.
13.

14.

15.

16.
17.

18.

MATHEMATICS

Find |a| and |b|,if (a+b)-(a-b)=8 and|a|=8|b|.
Evaluate the product (3a-5b)- (2a+ 7b).

Find the magnitude of two vectors & and b , having the same magnitude and

such that the angle between them is 60° and their scalar product is % .

Find [ X[, if for aunit vector &, (X—a)-(Xx+a)=12.

If =2 +2]+3K, b=-i+2]+K and =3+ ] are such that 5+ b is
perpendicular to ¢, then find the value of A.

Show that |a|b+|b|a isperpendicular to |a|b—|b|a, for any two nonzero
vectors a and b .

If 4-a=0 and &-b =0, then what can be concluded about the vector p ?

If ab,c are unit vectors such that a+b+¢c=0, find the value of
a-b+b-c+c-a.

If either vector 3=0 or b =0, then a-b=0. But the converse need not be

true. Justify your answer with an example.

If the vertices A, B, C of atriangle ABC are (4, 2, 3), (-1, 0, 0), (0, 1, 2),
respectively, then find ZABC. [ZABC is the angle between the vectors BA
and BC].

Show that the pointsA(1, 2, 7), B(2, 6, 3) and C(3, 10, —1) are collinear.

Show that thevectors 2 — J+K, | —3] —5k and 3 — 4] — 4k formthevertices
of aright angled triangle.

If & isanonzero vector of magnitude‘a’ and A anonzero scalar, then A 3 isunit
vector if

(A) A=1 (B) A=—1 (C) a=|r| (D) a=21|A|

10.6.3 Vector (or cross) product of two vectors

In Section 10.2, we have discussed on the three dimensional right handed rectangular
coordinate system. In this system, when the positive x-axisisrotated counterclockwise



VECTOR ALGEBRA 449

into the positive y-axis, aright handed (standard) screw would advancein the direction
of the positive z-axis (Fig 10.22(i)).

In aright handed coordinate system, the thumb of the right hand points in the
direction of the positive z-axis when the fingers are curled in the direction away from
the positive x-axistoward the positive y-axis (Fig 10.22(ii)).

V/

(i)
Fig 10.22 (i), (ii)

Definition 3 The vector product of two nonzero vectors aand b , isdenoted by a x b
and defined as
axb = |d||b|sinOA,
A
where, 0 is the angle between dandb, 0<0<m and A is

a unit vector perpendicular to both & and b, such that :
d,b and A form aright handed system (Fig 10.23). i.e., the A
right handed system rotated from ztob moves in the v Fig 10.23
direction of f.
If either 2=0o0rb =0, then ® isnot defined and in this case, we define dx b =0.
Observations
1. axb isavector.

2. Let dandb be two nonzero vectors. Then axb =0 if and only if & and b
are paralel (or collinear) to each other, i.e.,

axb = 0<4|b



450 MATHEMATICS

In particular, axa=0 and ax(—a):(), since in the first situation, 8 = 0
and in the second one, 6 = T, making the value of sin6 to be 0.

3 |fe:%then axb=|a|b|. A
4. Inview of the Observations2 and 3, for mutually perpendicular
unit vectors i, | and k (Fig 10.24), we have X N}\
i xi = fxlelezzﬁ i\>_/]
fXT:IE, ijE:f, szf:j Fig10.24
5. Interms of vector product, the angle between two vectors & and b may be
givenas
QnezlaX§|
lallb]

6. Itisalwaystruethat the vector product is not commutative, as axb = — bxa.
Indeed, axb=|a|b|sin6A, where &,b and A form aright handed system,
i.e, @istraversed from @ tob, Fig 10.25 (i). While, bx a =4 ||b |sin6f,, where

b, aandf, form aright handed system i.e. 0 is traversed from btoa,
Fig 10.25(ii).

A
n

() (i)
Fig 10.25 (i), (ii)
Thus, if we assume aand b tolieinthe plane of the paper, then i and A, both
will be perpendicular to the plane of the paper. But, N being directed above the
paper while iy directed below the paper. i.e. A =—1i.
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|a||b|sin6A

QI

X

(o]
1

Hence

—|a||b|sin6f, =—bxa
In view of the Observations 4 and 6, we have

ij:—R, szj:—iA and i><I2:—J.

If aandb represent the adjacent sides of a triangle then its area is given as

1 .
—laxb
2| xb]. c

By definition of theareaof atriangle, wehavefrom 7,
Fig 10.26,

0 -
: B
D 7

Fig 10.26

1
Areaof triangle ABC = EAB~CD.
But AB=|b| (asgiven), and CD = |a|sin®.
. 1-,. . 1. -
Thus, Areaof triangle ABC = ElbllalSIne :E|a><b|.

If & and b represent the adjacent sides of a parallelogram, then its area is
D
C

givenby |axb]|.

From Fig 10.27, we have
Areaof paralelogram ABCD = AB. DE.

But AB=|b| (asgiven), and 0 F
DE—|a|siné. E >
Thus, Fig 10.27
Areaof parallelogran ABCD = |b||a|sin® =|axb].

7

We now state two important properties of vector product.

Property 3 (Distributivity of vector product over addition): If &, b and &
are any three vectors and A be a scalar, then

(i) ax(b+¢) = axb+axc
6:

(i) A(axb) = (n@)xb=ax(Ab)
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Let aandb be two vectors given in component form as ai +a, | + a5k and
by +b,] +b;k , respectively. Then their cross product may be given by
]k

ixb =& & &

Explanation We have
axb = (@l +a,] +ak)x (i + b, ] +bk)
= aly (7 )+ a, (7 x J) + by (T x k) + by (j x1)
+ aztlz(jxj)+azb3(iXi2)
+ aghy (Kx 1) +agh, (K x )+ aghy (K x k) (by Property 1)
= ab, (I x J) - aby(kx) - ah (7 x )
+ aply (k) +aghy (kxT) - agb, (j xK)
(as iAxiA:j?xlesz2=0 and | xk=—Kxi, jxi=—ix] and szj:—jxlz)
= abk—abj-abk+abi+ahj-ab,
(as iij:Iz, M:f and I2><IA=])
(3ghs —a5,)T — (aybs —aay) [+ (aib, — 3k
]k
& & &
b b, b
Example 22 Find |axb|, if a=2+]+3k and b=3 +5] -2k
Solution We have

k
3

QD

X

(o]

I
[COIN \C I
Ul P —

-2

[(~2-15) - (-4-9)] + (10—3)k =17 +13] + 7K

JEID? +(13)2 + (7)2 = /507

Hence  |axb|
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Example 23 Find a unit vector perpendicular to each of the vectors (a+b) and
(8-b),where a={+j+Kk, b=f+2]+3K.
Solution We have a+b =21 +3] +4k and a-b=-] -2k

A vector which is perpendicular to both a+b and a—b isgiven by

i ]k
(@+b)x(a-b) =2 3 4|=-2+4j-2k (=C, =)
0 -1 -2
Now IC] = J4+16+4=+24=2/6

Therefore, the required unit vector is

There are two perpendicular directions to any plane. Thus, another unit
2 ~ 1

: _ L 1- ~ :
vector perpendicular to 3+b and a—b will be —=i —— | + k. But that will
bap NG

be a consequence of (a-b)x(a+Db).

Example 24 Find the area of a triangle having the pointsA(1, 1, 1), B(1, 2, 3)
and C(2, 3, 1) asits vertices.

Solution We have AB=j+2k and AC=1i +2] . The area of the given triangle

is%ﬁé’xA_éL

F] ok

Now, ABxAC =0 1 2=-4+2]-k
1 20

Therefore |ABxAC| = 16+ 4+1=+/21

1
Thus, the required areais E\/ﬁ
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Example 25 Find the area of a parallelogram whose adjacent sides are given

by the vectors a=3+ j+4k andb=1 — ] +k

Solution The area of a parallelogram with d2andb as its adjacent sides is given

by |axb].
]k

Now axb=[3 1 4=5+]-4k
1 -11

Therefore |axb| = 25+1+16=+/42

and hence, the required areais /42 .

| EXERCISE 10.4]

Find |axb|, if a=f-7]+7kand b=3 -2+ 2k.
Find a unit vector perpendicular to each of the vector a+b and a-b, where
d=3+2]+2kand b=i+2j] -2k .
If aunit vector & makaanglesgwith f,%with j and an acute angle 6 with
k , then find 6 and hence, the components of a.
Show that

(@-b)x(a+b) = 2(axb)
Find A and pif (27 +6] + 27K) x (I + ] + uk) =0.
Giventhat a-b=0 and axb=0. What can you conclude about the vectors
aandb ?
Let the vectors & b,c be given as ai+a,]+ak, bi +b,]j+bk,
Ci +C,] +ck . Then show that @x (b +¢)=axb+axc.

If either a=0 or b=0, then axb=0. Is the converse true? Justify your
answer with an example.
Find the area of the triangle with verticesA(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
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Find the area of the parallelogram whose adjacent sides are determined by the
vectors a=i — j+3k and b =2 - 7] +k.
) - . - 2 o

Let the vectors a and b be such that |a|=3 and |b|=?, then axb isa
unit vector, if the angle between & and b is
(A) ©/6 (B) m/4 (C) n/3 (D) m/2
Area of a rectangle having vertices A, B, C and D with position vectors
_r+lj+412, r+li+412, f—£f+4lz and _r_lj+412, respectively is

2 2 2 2

1
(A) > (B) 1
€ 2 (D) 4

Miscellaneous Examples

Example 26 Write al the unit vectorsin XY-plane.

Solution Let F = xi+ y? be a unit vector in XY-plane (Fig 10.28). Then, from the
figure, wehavex=cos0 andy=sin6 (since|r | = 1). So, we may writethe vector ¢ as

F(=OP) = cos®i +sind j . (1)
Clearly, [Tl = Jcos? 0 +sin?0 =1
Y
7\
N P(cos0, sin0)
% —>
74\/ A OP’ = cos07
N 0 ’:‘y —> A
X- o~ ll" X P'P=sin0J
A4
Y'
Fig 10.28

Also, as 6 varies from 0 to 2r, the point P (Fig 10.28) tracesthe circle X+ y> =1

counterclockwise, and thiscoversall possibledirections. So, (1) givesevery unit vector
inthe XY-plane.
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Example 27 If {+]+k, 21 +5], 3 +2]-3k and i —6] -k are the position
vectors of points A, B, C and D respectively, then find the angle between AB and
CD. Deduce that AB and CD are collinear.

Solution Note that if 0 is the angle between AB and CD, then 6 is also the angle
between AB and CD.

Now AB = Position vector of B — Position vector of A
= (2 +5])-( +]+K) =i +4]-K

Therefore |AB| = J1)? +(4)% +(-1)% =32

Similarly CD = -2 -8]+2k and |CD 62
AB-CD

Thus cos0 = m

U2+ 4(-8) +(-)(2) _-36
- (3V2)(6v2) 36

Since 0< 0 < x, it follows that © = 7. This showsthat AB and CD are collinear.

=-1

Alternatively, KE:—%EB which impliesthat AB and CD are collinear vectors.

Example 28 Let a,b and ¢ be three vectors such that |a|=3,|b =4, |c|=5 and

each one of them being perpendicular to the sum of the other two, find |a+ b+¢ |

Now |a+b+cfP = (A+b+c)?=(@+b+c)-(a+b+¢c)
= a-a+a-(b+c)+b-b+b-(@a+c)
+ c.(@a+b)+ce
=|af+|bP+|cF
=9+16+25=50
Therefore |a+b+¢|=B0=5/2
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Example 29 Threevectors @, b and ¢ satisfy the condition a+b + ¢ = 0. Evaluate
thequantity p=a-b+b-c+c-a, if |a=L |bl4 and |CE2.

Solution Since d+b+¢=0, we have

or a-a+a-b+a-c=o
Therefore a-b+a-c=-|af=-1 @
Again, b-(d+b+¢) =0
o a-b+b-¢ = -|b| =16 @)
Similarly a-c+b-c =—4. . (3

Adding (1), (2) and (3), we have
2(a-b+b-¢+a-c) =—21

. =21
or 2u:—21,|.e.,u:7

Example 30 If with reference to the right handed system of mutually perpendicular

unit vectors i, j and k, =3 — ], =2 + ] -3k, then express § in the form

B =P, +B,, where B,isparalel to 6 and §, isperpendicular to d .

Solution Let B, =Aa, A isascaar,i.e, B, =3\ —2].

Now B,=B-B, = (2-30)i +(@+1)]-3k.

Now, since Ez isto be perpendicular to g, we should have a-Bz =0.i.e,
32-30)-(1+x) =0

or X:E
2
- 3:\ 1': = 1.'* 3': "
Theref ==i-= dp,==1+=]-3k
erefore B, > 2] and B, > 2]
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Miscellaneous Exercise on Chapter 10
Write down aunit vector in XY-plane, making an angle of 30° with the positive
direction of x-axis.
Find the scalar components and magnitude of the vector joining the points

P(x, ¥, z) and Q(X,, ¥,, Z).

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of
north and stops. Determine the girl’s displacement from her initial point of
departure.

If a=b+¢,thenisittruethat |a|=|b|+|c|? Justify your answer.

Find the value of x for which x(f + ] +K) isaunit vector.

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors
a=21+3]-k and b=i-2j+k.

If a=i+]+k, b=21-]+3k and c=1-2]+Kk, find aunit vector parallel
to the vector 2a— b +3¢.

Show that the pointsA (1,-2,—-8), B (5,0,-2) and C(11, 3, 7) arecollinear, and
find theratio in which B dividesAC.

Find the position vector of a point R which divides the line joining two points
P and Q whose position vectors are(2a + b) and (3 —3b) externaly intheratio
1: 2. Also, show that Pisthe mid point of the line segment RQ.

The two adjacent sides of a parallelogram are 2 — 4f+ 5k and | — 2} ~3K.

Find the unit vector parallel toitsdiagonal. Also, find itsarea.
Show that the direction cosines of avector equally inclined to the axes OX, OY

111
Let a=i+4]+2k, b=3-2]+7k and =2 - ]+ 4k. Find a vector d

and OZ are

whichis perpendicular to both & and b, and &-d =15.

The scalar product of the vector | + j + k with a unit vector along the sum of
vectors 2{ + 4] -5k and Al + 2] +3k isequal to one. Find the value of A.

If & b, ¢ are mutually perpendicular vectors of equal magnitudes, show that

thevector a+b+¢ isequaly inclinedto d, b and €.
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15. Provethat (a+b)-(a+b)=|af +|b[?,if andonlyif & b are perpendicular,
given a=0,b=0.
Choose the correct answer in Exercises 16 to 19.

16. If 6 isthe angle between two vectors a and b, then d-b >0 only when

(A) 0<e<g (B) osesg
(C) 0<B<m (D) 0<6<n

17. Let d andb betwo unit vectorsand 6 isthe angle between them. Then a+b
isaunit vector if

2n
A) =2 B) == c) o==Z D) 9=<"
(A) 2 (B) 3 © 5 (D) 3
18. Thevalueof i.(JxK)+]-( xK)+k-( x j) is
(A) O (B) -1 © 1 (D) 3
19. If 6 isthe angle between any two vectors & and b , then |&-b |=|dxb | when
0 isequal to
A) 0 B) — c) = D
(A) ®) 7 © 35 (D) n
Summary

¢ Position vector of apoint P(x, y, 2) isgivenas OP(=T) = xi + y] + K , andits

magnitudeby /x? + y? + 72 .

¢ The scalar components of a vector are its direction ratios, and represent its
projections along the respective axes.

¢ Themagnitude (r), direction ratios (a, b, ¢) and direction cosines (I, m, n) of
any vector are related as:

e

r )

a c
l=—, m=—=, n=—
r r

¢ Thevector sum of the three sides of atriangle taken in order is 0.
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The vector sum of two coinitial vectors is given by the diagonal of the
parallelogram whose adjacent sides are the given vectors.

The multiplication of agiven vector by ascalar A, changes the magnitude of
the vector by the multiple |A|, and keeps the direction same (or makes it
opposite) according as the value of A is positive (or negative).

|$D¢

For agivenvector 3, thevector 4= givestheunit vector inthedirection

Q)

of a.
The position vector of a point R dividing a line segment joining the points

P and Q whose position vectors are aand b respectively, intheratiom: n
na+ mb
m+n

(i) internaly, isgiven by

(i) externaly,isgivenby IO =12

The scalar product of two given vectors aandb having angle 6 between
them isdefined as

a-b=|a||b|cosh .

Also, when 3.b isgiven, theangle 8’ between thevectors daand b may be
determined by

Q)
O

cosO =

Q)
O

If © is the angle between two vectors aand b, then their cross product is
givenas

axb=|a||b|sinon
where f isaunit vector perpendicular to the plane containing aand b . Such
that 3, b, fiform right handed system of coordinate axes.

If we have two vectors dandb, given in component form as

d=aj +a,] +ak and b=bji +b,]+bk and A any scalar,
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then a+b = (8 +b)i +(a+b,) ] +(a+by)K;

2a = (La)i +(Aay) ] + (ag)k;
ab = ab +ab, +a5b;;
Pk
and axb=|a b ¢
a b ¢

Historical Note

The word vector has been derived from a L atin word vectus, which means
“to carry”. The germinal ideas of modern vector theory date from around 1800
when Caspar Wessel (1745-1818) and Jean Robert Argand (1768-1822) described
that how acomplex number a+ ib could be given ageometric interpretation with
the help of adirected line segment in acoordinate plane. William Rowen Hamilton
(1805-1865) an Irish mathematician was the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1853). Hamilton's
method of quaternions (an ordered set of four real humbers given as:

a+bi +¢ +dk, i, j, k following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (384-322 B.C.), a Greek
philosopher, and pupil of Plato (427-348 B.C.). That time it was supposed to be
known that the combined action of two or more forces could be seen by adding
them according to parallelogram law. The correct law for the composition of
forces, that forces add vectorially, had been discovered in the case of perpendicular
forces by Stevin-Simon (1548-1620). In 1586 A.D., he analysed the principle of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
(“Principles of the Art of Weighing”), which caused amajor breakthrough in the
devel opment of mechanics. But it took another 200 yearsfor the general concept
of vectorsto form.

In the 1880, Josaih Willard Gibbs (1839-1903), an American physicist

and mathematician, and Oliver Heaviside (1850-1925), an English engineer, created
what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 1881 and 1884, Gibbs
printed atreatise entitled Element of Viector Analysis. Thisbook gave asystematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectorsis dueto the D. Heaviside and PG Tait (1831-1901)

who contributed significantly to this subject.



Chapter 11
(THREE DIMENSIONAL GEOM ETRY)

% The moving power of mathematical invention is not
reasoning but imagination. — A.DEMORGAN ¢

11.1 Introduction

In Class X1, while studying Analytical Geometry in two — flddtiihidiidiid s L il i
dimensions, and the introduction to three dimensional
geometry, we confined to the Cartesian methods only. In
the previous chapter of this book, we have studied some
basi ¢ concepts of vectors. We will now use vector algebra
to three dimensional geometry. The purpose of this
approach to 3-dimensional geometry is that it makes the
study simple and elegant*.

In this chapter, we shall study the direction cosines
and direction ratios of aline joining two points and aso
discuss about the equations of lines and planes in space
under different conditions, angle between two lines, two s E‘u'ler'
planes, aline and a plane, shortest distance between two (1707-1783)
skew lines and distance of a point from a plane. Most of
the above results are obtained in vector form. Nevertheless, we shal also trandate
these results in the Cartesian form which, at times, presents a more clear geometric
and analytic picture of the situation.

11.2 Direction Cosines and Direction Ratiosof aLine

From Chapter 10, recall that if a directed line L passing through the origin makes
angles o, f andy with x, y and z-axes, respectively, called direction angles, then cosine
of these angles, namely, cos o, cos 3 and cos y are called direction cosines of the
directed line L.

If wereversethedirection of L, then the direction angles are replaced by their supplements;,

ie, m—o, m—f and m—y. Thus, the signs of the direction cosines are reversed.

* For various activities in three dimensional geometry, one may refer to the Book
“A Hand Book for designing Mathematics Laboratory in Schools’, NCERT, 2005
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V4
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Fig 11.1

Note that agiven linein space can be extended in two opposite directions and so it
has two sets of direction cosines. In order to have aunique set of direction cosines for
a given line in space, we must take the given line as a directed line. These unique
direction cosines are denoted by |, mand n.

Remark If the given linein space does not pass through the origin, then, in order to find
its direction cosines, we draw a line through the origin and parallel to the given line.
Now take one of the directed lines from the origin and find its direction cosines as two
parallel line have same set of direction cosines.

Any three numbers which are proportiona to the direction cosines of a line are
called the direction ratios of the line. If |, m, n are direction cosines and a, b, c are
direction ratios of aline, then a=Al, b=Amand c = An, for any nonzero A € R.

Some authors also call direction ratios as direction numbers.

Let a, b, c be direction ratios of aline and let |, m and n be the direction cosines
(d.c's) of theline. Then

Lom_n_, -

A" b o (say), k being a constant.
Therefore | =ak, m= bk, n=ck - (1)
But P+m+ni=1
Therefore kK@+b+c3)=1

1

or k= t———m
JaZ+b?+c?
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Hence, from (1), the d.c.’s of the line are

a b + c

I:_ y :_ y :_—
JaZ+b?+c? Jat+b%+c? JaZ+b?+c?
where, depending on the desired sign of k, either a positive or a negative sign isto be
taken for |, mand n.

For any line, if &, b, c are direction ratios of aline, then ka, kb, kc; k# 0isalso a
set of direction ratios. So, any two sets of direction ratios of aline area so proportional.
Also, for any line there are infinitely many sets of direction ratios.

11.2.1 Relation between the direction cosines of a line

Consider alineRSwith direction cosines|, m, n. Through
the origin draw aline parallel to the given line and take a
point P(X, y, 2) on thisline. From P draw a perpendicular
PA on the x-axis (Fig. 11.2).

Let OP =r. Thencosoc:% :5. This gives x = Ir.
r

Smilarly, y=nmrandz=nr

Thus X¥+y+Z=r2(?+n?+nd

But X+y+22=r?

Hence P+m?+n?=1 Fig 11.2

11.2.2 Direction cosines of a line passing through two points

Since one and only one line passes through two given points, we can determine the
direction cosines of aline passing through the given points P(x , y,, ) and Q(X,, Y, Z))
asfollows (Fig 11.3 (a)).

Z Z
Q
inb 2o
P N
Y Y
I) 0
R S
X (a) X (b)

Fig 11.3
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Let |, m, n be the direction cosines of the line PQ and let it makes angles o, p and y
with the x, y and z-axis, respectively.

Draw perpendiculars from P and Q to XY-plane to meet at R and S. Draw a
perpendicular from P to QS to meet at N. Now, in right angle triangle PNQ, ZPQN=
vy (Fig 11.3 (b).

NQ _ 2-7
Therefore, cosy = —< =21
TR RQ
Smilarly coso, = XZP_Qxl and cosp="2" N

Hence, the direction cosines of the line segment joining the points P(x,, y;, z,) and
Q(x, ¥, z) are
X =X Y= ¥ L -4
PR PQ TR

where PQ = \/(Xz - X1)2 + (Y, - 3/1)2 + (22 - 21)2

The direction ratios of the line segment joining P(x,, y,, z) and Q(X,, Y,, Z,)
may be taken as

KX Yo Y 5= 4 0N X = X% Y=Y 45

Example 1 If aline makes angle 90°, 60° and 30° with the positive direction of x, y and
z-axisrespectively, find its direction cosines.

1
Solution Let thed.c.'sof thelinesbel , m, n. Then| =cos90°=0, m=cos60° = —

21
n=cos 30° = @

Example 2 If aline has direction ratios 2, — 1, — 2, determine its direction cosines.
Solution Direction cosines are

2 -1 ~2
J2Z2 D2+ (=22 22+ (D2 + (-2 2%+ (-1F + (-2)?
2-1-2

333

Example 3 Find the direction cosines of the line passing through the two points
(—=2,4,-5)and (1, 2, 3).
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Solution We know the direction cosines of the line passing through two points
P(X,, Vi 2) and Q(x,, Y, Z,) are given by
=% Y — y1’ -7

PR PQ T R

where PQ=J(x, - %)* + (¥, - W)’ + (- 2]
HerePis(—2,4,-5) and Qis(1, 2, 3).
So PQ = (L~ (-2)? + (2- 4 + 3~ (-5))* = V77
Thus, the direction cosines of the linejoining two pointsis
3 -2 8
N NG TN

Example 4 Find the direction cosines of x, y and z-axis.

Solution The x-axis makes angles 0°, 90° and 90° respectively with x, y and z-axis.
Therefore, the direction cosines of x-axis are cos 0°, cos 90°, cos 90° i.e., 1,0,0.
Similarly, direction cosines of y-axisand z-axisare 0, 1, 0 and 0, O, 1 respectively.

Example 5 Show that the points A (2, 3, —4), B (1, — 2, 3) and C (3, 8, — 11) are

collinear.

Solution Direction ratios of line joining A and B are
1-2,-2-3,3+4ie,-1,-57.
Thedirection ratios of line joining B and C are
3-1,8+2,-11-3,i.e,2,10,-14.

Itisclear that direction ratios of AB and BC are proportional, hence, AB isparalléel
to BC. But point B is common to both AB and BC. Therefore, A, B, C are
collinear points.

EXERCISE11.1
1. Ifalinemakesangles90°, 135°, 45° withthex, y and z-axesrespectively, find its
direction cosines.

2. Findthedirection cosines of alinewhich makes equal angleswith the coordinate
axes.

3. If aline hasthedirection ratios—18, 12, — 4, then what are its direction cosines ?
4. Show that the points (2, 3, 4), (- 1,—-2, 1), (5, 8, 7) are collinear.

5. Find the direction cosines of the sides of the triangle whose vertices are
(3,5,-4),(-1,1,2) and (-5,—-5,-2).
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11.3Equation of aLinein Space

We have studied equation of linesin two dimensionsin Class XI, we shall now study
the vector and cartesian equations of aline in space.

A lineisuniquely determined if
(i) it passesthrough agiven point and has given direction, or
(i) it passesthrough two given points.

11.3.1Equation of a line through a given point and parallel to a given vector
Let & bethe position vector of thegiven point 7

A with respect to the origin O of the A /b,/

rectangular coordinate system. Let | be the
line which passes through the point A and is A

parallel to a given vector b. Let 7 bethe —
position vector of an arbitrary point P on the
line(Fig11.4). >Y

Then AP isparallel tothevector b, i.e.,
AP=Ab, where X issomerea number. X Fig11.4

]|y
=y

But AP = OP-0A
ie. Ab=F-4a

Conversely, for each value of the parameter A, this equation gives the position
vector of apoint P on the line. Hence, the vector equation of the lineis given by

F=a+ab . (D)
Remark If b=ai +bj +ck, thena, b, ¢ are direction ratios of the line and conversely,
if a, b, c are direction ratios of aline, then b=ai +bj + ck will be the paralel to
the line. Here, b should not be confused with |b|.

Derivation of cartesian form from vector form

L et the coordinates of the given point A be (X, y,, z) and the direction ratios of
the line be a, b, c. Consider the coordinates of any point P be (X, y, 2). Then

F=x +y+zk;id=xi+Yy]+2zK
and b=ai+bj+ck
Substituting these values in (1) and equating the coefficients of I JA and k , we get
X=X +Aa, y=y +Ab z=z+Ac .. (2)
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These are parametric equations of the line. Eliminating the parameter A from (2),
we get

X=X _Y-Y_Z-%

= e - (3

Thisisthe Cartesian equation of the line.

If I, m, n are the direction cosines of the line, the equation of the lineis

X=X _ Y=Y _2Z-%

| m n

Example 6 Find the vector and the Cartesian equations of the line through the point
(5, 2, —4) and which is parallel to the vector 37 + 2 — 8k .
Solution We have
d=5+2]-4k and b=3f +2] -8k
Therefore, the vector equation of thelineis
F=5i+2]-4kK+ A (31 +2]-8K)
Now, I isthe position vector of any point P(X, y, 2) ontheline.
Therefore, Xi+y]+zk=5+2]-4k+A (31 +2]-8K)

(5+30)1+(2+2)) ] +(-4-8L) k

Eliminating A , we get
X=5 y-2 z+4
3~ 2 -8
which is the equation of the line in Cartesian form.

11.3.2 Equation of a line passing through two given points

Let a and b be the position vectors of two Z 2)
points A(x,, y,, z) and B(X,, Y,, 2,), 1 Y2 ’
respectively that arelying onaline (Fig 11.5). *x» ?)

P

Let F be the position vector of an  (x, Vv w
arbitrary point P(x, y, 2), then Pisa point on A/

the line if and only if AP=F-4a and

AB=b-3 arecollinear vectors. Therefore,
Pisonthelineif and only if

F—a=1(b-4a) X Fig 115
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or F=a+A(b-3), L e R. .. (1)
Thisisthe vector equation of the line.
Derivation of cartesian form from vector form
We have

F=xi+yj+zk, a=xi+y,j+zKkand b=xi +y, | +2K,
Substituting these valuesin (1), we get

Xi+y]+zk=xi+y, ]+zk+A[06—%)i+(y, - )]+ (2-2)K
Equating the like coefficients of {, |, k, we get

X=X +A=X)y=y, +A(Y,-Y)2=2+A(2-2)
Onéeliminating A, we obtain

X=X _ Y=Y _2-%4

X=X YomV1 4L—74
which is the equation of the line in Cartesian form.

Example 7 Find the vector equation for the line passing through the points (-1, 0, 2)
and (3, 4, 6).

Solution Let & and b bethe position vectors of the point A (-1, 0, 2) and B (3, 4, 6).
—i+ 2K

Then a=
and b=3i+4]+6k
Therefore b-a=4i + 4] +4k

Let F bethe position vector of any point on theline. Then the vector equation of
thelineis

F=—1+2K+A (41 + 4] +4K)
Example 8 The Cartesian eguation of alineis
X+3 y-5 z+6

2 4 2
Find the vector equation for the line.

Solution Comparing the given equation with the standard form

X=X _Y-W_Z2-4
a b c
We observe that x,=-3,y,=52z=-6a=2,b=4,c=2
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Thus, the required line passes through the point (— 3, 5, — 6) and is parallel to the

vector 2f+4f+2l2. Let r be the position vector of any point on the line, then the
vector equation of the lineis given by

r=(-37+5]-6Kk)+A (21 +4]+2Kk)

11.4 Anglebetween TwoLines Z

LetL, and L, betwo linespassing through theorigin
and with direction ratios a, b,, ¢, and a,, b, c,,
respectively. Let Pbeapoint on L, and Q be apoint
on L,. Consider the directed lines OP and OQ as QL

givenin Fig 11.6. Let 6 be the acute angle between 5 L,
OP and OQ. Now recall that the directed line 0 P v
segments OP and OQ are vectors with components
a, b, c,and a, b, c, respectively. Therefore, the
angle 6 between them is given by X Fig 11.6
a,a, + +c.C
cosO = > 122 l;lbzzclz > . (1)
Jal+b?+c \Ja +bf +C
The angle between the linesin terms of sin 6 is given by
sn6 = ,/1-cos’*O
_ \/1_ (243, + b, +GG,)”
(af +b7 +c7 ) (8 +b5 +¢5)
(@ o + ) (@3 +b5 +2)~(a, + b, 0,
(@2 +07+c?) (a2 +b2 +c3)
_J@b-xb) +Bo-ba)rGan-ca)l

EETET AN R

In case the lines L, and L, do not pass through the origin, we may take

lines L’ andL’, which are parallel to L, and L, respectively and pass through
theorigin.
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If instead of direction ratios for the lines L, and L., direction cosines, namely,
|, m,n forL andl, m,n,forL,aregiven, then (1) and (2) takesthe following form:

cosO =l L,+mm +nn| (asIf+mf+nf=1=17+mi+n3) ..(3

and sno= \/(Ilmz_lzml)z_(mlnz_mzn1)2+(nl|2_n2|1)2 - (4)
Two lines with direction ratios a, bl,
(i) perpendiculari.e. if 6 =90° by (1)
a182 + ble + C1C2 = O
(i) paralei.e if 6=0by (2

a b _¢

a8 b c

Now, we find the angle between two lines when their equations are given. If 0 is
acute the angle between the lines

C, and a, bz, c, ae

then cosO =

In Cartesian form, if 6 is the angle between the lines

X=X _y-yi_z-2
a b o

-

X=X Y=Y, Z2-4
and = = . (2
a, b o @

where, a, b, ¢, and a, b, c,arethedirection ratios of thelines (1) and (2), respectively,
then

aa, +hb,+¢c,
& +bf + ¢ & b+
Example 9 Find the angle between the pair of lines given by
=3 +2] -4k +A( +2] +2K)
=5 2] +u(3f +2] +6K)

cos 0 =

=l

and

=l
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Solution Here by = i +2j+2k and b, = 37 + 2] + 6k
The angle 6 between the two lines is given by

b b, | | (F+2]+2Kk)- (3 +2]+6k)
cosO = |=7=1=
Ib|[b V1+4+49+4+36
~ 3+4+12‘_1_9
3x7 | 21

H 6=cost [
ence = Cos- 21

Example 10 Find the angle between the pair of lines
X+3 y-1 z+3

3 5 4
q X+l y-4 z-5
o 171 2

Solution The direction ratios of the first line are 3, 5, 4 and the direction ratios of the
second lineare 1, 1, 2. If 6 isthe angle between them, then

16 16 _8V3
~J506 5246 15

31+51+4.2
V3 +52 4 42 12 412 4 22

cos 0 =

8+/3
Hence, the required angle is cos*{ 1{}

11.5 Shortest Distance between Two Lines

If two lines in space intersect at a point, then the shortest distance between them is
zero. Also, if twolinesin spaceareparal e, Z

then the shortest distance between them 1
will be the perpendicular distance, i.e. the
length of the perpendicular drawn from a

point on one line onto the cther line. \'\ ¢ F
Further, inaspace, therearelineswhich D E
areneither intersecting nor parallel. Infact, o [~
such pair of lines are non coplanar and C >Y
are called skew lines. For example, let us A B

consider aroom of size 1, 3, 2 unitsalong '
X, y and z-axes respectively Fig 11.7. Fig 11.7
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Theline GE that goes diagonally across the ceiling and the line DB passes through
one corner of the ceiling directly above A and goes diagonally down the wall. These
lines are skew because they are not parallel and also never mest.

By the shortest distance between two lines we mean the join of a point in oneline
with one point on the other line so that the length of the segment so obtained is the
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
thelines.

11.5.1 Distance between two skew lines

We now determine the shortest distance between two skew linesin the following way:
Let | and |, be two skew lines with equations (Fig. 11.8)

a+\b .. (1)
a+ub, @)

Takeany point Son |, with position vector &, and T on |, with position vector &,.
Then the magnitude of the shortest distance vector T

will beegual to that of the projection of ST aong the Q
direction of theline of shortest distance (See 10.6.2). IA

l?

and r

If PQ is the shortest distance vector between
|, and |,, then it being perpendicular to both 61 and

b, , the unit vector 4 along PQ would therefore be

n= —?l X _t.;Z
| b x b, |
Then PQ=dn
where, d is the magnitude of the shortest distance vector. Let 6 be the angle between
ST and PQ. Then

Fig 11.8
. (3

PQ = ST |cos 6|
PO-ST

IPQ|IST|

dn-(a, - &)

=" gst (since ST =&, -4&)

But cos 0 =

= |03 - @‘ [From (3)]
ST [by x|
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Hence, the required shortest distance is
d=PQ=ST |cos 0|
_| (B xb,) . (& -a)
| by x b

or d

Cartesian form
The shortest distance between the lines

X=X/ YW 207

Yooy by o]
X=X Y=Y, Z-12

2y b, )

X=X Yo=Y 4—-4
o a by ¢
& b, )
(B, — b)) +(c,a, ~ Ca)” + (b, — aby)’
11.5.2 Distance between parallel lines
If twolines|, and I,are parallel, then they are coplanar. Let the lines be given by

F=4a+A\b )
and F=4a +ub .. (2
where, 3 is the position vector of apoint Son |, and -
+— (a3)
a, isthe position vector of apoint T on |, Fig 11.9. r_] - L
Asl_, |, arecoplanar, if thefoot of the perpendicular
from T onthelinel N is P, then the distance between the
lines| andl,= |TP|. ®_ op I,
. - S(al)
Let 6 be the angle between the vectors ST and b . Fig 11.9
Then g
b x ST = (|b||ST|sin6)A .. (3)

where 1 is the unit vector perpendicular to the plane of thelines|, and I,

But ST=a-&
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Therefore, from (3), we get

b x(d,-4a) = |b|PT A (since PT = ST sin 6)

e, Ibx (& -a)|= |b|PT-1  (as|A|=1)
Hence, the distance between the given parald linesis
— |bx(@,-a
d=|PT|= %

Example 11 Find the shortest distance between the lines |, and |, whose vector

equations are
F=i+]+A@2I-]+Kk)

~ ~

and F=2

- ()

+]-Kk+u (31 -5] +2K) - )

Solution Comparing (1) and () with r = & + A b, and ¥ = &, + u b, respectively,
+

we get &=i+],b=21-]+k
& =2 +]-Kadb, =3 -5]
Therefore a,-a=i-k
and b xb, = (27 -] +k)x(3( -5]+2k)
]k
=2 -1 1|=3-]-7k
3 5 2
So Io, xb,| = \J9+1+49 = /59

Hence, the shortest distance between the given linesis given by

_|(bxb).(5-8) _]3-0+7]_ 10

| b xb, | V59 /59
Example 12 Find the distance between the lines |, and I, given by
F+2]-4k+A (21 +3]+6K)

3 +3]-5k+un(2i +3]+6K)

d

r

and r
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Solution The two lines are parallel (Why?) We have
4 =i+2]-4k, & = 3{ +3]-5k and b = 2i +3] +6k
Therefore, the distance between the lines is given by

P] ok

oo |Bx@-a)| _| |23 6

Ib] 21

J4+9+36
N _|-91+14]-4k| 293 /293
B /49 Jao 7

|EXERCISE 11.2|

1. Show that the three lines with direction cosines

12 -3 4 4 12 3, 3 -4 12 _
B BB B 1313 1313 13 are mutually perpendicular.

2. Show that theline through the points (1, — 1, 2), (3, 4, —2) is perpendicul ar to the
line through the points (0, 3, 2) and (3, 5, 6).

3. Show that the line through the points (4, 7, 8), (2, 3, 4) is parald to the line
through the points (— 1, - 2, 1), (1, 2, 5).

4. Find the equation of the line which passes through the point (1, 2, 3) and is
paralld to the vector 31 +2 ] -2k .
5. Find the equation of the line in vector and in cartesian form that passes through

the point with position vector 21— j + 4k and isinthedirection i +2 ] — K .

6. Find the cartesian equation of the line which passes through the point (— 2, 4, —5)

X+3 y-4 z+8
5 6
X-5 y+4 z-6
7

8. Find the vector and the cartesian equations of the lines that passes through the
originand (5, -2, 3).

and paralel to theline given by

7. Thecartesian equation of alineis . Write its vector form.
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9. Find the vector and the cartesian equations of the line that passes through the
points (3, —2, -5), (3,— 2, 6).
10. Find the angle between the following pairs of lines:
(i) T=2{-5]+k+A(3 +2]+6Kk) and
F=7i —6k+u(i +2] +2K)
(i) F=3+]-2k+A(i - ]-2K) and
F=2i—]-56k+u(3i 5] —4k)
11. Find the angle between the following pair of lines:
) x—2= y—l= Z+3and x+2= y—4= z-5
2 5 -3 -1 8 4

X z X—-5 -2 z-3
2 2 1 4 1 8
l1-x 7y-14 z-3
2p 2

12. Findthe values of p so that the lines

7-7x_y-5 6-12

and are at right angles.
3p 1 5
13. Show that the lines X;S: y+2:E and xX_Yy_z are perpendicular to
7 -5 1 1 2 3

each other.
14. Find the shortest distance between the lines

F=( +2]+K) + A (i — ] +K) and
F=2{—J—K+u (2 +]+2k)
15. Find the shortest distance between the lines
x+1= y+l= z+1 and x—3: y—5: z-7
7 -6 1 1 -2 1
16. Find the shortest distance between the lines whose vector equations are
F=@{+2]+3K) + 1@ -3]+2K)
and T =41 +5] +6k+u (21 +3] +Kk)
17. Find the shortest distance between the lines whose vector equations are
F=1-t)i +(t-2) ]+ (3-2t)k and
F=(s+Di +(2s-1) ] - (2s+D Kk
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11.6 Plane
A planeisdetermined uniquely if any one of the following is known:

() thenorma to the plane and its distance from the origin is given, i.e., equation of
aplanein normal form.

(i) it passesthrough apoint and is perpendicular to a given direction.
(iii) it passes through three given non collinear points.
Now we shall find vector and Cartesian equations of the planes.
11.6.1Equation of a plane in normal form
Consider a plane whose perpendicular distance from theoriginisd (d # 0). Fig 11.10.

If ON isthe normal from the origin to the plane, and N is the unit normal vector

aong ON . Then ON=d fi . Let P be any z
point on the plane. Therefore, NP is
perpendicular to ON .
Therefore, NP-ON =0 .. (1) P(x,0,2)
Let I bethe postion vector of thepoint P, 7
then NP= 7 — d i (as ON+ NP=0OP) d N
Therefore, (1) becomes (6} 7Y
(r—=dn)-dn=0 X
o Fig 11.10
or (f-dn)-n=0 (d=0)
or F-n—dn-n=0
ie, F-f = (ash-n=1) .. 2

Thisis the vector form of the equation of the plane.
Cartesian form

Equation (2) gives the vector equation of a plane, where R isthe unit vector normal to
the plane. Let P(X, y, 2) be any point on the plane. Then

OP=F=xi+y]+zKk
Let I, m, n be the direction cosines of n. Then

A=li+mj+nk
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Therefore, (2) gives

(xi+yj+zk-(i+mj+nk)=d
i.e, IX+my+nz=d .. (3)
Thisisthe cartesian equation of the plane in the normal form.

Equation (3) showsthat if 7-(ai + b | + ¢ k) = disthe vector equation

of aplane, then ax + by + cz = d is the Cartesian equation of the plane, where a, b
and c are the direction ratios of the normal to the plane.

6
Example 13 Find the vector equation of the plane which is at a distance of E

from the origin and its normal vector from the origin is 2i — 3j°+ 4k . Also find its
cartesian form.

Solution Let fi= 2{ -3 ] +4k. Then
A 20 -3]+4k 2i-3]+4k

|A] ~  J4+9+16 J29

Hence, the required equation of the planeis

A=

F-( 2 1422 i+ 4 QJ: 6

V29 V290 V29 ) V29

Example 14 Find the direction cosines of the unit vector perpendicular to the plane
(61 —3]-2K)+1 = 0 passing through the origin.

Solution The given equation can be written as
F-(-61+3j+2k)=1 - ()

Now |-6f +3]+2K|= /36+9+4=7
Therefore, dividing both sides of (1) by 7, we get

r.(_6f+3j+2|2j=l

2

- K is a unit vector perpendicular to the

plane through the origin. Hence, the direction cosinesof N are -6 ,
7

~Nw
~N N
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Example 15 Find the distance of the plane 2x — 3y + 4z— 6 = 0 from the origin.

Solution Since the direction ratios of the normal to the plane are 2, -3, 4; the direction
cosines of it are

2 -3 4 2 -3 4
\/22+(_3)2+42 '\/22+(_3)2+42 ’\/22+(_3)2+42 ,1.e, /25 J29' V29
Hence, dividing theequation 2x—3y +4z—6=0i.e,, 2x—3y + 4z = 6 throughout by
J29, we get

2 -3 4 6
— Xt =Y+t —=2=——
N RN RN - RN
Thisisof theform Ix + my + nz = d, where d is the distance of the plane from the

origin. So, the distance of the plane fromthe origin is % :

Example 16 Find the coordinates of the foot of the perpendicular drawn from the
origintothe plane2x—3y + 4z—6 = 0.

Solution Let the coordinates of the foot of the perpendicular P from the origin to the
planeis (x;, y,, ) (Fig 11.11).

Z
Then, the direction ratios of the line OP are N
X, Y 4 P y0z)
Writing the equation of the planein the normal .
form, wehave N\ V.
2 . 3 v+ 4 o 6 o
J29" V297 29 TV VARG
where, —2—,—— % are the direction X
T 29" 29" V29
cosines of the OP. Fig 11.11
Since d.c.'s and direction ratios of aline are proportional, we have
X _ N _ 4 _y
2 = -3 4 -
V29 Y29 V29
2k -3k 4k

l.e, Xl:E'ny’zl E
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6
Substituting these in the equation of the plane, we get k = NeR
Hence, the foot of the perpendicular is 2 E %
29 29 ' 29

If disthe distance from the origin and |, m, n are the direction cosines of

the normal to the plane through the origin, then the foot of the perpendicular is
(Id, md, nd).

11.6.2Equation of a plane perpendicular to a z

given vector and passing through a given point
In the space, there can be many planes that are
perpendicular tothegiven vector, but through agiven
point P(x,, y,, z,), only one such plane exists (see
Fig11.12).

Let aplane pass through apoint A with position
vector a and perpendicular to the vector N.

P(xl’ yl’ zl)

X Fig 11.12

Let 7 be the position vector of any point P(x, y, Z) in the plane. (Fig 11.13).
Then the point P liesin the plane if and only if %

AP is perpendicular to N. i.e, AP.N= 0. But

AP=F-a. Therefore, (F—3)-N=0 .. (D

Thisisthe vector equation of the plane. <

Cartesian form o)
Letthegivenpoint A be(x,,y,, z), Pbe(x,y, 2) X

and direction ratiosof N are A, B and C. Then, Fig 11.13

a=xi+y,j+zk r=xi+yj+zk and N=AT+Bj+Ck

Now (f-a)-N=0
So [(x—>(1)f+(y—y1)i+(z—zl)I2]-(Af+Bf+CI2)=0
ie AXx-x)+By-y)+C(z-2)=0

Example 17 Find the vector and cartesian equations of the plane which passes through
the point (5, 2, —4) and perpendicular to the line with direction ratios 2, 3, — 1.
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Solution We have the position vector of point (5, 2, —4) as §=5{ +2 ] -4k and the
normal vector N perpendicular to the plane as N =27 +3] -k
Therefore, the vector equation of the planeisgiven by (rF-a).N =0
or [F-(51+2]-4K)]- (2 +3]- k)=0 (D)
Transforming (1) into Cartesian form, we have

[(x=5)i +(y—2) ] +(z+4)K]- (21 +3]-K)=0
or 2(x=-5+3(y-2)-1(z+4)=0

ie 2Xx+3y—-z=20
which is the cartesian equation of the plane.

11.6.3 Equation of a plane passing through three non collinear points

Let R, Sand T bethree non collinear points on the plane with position vectors &, b and
crespectively (Fig 11.14).

Fig 11.14

The vectors RS and RT arein the given plane. Therefore, the vector RS x RT

isperpendicular to the plane containing pointsR, Sand T. Let I’ bethe position vector
of any point Pin the plane. Therefore, the equation of the plane passing through R and

perpendicular to the vector RSxRT is
(F-a)-(RSx RT) =0

or (F—&)x[(b-a)x(c-a)] =0 (D
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Thisisthe equation of the planein vector form passing through three noncollinear
points.

Why was it necessary to say that the three points A

had to be non collinear? If the three points were on the same
line, then there will be many planes that will contain them
(Fig11.15).

These planes will resemble the pages of a book where the
line containing the points R, Sand T are membersin the binding
of the book.

Cartesian form Fig 11.15

Let (X, Y, Z), (X, Y, 2) and (X,, Y., Z) be the coordinates of the pointsR, Sand T
respectively. Let (X, Y, 2) be the coordinates of any point P on the plane with position
vector 7. Then

RP=(X=x)[ +(y-y)] +(Z-2) k
RS=0,—X)[ +(V,—¥) ] +(z-2) k

RT =06=x){+(-y) ] +(z-2) k
Substituting these valuesin equation (1) of the vector form and expressing it in the
form of a determinant, we have

X=X, Y=Y Z—-Z4
X=X Yo=¥ %-7|=0
X3=X Y= 44
whichisthe equation of the planein Cartesian form passing through three non collinear
points (x,, ¥;, 2), (X, ¥, Z) and (X, ¥, Z,)-
Example 18 Find the vector equations of the plane passing through the points
R(2,5,-3),S(-2,—-3,5) and T(5, 3—3).
Solution Let a=2 +5] -3k, b=-2(-3]+5k, c¢=5i+3]-3k
Then the vector equation of the plane passing through 5, b and ¢and is
givenby
(F-&)-(RSxRT) =0  (Why?)
or (f-a)-[(b-a)x(c-a)] =0
ie. [F—(2f +5] —3K)]-[(~4i —8] +8K)x (31 —2])] =0
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11.6.4 Intercept form of the equation of a plane

In this section, we shall deduce the equation of aplanein terms of the intercepts made
by the plane on the coordinate axes. Let the equation of the plane be

Ax+By+Cz+D=0 (D#0) - Q)
Let the plane make intercepts a, b, c on x, y and z axes, respectively (Fig 11.16).
Hence, the plane meets x, y and z-axes @ (a, 0, 0), Z
(0, b, 0), (O, O, c), respectively.
-D
Therefore Aa+D=00rA= o
b - _ D Y
Bb+D=0o0rB= b Q (0.6.0)
-D P (a,0,0)
Cc+D=00orC= —
c X .
Substituting these values in the equation (1) of the Fig 11.16
plane and ssimplifying, we get
Xy z
—+24+—-— =1 (1
a b c @)

which is the required equation of the plane in the intercept form.

Example 19 Find the equation of the plane with intercepts 2, 3 and 4 on the %, y and
Z-axis respectively.

Solution Let the equation of the plane be

! e
a b c
Here a=2,b=3c=4
Substituting the values of a, b and c in (1), we get the required equation of the

planeasg+%+§:1 or 6x + 4y + 3z=12.

11.6.5 Plane passing through the intersection
of two given planes

Let m, and ©t, be two planes with equations
r-n, =d and r-A, =d, respectively. Theposition
vector of any point on the line of intersection must
satisfy both the equations (Fig 11.17).




486 MATHEMATICS

If t isthe position vector of apoint on theline, then
t-A =dad t-A, =d,
Therefore, for al real values of A, we have
t-(A,+AA,) = d +Ad,
Since t isarbitrary, it satisfies for any point on the line.
Hence, the equation T - (i, +An,)=d, +Ad, represents a plane mt, which is such

that if any vector 7 satisfies both the equations 7, and ., it also satisfies the equation
7, i.€., any plane passing through the intersection of the planes

F-A, = dyand 7 -fi,=d,
has the equation r-(A,+Af,)=d, + Ad, -~ @
Cartesian form

In Cartesian system, let

M = Ai+B,]+Ck
A, = A,i+B, j+C,k
and F= Xi+y]+zk

Then (1) becomes

XA+ AA)+y(B,+ AB) +z(C + AC)=d + Ad,
or (Ax+By+Cz-d)+ AAx+B,y+Cyz-d)=0 (2
which is the required Cartesian form of the equation of the plane passing through the
intersection of the given planes for each value of A.

Example 20 Find the vector equation of the plane passing through the intersection of
theplanes 7 - ({+ ] +k)=6and 1 - (2 +3] +4k)=—5,and the point (1, 1, 1).

Solution Here, fy=1+j+k and fi, = 27 +3]+4k;

and d=6andd,=-5

Hence, using the relation 1 - (i, +Af,)=d, +Ad,, we get

[T+ +k+A (2 +3]+4k)] = 6-5)

!

or

=l

J@+20)F +(@+3R) | +(L+40)K] = 6-51 (D)

where, A is some real number.
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Teking F=xi+y]+zk, we get
(Xi + Y] +2ZK)[(1+20)F +(1+3R) |+ (L+41)K]=6-5A
or QA+20)x+(Q1+3N)y+(1+4A)z=6-5\
or (X+y+z—6)+A (2x+3y+4z+5 =0 .. (2)
Given that the plane passes through the point (1,1,1), it must satisfy (2), i.e.
1+1+1-6)+A(2+3+4+5=0

3
or =1
Putting the values of A in (1), we get
rl[ 143 o202 j+ 142k | = 615
7 14 7 14
or F EiA+§’f+EI2 -9
7 147 7 14
or 7 - (201 +23]+26K) =69
which is the required vector equation of the plane.
11.7 Coplanarity of TwoLines
Let the given lines be
F= éi+k61 .. (1)
and F = &,+ub, - (2

Theline (1) passes through the point, say A, with position vector & andis parallel
to 61 . Theline (2) passesthrough the point, say B with position vector &, andisparallel
to b, .

Thus, AB =&,-3

The given lines are coplanar if and only if AB is perpendicular to b xb, .

ie. AB.(bxb,) =0or (8,- &) (bxb,) =0

Cartesian form

Let (x,, Y,, z) and (X,, ¥,, ) be the coordinates of the points A and B respectively.
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Leta, b, c, and a, b, c, be the direction ratios of b and b,, respectively. Then

AB=(%—%)+(¥,~ ;) [+(z,-z)k
b=ai+h j+ckand b,=a,i +b, j+c,k
The given lines are coplanar if and only if AB-(byxb, )=0. Inthe cartesian form,
it can be expressed as
=X Y= L4
a b, ¢ |=0 .. (4
a b, G
Example 21 Show that the lines
x+3= y—l= z-5 and x+1= y—2= z-5
-3 1 5 -1 2
Solution Here,x, =—-3,y,=1,z =5,a =-3, b1=1, c,=5
X, ==1y,=2,2,=54a=-1,b,=2,¢,=5
Now, consider the determinant
=% Y% %-z |2 10
a b ¢ |=3 1 5=0
a b, G =125
Therefore, lines are coplanar.

11.8 Angle between Two Planes

Definition 2 The angle between two planes is defined as the angle between their
normals (Fig 11.18 (a)). Observe that if 6 is an angle between the two planes, then so
is 180 — 6 (Fig 11.18 (b)). We shall take the acute angle as the angles between
two planes.

angle between the normals
Plane 1 . =[90 - (90 -0)] '
nl

7
/ e(e/ao-e"' /N ‘ﬂﬁ‘

are coplanar.

Plane 2 180 -0

the angle between
the planes
(b)
(@ _
Fig 11.18
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If A, and i, are normals to the planes and 6 be the angle between the planes

F-i=dadf.f,=d,.
Then 6 is the angle between the normals to the planes drawn from some common
point.
i, - i,

We have, cos0=|—""—>"—
| A, | |7, |

|@=— Note | The planes are perpendicular to each other if A,.A, = 0 and parallel if
n, isparallel to n, .

Cartesian form Let 6 be the angle between the planes,
A x+By+Cz+D =0and Ax+B,y+C,z+D,=0
The direction ratios of the normal to the planesare A, B,, C, and A, B,, C,
respectively.
AA,+B;B,+C,C,
JAZ+B2+C2 || AZ+B2+C2

Therefore, cos 0 =

1. If the planes are at right angles, then 6 = 90° and so cos 6 = 0.
Hence, cos6 = AA,+BB,+CC,=0.
A B _GC

2. If the planes are paralldl, then = = —L =1,
A2 BZ CZ

Example 22 Find the angle between the two planes2x+y—2z=5and 3x—6y —2z=7
using vector method.

Solution The angle between two planes is the angle between their normals. From the
equation of the planes, the normal vectors are

Ni=2i+j-2kand N.=3{-6]-2k

@ +j-2k-BI-6]-2K| (4
JA+1+4 \J9+36+4 21

Ni-N2
I Nz | [Nz |

4
—_ -1 —
Hence 0 = cos (21)

Therefore cos O =
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Example 23 Find the angle between the two planes 3x — 6y + 2z =7 and 2x + 2y — 2z =5.
Solution Comparing the given equations of the planes with the equations
A x+B y+C z+D,=0and A,x+B,y+C,z+D,=0
We get A =3B,=-6C =2
A,=2,B,=2,C,=-2
3x2+(-6) (2) +(2) (-2

cos O =
‘ \/(32 +(=6)? + (-2) (22 + 22 +(-2)°)

| <10 | 5 53
Tl7x23] 73 21
3
Therefore, 0 = cos? (%J

11.9 Distanceof a Point from a Plane

Vector form

Consider a point P with position vector 3 and a plane ©, whose equation is
r-n=d(Fig11.19).

V4
z 1
0 th
0
Q P
P z
- N'
a N’ N ->Y
o T o (8) u
W€ \_’j 1
X
(a) X (b)
Fig 11.19

Consider a plane 7, through P parallel to the plane m,. The unit vector normal to
m,is N. Hence, its equationis (7 — d)-A=0
i.e, r-n=a-n

Thus, thedistance ON’ of thisplanefromtheoriginis |a - fi|. Therefore, thedistance
PQ from the plane i, is (Fig. 11.21 (a))

ie, ON-ON’ = |d— &-fA|
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which is the length of the perpendicular from a point to the given plane.
We may establish the similar results for (Fig 11.19 (b)).

1. If the equation of the plane i, isin the form F-N=d,where N isnormal

to the plane, then the perpendicular distanceis % :
2. Thelength of theperpendicular fromoriginOtotheplane 7 - N = d is %

(since a =0).

Cartesian form

Let P(x,, y,, ) be the given point with position vector a and
Ax+By+Cz=D

be the Cartesian equation of the given plane. Then

da=xi+y]+zk
N=Ai+Bj+Ck

Hence, from Note 1, the perpendicular from P to the planeis

(xi+y,j+zKk)-(Ai+B J°+CI2)—D|
\J A% +B? + C? ‘
A4+Bm+C4—ﬂ
JA? +B? + C? \
Example 24 Find the distance of a point (2, 5, — 3) from the plane
F(6i-3]+2k) =4

Solution Here, d=21+5]-3k, N=6i -3] +2kandd = 4.
Therefore, the distance of the point (2, 5, — 3) from the given planeis
(27 +5]-3Kk)-(67 -3+ 2k) -4 |12-15-6-4| _13

|61 —3] +2K| - [6+9+4 7
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11.10 Anglebetween aLineand a Plane

the complement of the angle between the line and
normal to the plane (Fig 11.20). ) /
Vector form If the equation of the line is / 20-6

f =d+Ab and the equation of the plane is

Definition 3 Theangle between alineand aplaneis ~ Normal—> //L
me

Pl
r-f=d. Thentheangle 6 between the line and the ane
normal to the planeis Fig 11.20

) b
CoSO = |75 1=,
|b|-In]

and so the angle ¢ between the line and the planeis given by 90 -6, i.e,,
sin (90 —-6) = cos 6

ol
ol

. _ ‘ b-A
ie sng=|—=

bll

o1
or¢= sin

El

|b| A

Example 25 Find the angle between the line
X+1 'y _z-3

2 ~3 6
andtheplane10x+2y—11z=3.

Solution Let 6 be the angle between the line and the normal to the plane. Converting the
given equations into vector form, we have

F=(-1+3K)+A (27 +3]+6Kk)

and F.(10f +2 ] -11k) =3
Here b=21 +3]+6k and A=10{+2 ] -11k
no (27 +3]+6Kk)-(101 +2 ] -11Kk)
sSne =
2+ 3+ 6 107 + 22 +17°

-8
21

- 40
7x15

_ 8 _ .18
=5 Oro=sin (21)
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| EXERCISE 11.3]
In each of the following cases, determine the direction cosines of the normal to
the plane and the distance from the origin.
(@ z=2 (b) x+y+z=1
(c) 2x+3y—-z=5 (d 5y+8=0
Find the vector equation of a plane which is at a distance of 7 units from the

origin and normal to the vector 3§ +5 j — 6 k-

Find the Cartesian equation of the following planes:
@ 7-(+]-Kk=2 (b) 7-(2f +3] - 4k)=1

(© FT-[(s-2)7+(3-1) ] +(2s+t)k] =15

In the following cases, find the coordinates of the foot of the perpendicular

drawn from the origin.

() 2x+3y+4z-12=0 (b) 3y+4z-6=0

(c) x+y+z=1 (d 5y+8=0

Find the vector and cartesian equations of the planes

(a) that passes through the point (1, 0, — 2) and the norma to the plane is
P+ - k.

(b) that passes through the point (1,4, 6) and the normal vector to the planeis
F—2]+k.

Find the equations of the planes that passes through three points.

@ (1,1,-12), (6,4,-5),(-4,-2,3)

(b (1,1,0),(1,2,1),(-2,2,-1)

Find the intercepts cut off by the plane2x + y—z=5.

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX
plane.

Find the equation of the plane through the intersection of the planes
AX—-y+2z-4=0andx+y+z—2=0and the point (2, 2, 1).

Find the vector equation of the plane passing through the intersection of the
planesF (27 +2 ] -3k) =7,F.(21 +5] + 3k ) = 9andthroughthepoint
(2,1,3).

Find the equation of the plane through the line of intersection of the
planesx + y+ z=1and 2x + 3y + 4z = 5 which is perpendicular to the plane
X—-y+z=0.
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12. Find the angle between the planes whose vector equations are
F(2f +2]-3K)=5ad F-(3{ -3]+5Kk) =3
13. In the following cases, determine whether the given planes are parallel or
perpendicular, and in case they are neither, find the angles between them.
(@) 7x+5y+6z+30=0 and 3x-y—-10z+4=0
(b) 2x+y+3z-2=0 and x—-2y+5=0
() 2x—2y+4z+5=0 and 3x—-3y+6z—1=0
(d 2x-y+3z-1=0 and 2x-y+3z+3=0
(e) 4x+8y+2z-8=0 ady+z-4=0

14. In the following cases, find the distance of each of the given points from the
corresponding given plane.

Point Plane
(@ (0,0,0) X—-4y+12z=3
b)) 3B,-2,1) 2X—-y+2z+3=0
(c) (2,3,-5) X+2y—2z=9
(d (-6,0,0) 2x—-3y+6z2-2=0

Miscellaneous Examples
Example 26 A linemakesangles o, B,y and & with the diagonals of acube, prove that

4
coszoc+cosz[3+coszy+00526:§

Solution A cubeisarectangular parallel opiped having equal length, breadth and height.
Let OADBFEGC be the cube with each side of length a units. (Fig 11.21)

The four diagonals are OE, AF, BG and CD. Z
Thedirection cosines of the diagonal OE which (0.0
isthelinejoining two points O and E are 0,0, a)F(o, a, a)
(@,0,a0) G
a-0 a-0 a-0 E(a,a,0)
Ja2+a?+a® Ja?+a?+a® vai+a?+al

IY
o B(0, 4, 0)
A(a, 0,0) D(a, a, 0)

_ 1 1
e, =, =,
V3 V3 V3 Fig 11.21
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-1 1 1
Similarly, the direction cosines of AF, BGand CD are =, ——, —; —
Y B B BB
BB MR BB v

Let I, m, n bethe direction cosines of the given line which makes angles o, 3, v, &
with OE, AF, BG, CD, respectively. Then
1

coso =—3 (I+wn);cosB=j§(—|+m+n);

cosy = jé(l —m+n); cosd = \/1§(I +m-n) (Why?)

Squaring and adding, we get
cosfo + cos® B + cos’ y + cos’ O

=% [(+m+n)2+H+m+n)?] +(—=m+n)2+ (I + m-—n)?

1 4
=§[4(I2+mz+n2)]=§ (asl?+ P+ n*=1)

Example 27 Find the eguation of the plane that contains the point (1, — 1, 2) and is
perpendicular to each of the planes2x+ 3y —2z=5and x + 2y —3z=8.

Solution The equation of the plane containing the given point is
AX-1)+By+1)+C((z-2=0 - Q)
Applying the condition of perpendicularly to the plane given in (1) with the planes
2x+3y—2z=5and x + 2y — 3z = 8, we have
2A+3B-2C=0andA +2B-3C=0
Solving these equations, we find A = — 5C and B = 4C. Hence, the required
equationis
-5C(x-1)+4C(y+1)+Cz-2)=0
i.e. 5x—4y—-z=7
Example 28 Find the distance between the point P(6, 5, 9) and the plane determined
by thepointsA (3,-1,2),B (5, 2,4) and C(- 1, -1, 6).
Solution Let A, B, C bethethree pointsinthe plane. D isthefoot of the perpendicular
drawn from a point P to the plane. PD isthe required distance to be determined, which

isthe projection of AP on AB x AC.
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Hence, PD = the dot product of AP with the unit vector along AB x AC.

So AP =3{ +6]+7K
o]k
and AB x AC = | 2 3 2 =127 -16] +12K
-4 0 4
Unit vector dong AB x AC = m
g X = \/a
Hence PD = (37+6]+7Kk). 3 ~41+3K
V34
_ 3V34
17

Alternatively, find the equation of the plane passing through A, B and C and then
compute the distance of the point P from the plane.

Example 29 Show that the lines
x-a+d y-a z-a-d
o-29 o o+90

Xx-b+c y-b z-b-c
and = = . are coplanar.

B-v p P+

Solution

Here x =a-d X,=b-c
y,=a y,= b
z=a+d z=Db+c
a=0-9 a=p-y
b =« b,=
c,=a+3d c,=B+y

Now consider the determinant
X=X Y=Y %&-Z4 b-c-a+d b-a b+c-a-d
& by ¢ || a-38 o o+
& b, ) B-v B B+y
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Adding third column to the first column, we get
b-a b-a b+c-a-d
2| « o o +9d =0

p p P+y

Since the first and second columns are identical. Hence, the given two lines are
coplanar.

Example 30 Find the coordinates of the point where the line through the points
A (3,4, 1) and B(5, 1, 6) crosses the XY -plane.

Solution The vector equation of the line through the points A and B is
F=31+4]+k+A[(5-3)0 +(1-4)]+(6-1)K]
ie. F=3i+4]+k+A (21 -3]+5k) (D
Let P be the point where the line AB crosses the XY -plane. Then the position
vector of the point Pisof theform xi +y j.
This point must satisfy the equation (1).  (Why ?)

ie. Xi+y] = (3+2A)1 +(4-3%) ]+ (1+51)K
Equating the like coefficients of {, | and k , we have
X=3+2A
y=4-3A
0=1+5A
Solving the above equations, we get
13 23
x=—and y=—
5 5
_ _ _ 13 23
Hence, the coordinates of the required point are [5 e 0).

Miscellaneous Exercise on Chapter 11

1. Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the
line determined by the points (3, 5,— 1), (4, 3, - 1).

2. If1, m,n andl, m, n,arethe direction cosines of two mutually perpendicular
lines, show that the direction cosines of the line perpendicular to both of these

ae mnm-myn, nl,-nl, lpm-1,m
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10.

11.

12.

13.

14.

15.

16.

17.
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Find the angle between the lines whose direction ratios are a, b, ¢ and
b-c,c—a a-hb.

Find the equation of aline parallel to x-axis and passing through the origin.

If the coordinates of the pointsA, B, C,D be (1, 2, 3), (4,5, 7), (-4, 3,—6) and
(2, 9, 2) respectively, then find the angle between the lines AB and CD.

x-1 _ y—2= z-3 and x—l= y—1= z—-6
-3 2k 2 3k 1 -5

find the value of k.

Find the vector equation of theline passing through (1, 2, 3) and perpendicular to

theplane 7 . (f +2 ] -5K)+9=0.

Find the equation of the plane passing through (&, b, ¢) and parallel to the plane

P+ ] +K) = 2.

If thelines areperpendicular,

Find the shortest distance between lines F=61 +2 ] + 2K+ A (i = 2 ] + 2K)

and 7 =—4i —K+p (3 -2]-2Kk).
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4,1)
crosses the YZ-plane.

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1)
crosses the ZX-plane.

Find the coordinates of the point where the line through (3, — 4, — 5) and
(2,-3,1) crossestheplane 2x +y +z=7.

Find the equation of the plane passing through the point (— 1, 3, 2) and perpendicular
to each of the planesx + 2y + 3z=5and 3x + 3y + z=0.

If the points (1, 1, p) and (- 3, 0, 1) be equidistant from the plane
F-(31 +4 ] —12K) +13=0, then find the value of p.

Find the equation of the plane passing through the line of intersection of the
planes 7 - (i + ] +k)=1and 7 - (21 +3 ] —K) + 4=0 and parallel to x-axis.

If O bethe origin and the coordinates of P be (1, 2, —3), then find the equation of
the plane passing through P and perpendicular to OP.

Find the equation of the plane which containstheline of intersection of the planes
F-(f+2]+3K)-4=0,7-(21 + ] —K) + 5=0andwhichisperpendicular to the
plane 7. (51 +3 ] —6k) +8=0.
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Find the distance of the point (— 1, —5, — 10) from the point of intersection of the
liner=2i - J+2k+A (3 +4]+2k)andtheplane 7 - (i — ] + k) =5.

Find the vector equation of the line passing through (1, 2, 3) and parallel to the
planes 7-(f — j+2K)=5 and 7- (31 + ] +K) =6.

Find the vector equation of the line passing through the point (1, 2, — 4) and
perpendicular to thetwo lines:

x-8 y+19 z-10 x-15 y-29 z-5
= = and = = .

3 -16 7 3 8 -5
Prove that if aplane hastheintercepts a, b, c and is at adistance of p unitsfrom
the origin, then iz + b_12 + ciz = # .

Choose the correct answer in Exercises 22 and 23.

22.

23.

Distance between the two planes: 2x + 3y + 4z=4 and 4x + 6y + 8z= 12 is

: . : 2 .
A) 2units B) 4units C) 8units D) —— units
(A) (B) © (D) N
The planes: 2x—y + 4z=5and 5x — 2.5y + 10z= 6 are
(A) Perpendicular (B) Pardld
(C) intersect y-axis (D) passes through (0,0,i)
Summary

Direction cosines of a line are the cosines of the angles made by the line
with the positive directions of the coordinate axes.

If I, m, n are the direction cosines of aline, then 12 + n? + n? = 1.
Direction cosines of alinejoining two points P(x,, y;, ) and Q(X,, ¥,, Z,) are

%=X Yooh -4

PQ " PQ T PQ

where PQ = (x, — x)? +(y, - Y)? + (2, - 2.]
Direction ratios of a line are the numbers which are proportional to the
direction cosines of aline.

If I, m, n are the direction cosines and a, b, ¢ are the direction ratios of aline
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then
b c
,; m= ,n=
Ja2 +b% + ¢ Ja? +b% + ¢ Ja? +b% + ¢
Skew lines are lines in space which are neither parallel nor intersecting.
They liein different planes.

Angle between skew lines is the angle between two intersecting lines
drawn from any point (preferably through the origin) parallel to each of the
skew lines.

If 1, m,n andl, m, n, arethe direction cosines of two lines; and 0 isthe
acute angle between the two lines; then

cosd = ||1|2 +mm, + n1n2|
If a, b, c, and &, b, c, are the direction ratios of two lines and 6 is the
acute angle between the two lines; then
_ aa,+hb+c¢c
Ve + b+ f i+ b+
Vector equation of aline that passes through the given point whose position

cosO

vector is @ and parallel toagivenvector b isF=a+Ab .
Equetion of aline through apoint (x,, y,, ) and having direction cosines|, m, nis
X=%_Y-"MN_2-4
| m n
The vector equation of alinewhich passesthrough two pointswhose position

vectorsare @ and b isF=a+ A (b - a).
Cartesian equation of aline that passes through two points (x,, y,, z) and

ic X=X Y- _2-14
(X, Y, Z) is = = .
’ =% Yo~W Z-2%
If © is the acute angle between 7 =4 +Ab and r=4&,+Ab,, then
cose=%
1B [ [b, |
XX Y W _Zma X=X Y-V, Z-%
ly m, n I m, n,

are the equations of two lines, then the acute angle between the two linesis
givenby cos® =|l.I,+ mm, +nn,|
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Shortest distance between two skew lines is the line segment perpendicul ar
to both the lines.

Shortest distance between F =& +Ab and F =&, +ub, is
(leﬁg)'@z—al)‘
|k xb, |

= Y=t Z=a
a, b, ]

Shortest distance between the lines: X

X=X% _Y=Y _2-% .
a, b, C,

NX=% Y= -4
& by G
% b, G

Jbie, —b,0)? + (3, — a)? + (ah, — ahy)?

Distance between parallel lines F =& +Aband F = &, +pbis

bx (3, &)

'@Jl

T

In the vector form, equation of a plane which is at a distance d from the
origin, and N is the unit vector normal to the plane through the origin is
r-n=d.

Equation of aplanewhichisat adistance of d from the origin and the direction
cosines of the normal to the planeasl, m, nisIx+ my + nz=d.

The equation of a plane through a point whose position vector is a and
perpendicular to the vector N is (7 —d).N=0.

Equation of aplane perpendicular to agiven linewith directionratiosA, B, C
and passing through a given point (x,, y,, Z) is

Ax=x)+B(y-y)+C(z-2)=0
Equation of a plane passing through three non collinear points (x,, y,, ),
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(X, ¥, 2) and (x;, Y,, Z) is

X=X Y-Y% Z-12Z

X=X Yo=Y %474 =0

X3=X% Ys=Y1 L -4
Vector equation of a plane that contains three non collinear points having
position vectors &, b and € is (F —a) .[(b-&d)x(c-4a)]=0
Equation of a plane that cuts the coordinates axes a (a, 0, 0), (0, b, 0) and
(0,0,¢)is

§+X+E=1
a b c¢

Vector equation of a plane that passes through the intersection of
planest-f, =d, andF-f, =d, isr-(f, +Af,)=d, + Ad,, where A isany
nonzero constant.
Vector equation of a plane that passes through the intersection of two given
planes A x+B,y+C z+D =0and A, x+B,y+C,z+D,=0
is(A,x+B, y+C z+D)+AA,x+B,y+C,z+D,)) =0.
TwoplanesF = & +Ab and F = &, +u b, are coplanar if
(8, -4&) (b xb,) =0
Twoplanesa, x+b, y+c z+d =0anda,x+b,y+c,z+d,=0are
X=X Yo ¥ L4
coplanar if & by G | =o
a, b, c,
In the vector form, if 6 istheangle between thetwo planes, r-f, =d; and

F'ﬁzzdz,thme:ms_lw-
il
The angle ¢ between theline r =a+Aband theplane r-A=dis

b-A

nNo=|—=-—
lb{[n]
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The angle 6 between the planes A x + By + Cz+ D, =0 and
A,x+B,y+C,z+D,=0isgiven by

A A, +B; B, +C, C,
JAZ+B?+C2 A2+ B2 +C2

cosO =

The distance of apoint whose position vector is a fromtheplane F-fni=d is
|d-a-n|

The distance from a point (x, y,, ) to the plane Ax + By + Cz+ D = 0is
Ax, +By; +Cz + D

J A% + B2 + C?

—_— e —



Chapter 12
(LINEAR PROGRAMMING)

+» The mathematical experience of the student is incomplete if he never had
the opportunity to solve a problem invented by himself. — G. POLYA <

12.1 Introduction

In earlier classes, we have discussed systems of linear
equations and their applicationsin day to day problems. In
Class X1, we have studied linear inequalities and systems
of linear inequalitiesin two variablesand their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solvesomereal life problems of thetype asgiven below:

A furniture dealer dealsin only two items—tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs 500. He estimates that from the sale of one table, he i aii
can make a profit of Rs 250 and that from the sale of one L.Kantorovich
chair aprofit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money so asto maximise histotal profit, assuming that he can sell al
the items which he buys.

Such type of problemswhich seek to maximise (or, minimise) profit (or, cost) form
a general class of problems called optimisation problems. Thus, an optimisation
problem may involve finding maximum profit, minimum cost, or minimum use of
resources etc.

A special but avery important class of optimisation problemsislinear programming
problem. The above stated optimisation problem isan example of linear programming
problem. Linear programming problems are of much interest because of their wide
applicability inindustry, commerce, management science etc.

Inthischapter, we shall study somelinear programming problemsand their solutions
by graphical method only, though there are many other methods also to solve such
problems.

S
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12.2 Linear Programming Problem and itsM athematical For mulation

We begin our discussion with the above exampl e of furniture dealer which will further
lead to amathematical formulation of the problemin two variables. In thisexample, we
observe

(i) Thededer caninvest hismoney inbuying tablesor chairsor combination thereof.
Further he would earn different profits by following different investment
strategies.

(i) There are certain overriding conditions or constraints viz., hisinvestment is
limited to a maximum of Rs 50,000 and so is his storage space which isfor a
maximum of 60 pieces.

Suppose he decidesto buy tables only and no chairs, so he can buy 50000 + 2500,
i.e., 20 tables. His profit in this case will be Rs (250 x 20), i.e., Rs 5000.

Suppose he choosesto buy chairsonly and no tables. With hiscapital of Rs 50,000,
he can buy 50000 + 500, i.e. 100 chairs. But he can store only 60 pieces. Therefore, he
isforced to buy only 60 chairs which will give him atotal profit of Rs (60 x 75), i.e.,
Rs 4500.

There are many other possibilities, for instance, he may choose to buy 10 tables
and 50 chairs, as he can store only 60 pieces. Total profit in this case would be
Rs (10 x 250 + 50 x 75), i.e., Rs 6250 and so on.

We, thus, find that the dealer can invest hismoney in different ways and hewould
earn different profits by following different investment strategies.

Now the problem is: How should he invest his money in order to get maximum
profit? To answer this question, let ustry to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem
Let x be the number of tables and y be the number of chairs that the dealer buys.
Obvioudly, x and y must be non-negative, i.e.,

x>0
y=0

-~ @
(2

The dealer is constrained by the maximum amount he can invest (Here it is
Rs 50,000) and by the maximum number of items he can store (Hereit is 60).

Stated mathematically,

2500x + 500y < 50000 (investment constraint)
or ox +y <100 - (3
and X+y <60 (storage constraint) - (4

} (Non-negative constraints)
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The dealer wantsto invest in such away so asto maximise his profit, say, Z which
stated as afunction of x and y is given by

Z = 250x + 75y (called objective function) .. (5
Mathematically, the given problems now reducesto:
Maximise Z = 250x + 75y
subject to the constraints:
5x +y <100

X+y<60
x20,y=>0

So, we haveto maximisethelinear function Z subject to certain conditions determined
by aset of linear inequalitieswith variables as non-negative. There are also some other
problems where we have to minimise a linear function subject to certain conditions
determined by aset of linear inequalitieswith variables as non-negative. Such problems
are called Linear Programming Problems.

Thus, a Linear Programming Problem is one that is concerned with finding the
optimal value (maximum or minimum value) of alinear function (called objective
function) of several variables(say x andy), subject to the conditionsthat the variables
are non-negative and satisfy a set of linear inequalities (called linear constraints).
The term linear implies that all the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programme or plan of action.

Before we proceed further, we now formally define some terms (which have been
used above) which we shall be using in the linear programming problems:

Objective function Linear function Z = ax + by, where a, b are constants, which has
to be maximised or minimized is called alinear objective function.

Inthe aboveexample, Z = 250x + 75y isalinear objectivefunction. Variablesx and
y are called decision variables.

Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditionsx> 0,y > 0 are
called non-negativerestrictions. In the above example, the set of inequalities (1) to (4)
are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subject to certain constraints as determined by
a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems. The above problem of investing a
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given sum by the dealer in purchasing chairsand tablesisan exampl e of an optimisation
problem aswell as of alinear programming problem.

Wewill now discuss how to find solutionsto alinear programming problem. Inthis
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems

In Class X1, we have learnt how to graph asystem of linear inequalitiesinvolving two
variables x and y and to find its solutions graphically. Let us refer to the problem of
investment in tablesand chairsdiscussed in Section 12.2. Wewill now solvethisproblem
graphically. Let usgraph the constraints stated aslinear inequalities:

5x +y <100 . (D
X+y<60 )
x=0 - (3
y>0 o (4

The graph of this system (shaded region) consists of the points common to all half
planes determined by the inequalities (1) to (4) (Fig 12.1). Each point in this region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefore, is called the feasible region for the problem. Every point of this
region is called afeasible solution to the problem. Thus, we have,

Feasible region The common region determined by all the constraints including
non-negative constraintsx, y > 0 of alinear programming problemiscalled thefeasible
region (or solution region) for the problem. In Fig 12.1, the region OABC (shaded) is
the feasible region for the problem. The region other than feasible region is called an
infeasible region.

Feasible solutions Points within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
Fig 12.1, every point within and on the
boundary of the feasible region OABC
represents feasible solution to the problem.
For example, the point (10, 50) isafeasible
solution of the problem and so are the points
(0, 60), (20, 0) etc.

Any point outside the feasible region is
called an infeasible solution. For example,
the point (25, 40) isan infeasible solution of
the problem.

Y’ Sx+y=100 x+y=60
Fig12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the objective functioniscalled an optimal solution.

Now, we seethat every point inthefeasibleregion OABC satisfiesall the constraints
asgivenin (1) to (4), and since there areinfinitely many points, it is not evident how
we should go about finding apoint that givesamaximum va ue of the objectivefunction
Z = 250x + 75y. To handle this situation, we use the following theorems which are
fundamental in solving linear programming problems. The proofs of these theorems
are beyond the scope of the book.

Theorem 1 Let R be the feasible region (convex polygon) for alinear programming
problem and let Z = ax + by be the objective function. When Z has an optimal value
(maximum or minimum), wherethevariablesx and y are subject to constraints described
by linear inequalities, this optimal value must occur at a corner point* (vertex) of the
feasibleregion.

Theorem 2 Let R be the feasible region for alinear programming problem, and let
Z = ax + by be the objective function. If R isbounded**, then the objective function
Z has both a maximum and a minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R isunbounded, then a maximum or a minimum value of the objective
function may not exist. However, if it exists, it must occur at a corner point of R.
(By Theorem 1).

In the above example, the corner points (vertices) of the bounded (feasible) region
are: O, A, B and Candit iseasy tofind their coordinates as (0, 0), (20, 0), (10, 50) and
(0, 60) respectively. Let us now compute the values of Z at these points.

We have
Vertex of the Corresponding value
Feasible Region of Z (inRs)
0 (0,0 0
A (0,60) 4500 _
B (10,50) 6250 ¢— | Maximum
C(20,0) 5000

* A corner point of afeasibleregionisapoint in theregion whichistheintersection of two boundary lines.

** A feasibleregion of asystem of linear inequalitiesissaid to be bounded if it can be enclosed withina
circle. Otherwise, it is called unbounded. Unbounded means that the feasible region does extend
indefinitely in any direction.
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We observe that the maximum profit to the dealer results from the investment
strategy (10, 50), i.e. buying 10 tables and 50 chairs.

This method of solving linear programming problem isreferred as Cor ner Point
Method. The method comprises of the following steps:

1. Find the feasible region of the linear programming problem and determine its
corner points (vertices) either by inspection or by solving the two equations of
thelinesintersecting at that point.

2. Evauate the objective function Z = ax + by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.

3. (i) When the feasible region is bounded, M and m are the maximum and

minimum valuesof Z.

(i) Incase, thefeasible region isunbounded, we have:

4. (a) M is the maximum value of Z, if the open half plane determined by
ax + by > M has no point in common with the feasible region. Otherwise, Z
has no maximum value.

(b) Similarly, mistheminimum valueof Z, if the open half plane determined by
ax + by < mhas no point in common with the feasible region. Otherwise, Z
hasno minimum value.
We will now illustrate these steps of Corner Point Method by considering some
examples:
Example 1 Solvethefollowing linear programming problem graphically:

MaximiseZ = 4x +y . (D
subject to the constraints:

X+y< 50 - (2

X+y< 90 )]

x>0,y>0 .. (4)

Solution Theshaded regionin Fig 12.2 isthefeasible region determined by the system
of constraints (2) to (4). We observe that the feasible region OABC is bounded. So,
we now use Corner Point Method to determine the maximum value of Z.

The coordinates of the corner points O, A, B and C are (0, 0), (30, 0), (20, 30) and
(0, 50) respectively. Now we evaluate Z at each corner point.
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100
90
80
70
60

50
40

30
20
10

X' o 1020 \40 \70 X

Y A(30,0)

Hence, maximum value of Z is 120 at the point (30, 0).

Example 2 Solvethefollowing linear programming problem graphically:

MinimiseZ =200 x + 500y
subject to the constraints:
Xx+2y =10
3X+4y<24
x>20,y=>0

Corner Point | Corresponding value
of Z
(0,0 0
(30,0) 120 €<— [Maximum
(20, 30) 110
(0,50) 50
Fig12.2
. (D
- (2
- (3
. (4

Solution The shaded region in Fig 12.3 isthe feasible region ABC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

Fig 12.3

Corner Point | Corresponding value
of Z
(0,5) 2500
(4,3) 2300 <
(0, 6) 3000
(10,0)
f d X
& X+ =10
3x+4y =24

Minimum
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A, Band Care(0,5), (4,3) and (0,6) respectively. Now we evaluate Z = 200x + 500y
at these points.

Hence, minimum value of Z is 2300 attained at the point (4, 3)
Example 3 Solvethefollowing problem graphically:

Minimise and Maximise Z = 3x + 9y )
subject to the constraints: X + 3y <60 - (2
Xx+y=>10 - (3

X<y o (4

x=20,y20 .. (5

Solution First of all, let usgraph thefeasibleregion of the system of linear inequalities
(2) to (5). Thefeasible region ABCD is shown in the Fig 12.4. Note that theregionis
bounded. The coordinates of the corner pointsA, B, Cand D are (0, 10), (5, 5), (15,15)
and (0, 20) respectively.

Corner Corresponding val ue of
¥ Point Z=3x+0y
A (0, 10) %0
B (5,5) 60 &— Minimum
C (15, 15) 180 Maximum
D (0, 20) 180f < |(vuitiple
optimal
“”;0) (60,0) solutions)

x+3y=60

Fig 12.4

We now find the minimum and maximum value of Z. From the table, wefind that
the minimum value of Z is 60 at the point B (5, 5) of the feasible region.

The maximum value of Z on the feasible region occurs at the two corner points
C (15, 15) and D (0, 20) and it is 180 in each case.

Remark Observethat in the above example, the problem hasmultiple optimal solutions
at the corner points C and D, i.e. the both points produce same maximum value 180. In
such cases, you can seethat every point on the line segment CD joining the two corner
points C and D also give the same maximum value. Sameisaso truein the caseif the
two points produce same minimum value.
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Example 4 Determine graphically the minimum value of the objective function

Z =-50x + 20y )
subject to the constraints:

2X—-y=>2-5 )

3X+y>3 - (3

2x—-3y<12 .. (4)

x>0,y=>20 .. (5

Solution First of al, let usgraph thefeasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the Fig 12.5. Observe that the feasible
region isunbounded.

We now evaluate Z at the corner points.

Corner Point | Z =—50x + 20y

(0,5) 100

N> 0,3 60
(6,0) —300 ¢<— [smallest

Y ‘A78910 X
¥ (6, 0)
3x+y=3
Fig 12.5

From this table, we find that — 300 is the smallest value of Z at the corner point
(6, 0). Can we say that minimum vaue of Z is— 3007 Note that if the region would
have been bounded, this smallest value of Z isthe minimum value of Z (Theorem 2).
But here we see that the feasible region is unbounded. Therefore, — 300 may or may
not be the minimum value of Z. To decide thisissue, we graph theinequality
—50x + 20y < — 300 (see Step 3(ii) of corner Point Method.)
e, —5x+2y<-30

and check whether the resulting open half plane has pointsin common with feasible
region or not. If it has common points, then —300 will not be the minimum value of Z.
Otherwise, —300 will be the minimum value of Z.
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As shown in the Fig 12.5, it has common points. Therefore, Z = -50 x + 20 y
has no minimum value subject to the given constraints.

In the above example, can you say whether z= —50 x + 20 y has the maximum
value 100 at (0,5)? For this, check whether the graph of —50 x + 20y > 100 has points
in common with the feasible region. (Why?)

Example 5 Minimise Z = 3x + 2y
subject to the constraints:

X+y=>8 . (1)
3x+5y<15 .. (2)
x20,y=20 )]

Solution Let usgraph theinequalities (1) to (3) (Fig 12.6). Isthereany feasibleregion?
Why is so0?

From Fig 12.6, you can see that
there is no point satisfying all the
constraints simultaneously. Thus, the
problemishaving nofeasibleregionand
hence no feasible solution.

Remarks From the exampleswhich we
have discussed so far, we notice some
general featuresof linear programming
problems:

(i) The feasible region is aways a
convex region.

(i) The maximum (or minimum)
solution of the objective function occurs at the vertex (corner) of the feasible
region. If two corner points produce the same maximum (or minimum) value
of the objective function, then every point on the line segment joining these
points will also give the same maximum (or minimum) value.

Fig 12.6

EXERCISE 12.1
Solvethefollowing Linear Programming Problemsgraphically:
1. MaximiseZ = 3x+ 4y
subject to the constraints: x +y<4,x > 0,y >0.
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2. MinimiseZ =-3x+4y
subjecttox +2y<8,3x+2y<12, x = 0,y>0.
3. MaximiseZ = 5x + 3y
subject to 3x + 5y <15,5x+2y<10,x >0,y >0.
4. MinimiseZ = 3x + by
suchthat x+3y >3, x+y >22,x,y>0.
5. MaximiseZ =3x + 2y
subjecttox+ 2y <10, 3x +y <15, %,y > 0.
6. MinimiseZ =x+ 2y
subjectto 2x+y > 3,x+2y>6, X, y=0.
Show that the minimum of Z occurs at more than two points.
7. Minimiseand MaximiseZ =5x+ 10y
subjecttox + 2y <120, x+y>60,x—-2y>0,x,y>0.
8. Minimiseand MaximiseZ = x + 2y
subject tox + 2y > 100, 2x —y < 0, 2x + y < 200; X, y > 0.
9. Maximise Z =—x + 2y, subject to the constraints:
X>23,Xx+y>5x+2y>6,y>0.
10. MaximiseZ =x +Yy, subjecttox-y<-1, x+y< 0, x,y =0.

12.3 Different Typesof Linear Programming Problems
A few important linear programming problemsare listed bel ow:

1. Manufacturing problemsIn these problems, we determine the number of units
of different products which should be produced and sold by a firm
when each product requires a fixed manpower, machine hours, labour hour per
unit of product, warehouse space per unit of the output etc., in order to make
maximum profit.

2. Diet problemsIn these problems, we determine the amount of different kinds
of constituents/nutrientswhich should beincluded in adiet so asto minimisethe
cost of the desired diet such that it contains a certain minimum amount of each
constituent/nutrients.

3. Transportation problems In these problems, we determine a transportation

schedule in order to find the cheapest way of transporting a product from
plants/factories situated at different locations to different markets.
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L et us now solve some of these types of linear programming problems:

Example 6 (Diet problem): A dietician wishes to mix two types of foods in such a
way that vitamin contents of the mixture contain atleast 8 units of vitamin A and 10
unitsof vitamin C. Food ‘I’ contains 2 units’kg of vitamin A and 1 unit/kg of vitamin C.
Food ‘IlI’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs
Rs 50 per kg to purchase Food ‘I’ and Rs 70 per kg to purchase Food ‘11’. Formulate
this problem asalinear programming problem to minimise the cost of such amixture.

Solution Let the mixture contain x kg of Food ‘I’ and y kg of Food ‘11’. Clearly, x> 0,
y > 0. We make the following table from the given data:

Resources Food Requirement
I [

(SO )
VitaminA 2 1 8
(unitg'kg)
VitaminC 1 2 10
(unitg'kg)
Cost (Re/kg) | 50 70

Since the mixture must contain at least 8 units of vitamin A and 10 units of
vitamin C, we have the constraints;

2Xx+y=>8
X+ 2y >10
Total cost Z of purchasing x kg of food ‘I’ and y kg of Food ‘11" is
Z = 50x + 70y
Hence, the mathematical formulation of the problemis:
Minimise Z =50x + 70y - (1)
subject to the constraints:
2x+y=>8 - (2
X+ 2y >10 )]
X,y=0 .. (4

Let us graph the inequalities (2) to (4). The feasible region determined by the
system is shown in the Fig 12.7. Here again, observe that the feasible region is
unbounded.
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Let usevauate Z at the corner points A(0,8), B(2,4) and C(10,0).

N

Corner Point | Z =50x + 70y

(0,8 560

(2,9 380 &— | Minimum
T BX (10,0) 500
21 @A\ S

Y " \’:\ . C :
VAR
X' (4,0) (10,0)
2x+y=8
Fig12.7

In the table, we find that smallest value of Z is 380 at the point (2,4). Can we say
that the minimum value of Z is 3807 Remember that the feasible region is unbounded.
Therefore, we have to draw the graph of the inequality

50x + 70y < 380 i.e,, 5bx+7y<38

to check whether the resulting open half plane has any point common with the feasible
region. From the Fig 12.7, we see that it has no pointsin common.

Thus, the minimum value of Z is 380 attained at the point (2, 4). Hence, the optimal
mixing strategy for the dietician would beto mix 2 kg of Food ‘I’ and 4 kg of Food ‘11",
and with this strategy, the minimum cost of the mixturewill be Rs 380.

Example 7 (Allocation problem) A cooperative society of farmers has 50 hectare
of land to grow two crops X and Y. The profit from crops X and Y per hectare are
estimated as Rs 10,500 and Rs 9,000 respectively. To control weeds, aliquid herbicide
has to be used for crops X and Y at rates of 20 litresand 10 litres per hectare. Further,
no morethan 800 litres of herbicide should be used in order to protect fish and wildlife
using apond which collectsdrainage from thisland. How much land should be allocated
to each crop so asto maximise the total profit of the society?

Solution Let x hectare of land be allocated to crop X and y hectareto crop Y. Obvioudly,
x=0,y=>0.

Profit per hectare on crop X = Rs10500

Profit per hectare on crop Y = Rs9000

Therefore, total profit = Rs (10500x + 9000y)
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The mathematical formulation of the problemisasfollows:

Maximise Z = 10500 x + 9000 y
subject to the constraints:
X+y <50 (constraint related to land) - (D
20x + 10y < 800 (constraint related to use of herbicide)
i.e 2x+y<80 - (2
x=0,y=>0 (non negative constraint) .. (3

Let us draw the graph of the system of inequalities (1) to (3). The feasible region
OABC isshown (shaded) inthe Fig 12.8. Observethat thefeasibleregionisbounded.

The coordinates of the corner points O, A, B and C are (0, 0), (40, 0), (30, 20) and
(0, 50) respectively. Let us evaluate the objective function Z = 10500 x + 9000y at
these vertices to find which one gives the maximum profit.

Y (0,50 Corner Point | Z = 10500x + 9000y
B 0(0, 0) 0
401 A ( 40, 0) 420000
301 B (30, 20) 495000 ¢ [Maximum
201 C(0,50) 450000
10 A (40,0)
X’ 0] 10 20 30 \SW X
Y x+y=50
Fig12.8

Hence, the society will get the maximum profit of Rs 4,95,000 by allocating 30
hectares for crop X and 20 hectares for crop Y.

Example 8 (Manufacturing problem) A manufacturing company makes two models
A and B of aproduct. Each piece of Model A requires 9 labour hours for fabricating
and 1 labour hour for finishing. Each piece of Model B requires 12 labour hours for
fabricating and 3 1abour hoursfor finishing. For fabricating and finishing, the maximum
labour hours available are 180 and 30 respectively. The company makes a profit of
Rs 8000 on each piece of model A and Rs 12000 on each piece of Model B. How many
piecesof Model A and Model B should be manufactured per week to realiseamaximum
profit? What is the maximum profit per week?



518 MATHEMATICS

Solution Suppose x isthe number of pieces of Model A andy isthe number of pieces
of Model B. Then

Total profit (in Rs) = 8000 x + 12000 y
Let Z = 8000 x + 12000y
We now have the following mathematical model for the given problem.
Maximise Z = 8000 x + 12000 y - ()
subject to the constraints:
Ox + 12y <180 (Fabricating constraint)

= 3x + 4y <60 - (2
Xx+3y<30 (Finishingconstraint) -3
x=>0,y=0 (non-negative constraint) .. (4

Thefeasibleregion (shaded) OABC determined by thelinear inequalities (2) to (4)
isshown inthe Fig 12.9. Note that the feasible region is bounded.

3x+4y=60 20

Fig12.9
L et us evaluate the objective function Z St each corner point as shown below:
Corner Point Z =8000 x + 12000 y
0(0, 0) 0
A (20,0) 160000
B (12, 6) 168000 €— | Maximum
C (0, 10) 120000

We find that maximum value of Z is 1,68,000 at B (12, 6). Hence, the company
should produce 12 pieces of Model A and 6 pieces of Model B to realise maximum
profit and maximum profit then will be Rs 1,68,000.
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EXERCISE 12.2|

Reshmawishesto mix two types of food P and Q in such away that the vitamin
contents of the mixture contain at least 8 units of vitamin A and 11 units of
vitamin B. Food P costs Rs 60/kg and Food Q costs Rs 80/kg. Food P contains
3 unitg/kg of Vitamin A and 5 units/ kg of Vitamin B while food Q contains
4 units/kg of Vitamin A and 2 units/’kg of vitamin B. Determine the minimum cost
of the mixture.

Onekind of cake requires 200g of flour and 25g of fat, and another kind of cake
requires 100g of flour and 50g of fat. Find the maximum number of cakeswhich
can be made from 5kg of flour and 1 kg of fat assuming that thereisno shortage
of the other ingredients used in making the cakes.

A factory makes tennis rackets and cricket bats. A tennisracket takes 1.5 hours
of machinetime and 3 hours of craftman’stimein its making while acricket bat
takes 3 hour of machinetimeand 1 hour of craftman’stime. In aday, thefactory
has the availability of not more than 42 hours of machine time and 24 hours of
craftsman’s time.

(i) What number of rackets and bats must be madeif the factory isto work
at full capacity?

(i) If the profit on aracket and on abat is Rs 20 and Rs 10 respectively, find
the maximum profit of the factory when it works at full capacity.

A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A
and 3 hours on machine B to produce a package of nuts. It takes 3 hours on
machine A and 1 hour on machine B to produce a package of bolts. He earns a
profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How
many packages of each should be produced each day so as to maximise his
profit, if he operates his machines for at the most 12 hours a day?

A factory manufactures two types of screws, A and B. Each type of screw
requires the use of two machines, an automatic and a hand operated. It takes
4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, whileit takes 6 minutes on automatic and
3 minutes on the hand operated machines to manufacture a package of screws
B. Each machineisavailablefor at the most 4 hourson any day. The manufacturer
can sell a package of screws A at a profit of Rs 7 and screws B at a profit of
Rs 10. Assuming that he can sell al the screws he manufactures, how many
packages of each type should the factory owner produce in a day in order to
maximise his profit? Determine the maximum profit.
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A cottage industry manufactures pedestal lamps and wooden shades, each
requiring the use of agrinding/cutting machine and asprayer. It takes2 hourson
grinding/cutting machine and 3 hours on the sprayer to manufacture a pedestal
lamp. It takes 1 hour on the grinding/cutting machine and 2 hours on the sprayer
to manufacture a shade. On any day, the sprayer is available for at the most 20
hours and the grinding/cutting machinefor at the most 12 hours. The profit from
the sale of alamp is Rs 5 and that from a shade is Rs 3. Assuming that the
manufacturer can sell all the lamps and shades that he produces, how should he
schedule hisdaily productionin order to maximise hisprofit?

A company manufactures two types of novelty souvenirs made of plywood.
Souvenirs of type A require 5 minutes each for cutting and 10 minutes each for
assembling. Souvenirsof type B require 8 minuteseach for cutting and 8 minutes
each for assembling. There are 3 hours 20 minutes available for cutting and 4
hours for assembling. The profit is Rs 5 each for type A and Rs 6 each for type
B souvenirs. How many souvenirs of each type should the company manufacture
in order to maximisethe profit?

A merchant plansto sell two types of personal computers—adesktop model and
aportablemodel that will cost Rs 25000 and Rs 40000 respectively. He estimates
that thetotal monthly demand of computerswill not exceed 250 units. Determine
the number of units of each type of computers which the merchant should stock
to get maximum profit if he doesnot want to invest morethan Rs 70 lakhsand if
his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.

Adietisto contain at least 80 units of vitamin A and 100 units of minerals. Two
foods F, and F, are available. Food F, costs Rs 4 per unit food and F, costs
Rs 6 per unit. One unit of food F, contains 3 units of vitamin A and 4 units of
minerals. Oneunit of food F, contains 6 units of vitamin A and 3 unitsof minerals.
Formulatethisasalinear programming problem. Find the minimum cost for diet
that consists of mixture of these two foodsand a so meetsthe minimal nutritional
requirements.

There are two types of fertilisers F and F,. F, consists of 10% nitrogen and 6%
phosphoric acid and F, consists of 5% nitrogen and 10% phosphoric acid. After
testing the soil conditions, afarmer findsthat she needsatleast 14 kg of nitrogen
and 14 kg of phosphoric acid for her crop. If F, costs Rs 6/kg and F, costs
Rs 5/kg, determine how much of each type of fertiliser should be used so that
nutrient requirements are met at a minimum cost. What is the minimum cost?

The corner pointsof the feasible region determined by the following system of
linear inequalities:

2X+y<10, x+ 3y <15 x, y=>0are (0, 0), (5 0), (3, 4) and (O, 5). Let
Z =px + qy, where p, g > 0. Condition on p and q so that the maximum of Z
occurs at both (3, 4) and (0, 5) is

(A) p=q (B) p=2q (©) p=3q (D) g=3p
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Miscellaneous Examples

Example 9 (Diet problem) A dietician has to develop a special diet using two foods
P and Q. Each packet (containing 30 g) of food P contains 12 units of calcium, 4 units
of iron, 6 unitsof cholesterol and 6 unitsof vitamin A. Each packet of the same quantity
of food Q contains 3 unitsof calcium, 20 unitsof iron, 4 unitsof cholesterol and 3 units
of vitaminA. Thediet requires atleast 240 units of calcium, atleast 460 unitsof iron and
at most 300 units of cholesterol. How many packets of each food should be used to
minimisetheamount of vitamin A in the diet?What i sthe minimum amount of vitaminA?

Solution Let xand y bethe number of packets of food Pand Q respectively. Obviously
x>0,y > 0. Mathematical formulation of the given problemisasfollows:

Minimise Z = 6x + 3y (vitamin A)

subject to the constraints

12x + 3y =240 (constraint on calcium), i.e. 4x+y >80 - ()
4x + 20y >460 (constraint oniron), i.e. X+ 5y > 115 - (2
6x + 4y <300 (constraint on cholesteral), i.e. 3x + 2y < 150 - (3
x=0,y=>0 .. (4

Let us graph theinequalities (1) to (4).
The feasible region (shaded) determined by the constraints (1) to (4) isshownin
Fig 12.10 and note that it is bounded.

x+5y=115

+2y=
4x+y =80 3x+2y =150

Fig 12.10
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The coordinates of the corner pointsL, M and N are (2, 72), (15, 20) and (40, 15)
respectively. Let us evaluate Z at these points:

Corner Point Z=6X+3y

(2,72) 228

(15, 20) 150 < Minimum
(40, 15) 285

From thetable, wefind that Z is minimum at the point (15, 20). Hence, the amount
of vitamin A under the constraints given in the problem will be minimum, if 15 packets
of food P and 20 packets of food Q are used in the specia diet. The minimum amount
of vitamin A will be 150 units.

Example 10 (Manufacturing problem) A manufacturer has three machines I, 11
and 11l installed in his factory. Machines | and |1 are capable of being operated for
at most 12 hours whereas machine 111 must be operated for atleast 5 hours aday. She
produces only two items M and N each requiring the use of al the three machines.

The number of hours required for producing 1 unit of each of M and N on the three
machinesare giveninthefollowing table:

[tems| Number of hours required on machines

I 1 1l
M 1 2 1
N 2 1 1.25
She makes a profit of Rs 600 and Rs 400 on items M and N respectively. How many

of each item should she produce so asto maximise her profit assuming that she can sell
all theitemsthat she produced? What will be the maximum profit?

Solution Let x and y be the number of items M and N respectively.
Total profit on the production = Rs (600 x + 400 y)

Mathematical formulation of the given problemisasfollows:
Maximise Z = 600 x + 400y

subject to the constraints:

X + 2y < 12 (constraint on Machinel) - ()

2x +y < 12 (constraint on Machine I1) - (2
5

X + 2 y = 5 (constraint on Machine I11) - (3

x =20, y20 .. (4
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Let us draw the graph of constraints (1) to (4). ABCDE is the feasible region
(shaded) as shown in Fig 12.11 determined by the constraints (1) to (4). Observe that
the feasible region is bounded, coordinates of the corner pointsA, B, C, D and E are

(5,0) (6,0), (4,4), (0, 6) and (O, 4) respectively.

Fig 12.11

Let us evaluate Z = 600 x + 400 y at these corner points.

Corner point | Z=600x + 400y
(5.0) 3000
(6.0) 3600
4,4) 4000 €— | Maximum
(0, 6) 2400
0,4) 1600

We see that the point (4, 4) is giving the maximum value of Z. Hence, the
manufacturer has to produce 4 units of each item to get the maximum profit of Rs 4000.

Example 11 (Transportation problem) There are two factories located one at
place P and the other at place Q. From these locations, a certain commodity is to be
delivered to each of the three depots situated at A, B and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commaodity while the production
capacity of the factories at P and Q are respectively 8 and 6 units. The cost of
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transportation per unitisgiven below:

From/To Cost (in Rs)
A B ©
P 160 100 150
Q 100 | 120 | 100

How many units should be transported from each factory to each depot in order that
the transportation cost is minimum. What will be the minimum transportation cost?

Solution The problem can be explained diagrammatically asfollows (Fig 12.12):

Let x units and y units of the commodity be transported from the factory at P to
the depots at A and B respectively. Then (8 —x —Y) unitswill be transported to depot
a C (Why?) Factory

Factory

Fig 12.12
Hence, we have x>20,y>0 and 8-x-y=>0
i.e. x>20,y>20 and x+y<8

Now, the weekly requirement of the depot at A is5 units of the commodity. Since
X units are transported from the factory at P, the remaining (5 — X) units need to be
transported from the factory at Q. Obviously, 5—x> 0, i.e. x< 5.

Similarly, (5—y) and 6 —(5—x+ 5-y) = x + y—4 unitsareto be transported from
the factory at Q to the depots at B and C respectively.
Thus, 5-y>0, x+y—-42>0
e y<5,x+y> 4



LINEAR PROGRAMMING 525

Total transportation cost Z isgiven by
Z=160x+ 100y +100(5—-x)+120(5-y) +100 (x +y—4) + 150 (8 —x —Y)
=10 (x—7y+ 190) Y

Therefore, the problem reduces to \“ X%
Minimise Z = 10 (x — 7y + 190) 8
subject to the constraints: R -_\,S)
x>0,y>0 ) < BOSNE >y =3
X+y<8 (2 4

e L Ao

y<5 o (4 ,
and X+y=4 .. (5) X<_0J > i

The shaded region ABCDEF {-r F(4,0) \

represented by the constraints (1) to
(5) isthefeasibleregion (Fig 12.13). Fig 12.13

Observe that the feasible region is bounded. The coordinates of the corner points
of the feasible region are (0, 4), (0, 5), (3, 5), (5, 3), (5, 0) and (4, 0).
Let us evaluate Z at these points.

Corner Point | Z=10(x—7y + 190)
(0, 4) 1620
(0,5) 1550 «— Minimum
(3,5 1580
(5,3) 1740
(5,0 1950
(4,0 1940

From the table, we see that the minimum value of Z is 1550 at the point (O, 5).

Hence, the optimal transportation strategy will beto deliver 0, 5 and 3 units from
the factory at Pand 5, 0 and 1 units from the factory at Q to the depotsat A, B and C
respectively. Corresponding to this strategy, the transportation cost would be minimum,
i.e., Rs1550.

Miscellaneous Exercise on Chapter 12

1. Referto Example 9. How many packets of each food should be used to maximise
theamount of vitamin A in the diet? What isthe maximum amount of vitamin A
inthediet?
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A farmer mixes two brands P and Q of cattle feed. Brand P, costing Rs 250 per
bag, contains 3 units of nutritional element A, 2.5 units of element B and 2 units
of element C. Brand Q costing Rs 200 per bag contains 1.5 units of nutritional
element A, 11.25 units of element B, and 3 units of element C. The minimum
requirementsof nutrientsA, B and C are 18 units, 45 unitsand 24 unitsrespectively.
Determine the number of bags of each brand which should be mixed in order to
produce amixture having aminimum cost per bag? What isthe minimum cost of
the mixture per bag?

A dietician wishesto mix together two kinds of food X and Y in such away that
the mixture contains at least 10 units of vitamin A, 12 units of vitamin B and
8 unitsof vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A | Vitamin B | Vitamin C
X 1 2 3
Y 2 2 1

One kg of food X costs Rs 16 and one kg of food Y costs Rs 20. Find the least
cost of the mixture which will produce the required diet?

A manufacturer makes two types of toys A and B. Three machines are needed
for this purpose and the time (in minutes) required for each toy on the machines
isgiven below:

Types of Toys Machines
I [ Il
A 12 | 18 6
B 6 0 9

Each machine is available for a maximum of 6 hours per day. If the profit on
each toy of typeA isRs 7.50 and that on each toy of type B isRs 5, show that 15
toysof typeA and 30 of type B should be manufactured in aday to get maximum
profit.

An aeroplane can carry a maximum of 200 passengers. A profit of Rs 1000 is
made on each executive class ticket and a profit of Rs 600 is made on each
economy classticket. The airline reserves at least 20 seats for executive class.
However, at least 4 times as many passengers prefer to travel by economy class
than by the executive class. Determine how many tickets of each type must be
sold in order to maximisethe profit for the airline. What isthe maximum profit?
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6. Two godowns A and B have grain capacity of 100 quintals and 50 quintals
respectively. They supply to 3 ration shops, D, E and F whose requirements are
60, 50 and 40 quintals respectively. The cost of transportation per quintal from
the godownsto the shops are given in the following table:

Transportation cost per quintal (in Rs)
From/To A B
D 6 4
E 3 2
F 2.50 3

How should the supplies be transported in order that the transportation cost is
minimum?What isthe minimum cost?

7. Anoil company has two depots A and B with capacities of 7000 L and 4000 L
respectively. The company is to supply oil to three petrol pumps, D, E and F
whose requirements are 4500L, 3000L and 3500L respectively. The distances
(in km) between the depots and the petrol pumpsisgivenin thefollowing table:

Distance in (km.)
From / To A B
D 7 3
E 6 4
F 3 2

Assuming that the transportation cost of 10 litres of oil is Re 1 per km, how
should the ddlivery be scheduled in order that the transportation cost isminimum?
What is the minimum cost?

8. A fruit grower can usetwo typesof fertilizer in hisgarden, brand P and brand Q.
Theamounts (in kg) of nitrogen, phosphoric acid, potash, and chlorinein abag of
each brand are given in the table. Tests indicate that the garden needs at |east
240 kg of phosphoric acid, at least 270 kg of potash and at most 310 kg of
chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden,
how many bags of each brand should be used? What is the minimum amount of
nitrogen added in the garden?
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kg per bag
Brand P | Brand Q
Nitrogen 3 35
Phosphoric acid 1 2
Potash 3 15
Chlorine 15 2

Refer to Question 8. If the grower wants to maximise the amount of nitrogen
added to the garden, how many bags of each brand should be added? What is
the maximum amount of nitrogen added?

A toy company manufacturestwo typesof dolls, A and B. Market testsand available
resources haveindicated that the combined production level should not exceed 1200
dolls per week and the demand for dolls of type B isat most half of that for dolls of
typeA. Further, the production level of dolls of type A can exceed three timesthe
production of dollsof other type by a most 600 units. If the company makesprofit of
Rs12 and Rs 16 per doll respectively ondollsA and B, how many of each should be
produced weekly in order to maximisethe profit?

Summary

A linear programming problemisonethat isconcerned with finding the optimal
value (maximum or minimum) of alinear function of several variables(called
objective function) subject to the conditions that the variables are
non-negative and satisfy aset of linear inequalities (called linear constraints).
Variables are sometimes called decision variables and are non-negative.

A few important linear programming problemsare:
(i) Dietprablems
(i) Manufacturing problems
(ili) Transportation problems
Thecommon region determined by all the constraintsincluding the non-negative

constraintsx > 0, y > 0 of alinear programming problemiscalled thefeasible
region (or solution region) for the problem.

Points within and on the boundary of the feasible region represent feasible
solutions of the constraints.

Any point outside the feasible region is an infeasible solution.
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& Any point in the feasible region that gives the optimal value (maximum or
minimum) of the objective function is called an optimal solution.

& The following Theorems are fundamental in solving linear programming
problems:
Theorem 1 Let R be the feasible region (convex polygon) for a linear
programming problem and let Z = ax + by be the objective function. When Z
has an optimal value (maximum or minimum), where the variables x and y
are subject to constraints described by linear inequalities, this optimal value
must occur at a corner point (vertex) of the feasible region.
Theorem 2 Let R be the feasible region for alinear programming problem,
and let Z = ax + by be the objective function. If R is bounded, then the
objective function Z has both amaximum and a minimum value on R and
each of these occurs at a corner point (vertex) of R.

¢ If thefeasibleregion isunbounded, then amaximum or aminimum may not
exist. However, if it exists, it must occur at a corner point of R.

¢ Corner point method for solving alinear programming problem. The method
comprises of thefollowing steps:
(i) Findthefeasibleregion of thelinear programming problem and determine
its corner points (vertices).
(i) Evaluatethe objectivefunction Z = ax + by at each corner point. Let M
and mrespectively be the largest and smallest values at these points.
(iii) 1f thefeasibleregionisbounded, M and mrespectively arethe maximum
and minimum values of the objective function.
If the feasible region is unbounded, then
(i) M isthemaximum value of the objectivefunction, if the open half plane

determined by ax + by > M has no point in common with the feasible
region. Otherwise, the objective function has no maximum value.

(i) mistheminimum value of the objectivefunction, if the open half plane
determined by ax + by < m has no point in common with the feasible
region. Otherwise, the objective function has no minimum value.

¢ If two corner points of the feasible region are both optimal solutions of the
sametype, i.e., both produce the same maximum or minimum, then any point
on theline segment joining these two pointsisalso an optimal solution of the
same type.
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Historical Note

In the World War 11, when the war operations had to be planned to economise
expenditure, maximise damage to the enemy, linear programming problems
came to the forefront.

Thefirst problemin linear programming wasformulated in 1941 by the Russian
mathematician, L. Kantorovich and the American economist, F. L. Hitchcock,
both of whom worked at it independently of each other. This was the well
known transportation problem. In 1945, an English economist, G.Stigler,
described yet another linear programming problem — that of determining an
optimal diet.

In 1947, the American economist, G. B. Dantzig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in afinite number of steps.

L. Katorovich and American mathematical economist, T. C. Koopmans were
awarded the nobel prize in the year 1975 in economics for their pioneering
work in linear programming. With the advent of computers and the necessary
softwares, it has become possible to apply linear programming model to
increasingly complex problemsin many aress.

—_— % —
L4



Chapter 13
(PROBABILITY )

+ The theory of probabilities is simply the Science of logic
quantitatively treated. — C.S. PEIRCE ¢

13.1 Introduction

In earlier Classes, we have studied the probability asa s bidiid et il
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful FaEaFmFm i mtemter
in understanding the Bayes' theorem, multiplication rule of Pierre de Fermat
probability and independence of events. We shall also learn (1601-1665)
an important concept of random variable and its probability
distribution and also the mean and variance of a probability distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2 Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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1
Since the coins are fair, we can assign the probability 3 to each sample point. Let

E be the event ‘at least two heads appear’ and F be the event ‘first coin shows tail’.
Then
E = {HHH, HHT, HTH, THH}

and F = {THH, THT, TTH, TTT}
Therefore ~ P(E) =P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})
111
gttty Why?)
and P(F) =P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})
_Lrrrr ot
888 8 2
Also ENF={THH}

with P(E N F) = P({THH}) = %

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.

Now, the sample point of F which is favourable to event E is THH.

1
Thus, Probability of E considering F as the sample space = e

1
or Probability of E given that the event F has occurred = —

4
This probability of the event E is called the conditional probability of E given

that F has already occurred, and is denoted by P (E|F).

1
Thus P(EIF) = 7

Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E N F.
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Thus, we can also write the conditional probability of E given that F has occurred as

Number of elementary events favourableto ENF

P(EJF) = -
(EIF) Number of elementary events which are favourable to F
n(ENF)
n(F)
Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as

n(ENF)
S P(ENF
P(EIF) = I:EF% = (P(?)) . (D)
n(s)

Note that (1) is valid only when P(F) # 0 i.e., F # ¢ (Why?)
Thus, we can define the conditional probability as follows :

Definition L If E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by

P(ENF) _
P(E|F) = ———— provided P(F) # 0
P(F)
13.2.1 Properties of conditional probability
Let E and F be events of a sample space S of an experiment, then we have
Property 1 P(S|F) = P(F|F) =1
We know that

P(SNF) P(F) 1

PO =T TRE)
PFNF) P(F
Also P(F|F) = %zﬁﬂ
Thus P(S|F) = P(F|F) = 1

Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) # 0, then

P((A U B)|F) = P(A[F) + P(BJF) — P((A N B)[F)
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In particular, if A and B are digoint events, then
P((AUB)|F) = P(AJF) + P(BJF)

We have

P[(AUB)NF]

P((AUB)IF) = P(F)

P[(ANF) U (BNF)]
) P(F)
(by distributive law of union of sets over intersection)
P(ANF)+P(BNF)-P(AnB N F)
P(F)

_ P(ANF) +P(Br\F)_P[(Ar\B) N F]
P(F) P(F) P(F)
=P(AJF) + P(B|JF) — P((ANB)|F)
When A and B are disjoint events, then
P((ANnB)F)=0
= P((A u B)[F) =P(A|F) + P(BJ|F)
Property 3 P(E’[F) = 1 — P(E[F)
From Property 1, we know that P (S|F) =1

= P(EUEIF)=1 since S=EUE’
= P(E|IF) + P (E'[F)=1 since E and E’ are disjoint events
Thus, P(E'[F) = 1 — P(E[F)

Let us now take up some examples.

7 9 4
Example LIf P(A) = IER P(B) = e and P(A N B) = IER evaluate P (A|B).

P(ANB) _

Solution We have P(A|B)=
P(B)

\\o|$\-l>

_4
9

1

W

Example2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S={(b, b), (9, b), (b, 9). (9, 9)}

Let E and F denote the following events :

E : ‘both the children are boys’

F : “at least one of the child is a boy’

Then E={(bb)} and F = {(b,b), (9.0, (b.9)}
Now ENF={(bb)}
Thus P(F) = % andP(EmF)z%
1
Therefore P(E|F) = m _4_ l
P(F) 33
4

Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is greater than 3°. We have to find P(A|B).

Now, the sample space of the experiment is S = {1, 2, 3,4,5,6,7, 8,9, 10}

Then A=1{2,4,6,8,10}, B=1{4,5,6,7,8,9, 10}
and ANB=1{4,6,8,10!
Also P(A) = i, P(B)=land P(AmB):i

10 10 10

Then P(AB) = W:

4
P(ANB) 10 4
77

10

Example4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out 0f 430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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430 43
N P(F) = —2 2043 and P(E A F)=—>_=0.043 (Why?
ow ®) = T000 and P(E N E)=ro00 (Why?)

P(ENF) _0.043 _
P(F) 043

Then P(EJF) =

Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.

Solution The sample space has 216 outcomes.

(1,1,4) (1,2,4) ...(1,6,4) (2,1,4) (2,2,4) ... (2,6,4)
Now A=4G14 (3,24 ..(3,64) (4,14 4,2,4) ..(4,6,4)
(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)

B = {(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5), (6,5,6)}
and AN B={(6,54)}.

6 1
Now P(B)=ﬁand P(AmB)=ﬂ

1

P(ANB) 216 |

PB) 6 6
216

Then P(AB) =

Example 6 A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?

Solution Let E be the event that ‘number 4 appears at least once” and F be the event
that ‘the sum of the numbers appearing is 6°.

Then, E={4.1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(54),(6,4)}
and F={(1,5),(2,4),(3,3),(4,2),(5,1)}

11 5
We have P(E) = gand P(F) = 36

Also ENF = {(2,4),(4,2)}
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2
Therefore P(ENF) = 36

Hence, the required probability

2

P(EAF) 35 2

P(E|F) = —(P(;) )=%=g
36

For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P (ENF) and P (F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it

again but if it shows tail, then throw a die. Find the (H,H)
conditional probability of the event that ‘the die shows Head (H) <
a number greater than 4’ given that ‘there is at least (H,T)
one tail’.
(T,1)
Solution The outcomes of the experiment can be (L,2)
represented in following diagrammatic manner called Tail (T) g’i;
the ‘tree diagram’. (TZS)
The sample space of the experiment may be _ (T,6)
) Fig13.1
described as
S ={(H,H), (H,T), (T,1), (T.2), (T.3), (T.4), (T.5), (T,6)}
where (H, H) denotes that both the tosses result into Y _ (H,H)
head and (T, i) denote the first toss result into a tail and Head (H) <
the number i appeared on the die fori=1,2,3,4,5,6. Y2 Yo~ (H,T)
Thus, the probabilities assigned to the 8 elementary v, (LD
s Vi1
events (T,2)
213
(H,H), (H, T), (T, 1), (T, 2), (T, 3) (T,4), (T, 5), (T, 6) (:3)

Tail (T)
111 1 1 1 11 . o

ae L 12 12 12 respectively which is

clear from the Fig 13.2. Fig13.2 (T,6)
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows
a number greater than 4°. Then

F={(HT),(T.1),(T.2),(T.3), (T.4), (T.5), (T.6)}
E = {(T.,9), (T,6)} and E N F = {(T.5), (T,6)}
Now P(F) = P({(H,D)}) + P ({(T.1)}) + P ({(T.2)}) + P ({(T.3)})
+ P({(T4)}) + P((T.5)}) + P({(T.6)})
11 1 1 1 1 1 3

=t —t—t—F—F—F—==
4 12 12 12 12 12 12 4

1 1 1
and PEANF)=PHTIHN+FPATON= 15,5 ¢
1
Hence  P(EJF) = %:%:%
4
|[EXERCISE 13.1|

1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and
P(E N F)= 0.2, find P (E|F) and P(F|E)

2. Compute P(AB), if P(B) =0.5 and P (A n B)=10.32
3. If P(A)=0.8, P(B)=0.5 and P(BJA) = 0.4, find
(i) P(A N B) (i) P(A|B) (i) P(A U B)

5 2
4. Evaluate P(A U B), if 2P(A) = P(B) = ' and P(A|B) = 5

6 5
5. IfP(A)= 7, P(B)= 77 and P(A U B) =%, find

(i) P(AmB) (i) P(A|B) (i) P(BJA)
Determine P(E|F) in Exercises 6 to 9.
6. A coin is tossed three times, where
(i) E :head on third toss ,  F : heads on first two tosses
(ii) E : atleast two heads , F : at most two heads

(i) E :atmosttwo tails , F :atleast one tail



)
(it)

10.

11.

12.

13.

14.

15.

PROBABILITY 539

Two coins are tossed once, where
E : tail appears on one coin, F : one coin shows head
E : no tail appears, F : no head appears
A die is thrown three times,
E : 4 appears on the third toss, F: 6 and 5 appears respectively
on first two tosses
Mother, father and son line up at random for a family picture
E : son on one end, F : father in middle
A black and a red dice are rolled.
(a) Find the conditional probability of obtaining a sum greater than 9, given
that the black die resulted in a 5.
(b) Find the conditional probability of obtaining the sum 8, given that the red die
resulted in a number less than 4.

A fair die is rolled. Consider events E = {1,3,5}, F={2,3} and G= {2,3,4,5}
Find

(i) P(EJF) and P(F|E) (i) P(E|G) and P(GIE)

@) P((E v F)|G) and P((E N F)|G)

Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that
(1) the youngest is a girl, (ii) at least one is a girl?
An instructor has a question bank consisting of 300 easy True / False questions,
200 difficult True / False questions, 500 easy multiple choice questions and 400
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is amultiple choice question?
Given that the two numbers appearing on throwing two dice are different. Find
the probability of the event ‘the sum of numbers on the dice is 4°.
Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the

die again and if any other number comes, toss a coin. Find the conditional probability
of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.

In each of the Exercises 16 and 17 choose the correct answer:

16.

1
If P(A)= -, P(B) =0, then P(A[B) is

1
(A) 0 B) 5
(C) notdefined (D) 1



540 MATHEMATICS

17. If A and B are events such that P(A|B) = P(BJA), then
(A) AcBbutA#B (B) A=B
(C) AnB=¢ (D) P(A) =P(B)

13.3 Multiplication Theorem on Probability

Let E and F be two events associated with a sample space S. Clearly, the set E N F
denotes the event that both E and F have occurred. In other words, E N F denotes the
simultaneous occurrence of the events E and F. The event E N F is also written as EF.

Very often we need to find the probability of the event EF. For example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event ‘a king and a queen’. The probability of event EF is obtained
by using the conditional probability as obtained below :

We know that the conditional probability of event E given that F has occurred is
denoted by P(E|F) and is given by

P(E NF)

P(E|F) = P(F) ,P(F)=0

From this result, we can write
P(EnF)=P(F) . P(E[F) .. (D)

Also, we know that

P(FE) = %,P(E)?&O

P(E NF) .

or P(FIE) = W (since EMF=FNE)
Thus, P(E N F) = P(E). P(FIE) . 2)

Combining (1) and (2), we find that
P(E N F) = P(E) P(F|E)
= P(F) P(E|F) provided P(E) # 0 and P(F) # 0.
The above result is known as the multiplication rule of probability.
Let us now take up an example.

Example 8 An urn contains 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let E and F denote respectively the events that first and second ball drawn
are black. We have to find P(E n F) or P (EF).
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10
Now P(E) = P (black ball in first draw) = 5

Also given that the first ball drawn is black, i.e., event E has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of F given that E has occurred.

9
ie. P(FE) = 75

By multiplication rule of probability, we have
P(E N F)=P(E) P(FIE)

10 9 3
= — X —=—
15 14 7
Multiplication rule of probability for more than two events If E, F and G are
three events of sample space, we have
P(E n Fn G)=P(E) P(FIE) P(GI(E n F)) = P(E) P(FIE) P(GIEF)
Similarly, the multiplication rule of probability can be extended for four or
more events.
The following example illustrates the extension of multiplication rule of probability
for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
52 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)

4
Now PK) =

Also, P (K|K) is the probability of second king with the condition that one king has
already been drawn. Now there are three kings in (52 — 1) = 51 cards.

3
Therefore P(KIK) = 51

Lastly, P(AJKK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
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4
Therefore P(AIKK) = 50

By multiplication law of probability, we have
P(KKA) =P(K) P(K|K) P(AKK)
4 3 4 2
52 51

50 5525
13.4 Independent Events

Consider the experiment of drawing a card from a deck of 52 playing cards, in which
the elementary events are assumed to be equally likely. If E and F denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then
13 1 4 1
= —=—and P(F)=—=—
PE) 52 4 ® 52 13
Also E and F is the event ' the card drawn is the ace of spades' so that

1
P(EnNF)=—
(ENF) =3
1
B P(EmF)_i_l
Hence P(EIF) = —P(F) _i_4
13

Since P(E) = 1 P (E|F), we can say that the occurrence of event F has not

affected the probability of occurrence of the event E.
We also have

1
P(E ﬁF)_i_i_
P(FIE) = W— T =13 =P(F)
4

1
Again, P(F) = B P (F|E) shows that occurrence of event E has not affected

the probability of occurrence of the event F.

Thus, E and F are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent events.
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Definition 2 Two events E and F are said to be independent, if

and

P(F|E) =P (F) provided P (E) #0
P(E|F) =P (E) provided P (F) #0

Thus, in this definition we need to have P (E) # 0 and P(F)#0
Now, by the multiplication rule of probability, we have

P(E N F) =P(E) . P (FE) )

If E and F are independent, then (1) becomes

P(ENF)=P(E) . P(F) )

Thus, using (2), the independence of two events is also defined as follows:

Definition 3 Let E and F be two events associated with the same random experiment,
then E and F are said to be independent if

P(ENF)=P(E).P (F)

Remarks

V)

(if)

(iii)

(iv)

Two events E and F are said to be dependent if they are not independent, i.e. if
P(ENF)=P(E).P (F)
Sometimes there is a confusion between independent events and mutually
exclusive events. Term ‘independent’ is defined in terms of “probability of events’
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly, ‘independent’ and
‘mutually exclusive’ do not have the same meaning.
In other words, two independent events having nonzero probabilities of occurrence
can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonzero probabilities of occurrence can not be independent.
Two experiments are said to be independent if for every pair of events E and F,
where E is associated with the first experiment and F with the second experiment,
the probability of the simultaneous occurrence of the events E and F when the
two experiments are performed is the product of P(E) and P(F) calculated
separately on the basis of two experiments, i.e., P (E N F) =P (E) . P(F)
Three events A, B and C are said to be mutually independent, if
P(AnB)=P(A) P(B)

P(AnC)=P(A) P(O)

P(B n C) =P(B) P(C)
and P(An BN C)=P(A) P(B) P(C)
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If at least one of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. If E is the event ‘the number appearing is a multiple of
3’ and F be the event ‘the number appearing is even’ then find whether E and F are
independent ?

Solution We know that the sample space is S = {1, 2, 3,4, 5, 6}

Now E={3,6},F={2,4,6}and ENF = {6}
2 1 31 1
= —=—, P(F)==—=— and P(En F)=—
Then P(E)= ~=3 ()62 ( )6
Clearly P(E nF)=P(). P (F)
Hence E and F are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be ‘odd number on the
first throw’ and B the event ‘odd number on the second throw’. Check the independence
of the events A and B.

Solution If all the 36 elementary events of the experiment are considered to be equally
likely, we have

18 1 18 1
P(A) 36 2and (B) 36 2
Also P(A mn B) = P (odd number on both throws)
_ 2.1
36 4
N P(A) P(B) = lxl—l
ow (A) P(B) = x-=7
Clearly P(A nB)=P(A) x P(B)
Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event E ‘three heads
or three tails’, F ‘at least two heads’ and G ‘at most two heads’. Of the pairs (E,F),
(E,G) and (F,G), which are independent? which are dependent?
Solution The sample space of the experiment is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly E = {HHH, TTT}, F= {HHH, HHT, HTH, THH}
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and G= {HHT, HTH, THH, HTT, THT, TTH, TTT}
Also EnF={HHH}, EnG={TTT}, F n G = { HHT, HTH, THH}
2 4 1 7
:—:—’PF :—:—’PG = —
Therefore P(E) 2 2 (F) PR Q) 3
1 1 3
and P(ENF) = Fy P(ENG) =§, PFNG) =§
1 1 1 1 7 7
=—x—=—PE)-P(G) =—x—=—
Also P(E). P(F) = x> =2 (E)-P(G) PRrEED)
d P(F PG—lXZ_l
Thus P(EnF)=P(E) . P(F)
P(E n G) #P(E) . P(G)
and P(FN G)#P (F).P(G)

Hence, the events (E and F) are independent, and the events (E and G) and
(F and G) are dependent.

Example 13 Prove that if E and F are independent events, then so are the events
E and F'.

Solution Since E and F are independent, we have
P(ENF)=P(E) . P(F) (1)
From the venn diagram in Fig 13.3, it is clear

that E N F and E N F” are mutually exclusive events E (E'nF’) S
and also E=(E N F) U (ENF’). N «F

Therefore P(E)=PENF)+PENF)
or P(E N F’)=P(E) - P(E N F)
—pE)-PE).PF) | EOF) “®AF)  (E'NF)
(by (1)) Fig13.3
=P(E) (1-P(F))
=P(E). P(F)

Hence, E and F’ are independent
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In a similar manner, it can be shown that if the events E and F are
independent, then

(a) E’andF are independent,

(b) E’and F’ are independent

Example141If A and B are two independent events, then the probability of occurrence

of at least one of A and B is given by 1- P(A”) P(B’)

Solution We have

P (at least one of A and B) = P(A U B)

=P(A) + P(B) - P(A N B)
=P(A) + P(B) — P(A) P(B)
=P(A) + P(B) [1-P(A)]
=P(A) + P(B). P(A")
=1- P(A") + P(B) P(A")
=1-P(A") [1- P(B)]
=1-P(A") P (B)

|EXERCISE 13.2|

3 1

1. If P(A) =§ and P (B) =g, find P (A n B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 52
playing cards. Find the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is rejected. Find the probability that a box containing 15
oranges out of which 12 are good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event ‘head appears on
the coin’ and B be the event ‘3 on the die’. Check whether A and B are
independent events or not.

5. A die marked 1, 2, 3 in red and 4, 5, 6 in green is tossed. Let A be the event,
‘the number is even,” and B be the event, ‘the number is red’. Are A and B
independent?

3 3 1
6. Let E and F be events with P(E) =g, P(F) :E and P(EnF) = 5 Are

E and F independent?
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1 3
Given that the events A and B are such that P(A) = 5 P(AuUB)= 5 and
P(B) =p. Find p if they are (i) mutually exclusive (ii) independent.
Let A and B be independent events with P(A) = 0.3 and P(B) = 0.4. Find
(i) P(A N B) (i) P(A U B)
(i) P(A|B) (iv) P(BJA)

1 1 1
If A and B are two events such that P(A) = 1 P(B)= 5 and P(ANB) =3
find P (not A and not B).

)=

1 7
Events A and B are such that P (A) = Ex P(B)= I and P(not A or not B) =

State whether A and B are independent ?
Given two independent events A and B such that P(A) = 0.3, P(B) =0.6.
Find
(1) P(A and B) (ii) P(A and not B)
(i) P(A or B) (iv) P(neither A nor B)
A die is tossed thrice. Find the probability of getting an odd number at least once.

Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. Find the probability that

(1) both balls are red.
(i) first ball is black and second is red.
(iii) one of them is black and other is red.

1 1
Probability of solving specific problem independently by A and B are ) and 3

respectively. If both try to solve the problem independently, find the probability
that

(i) theproblem is solved (ii) exactly one of them solves the problem.

One card is drawn at random from a well shuffled deck of 52 cards. In which of
the following cases are the events E and F independent ?
(i) E : ‘the card drawn is a spade’
F : ‘the card drawn is an ace’
(i) E : ‘the card drawn is black’
F : ‘the card drawn is a king’

(iii) E : ‘the card drawn is a king or queen
F : ‘the card drawn is a queen or jack’.
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16. Inahostel, 60% of the students read Hindi news paper, 40% read English news
paper and 20% read both Hindi and English news papers. A student is selected
at random.

(a) Find the probability that she reads neither Hindi nor English news papers.

(b) If she reads Hindi news paper, find the probability that she reads English
news paper.

(c) If she reads English news paper, find the probability that she reads Hindi
news paper.

Choose the correct answer in Exercises 17 and 18.

17. The probability of obtaining an even prime number on each die, when a pair of
dice isrolled is

1 1 1

(A) 0 B) 3 © 5 D) 3¢
18. Two events A and B will be independent, if

(A) A and B are mutually exclusive

(B) P(A’B") =[1 - P(A)] [1 - P(B)]

(C) P(A) = P(B)

(D) P(A) +P(B) =1
13.5 Bayes Theorem

Consider that there are two bags I and II. Bag I contains 2 white and 3 red balls and
Bag II contains 4 white and 5 red balls. One ball is drawn at random from one of the

1
bags. We can find the probability of selecting any of the bags (i.e. ) ) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag II), if the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. Famous mathematician, John Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 1763.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space
Asetofevents E, E,, ..., E is said to represent a partition of the sample space S if
(a) EimEj=¢,i¢j,i,j =1,2,3,..,n
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(b) E,UE,U.. UE =S and
(c) P(E)>0foralli=1,2,..,n.
In other words, the events E , E,, ..., E_represent a partition of the sample space
S if they are pairwise disjoint, exhaustive and have nonzero probabilities.

As an example, we see that any nonempty event E and its complement E” form a
partition of the sample space S since they satisfty ENE =¢ and E UE’=S.

From the Venn diagram in Fig 13.3, one can easily observe that if E and F are any
two events associated with a sample space S, then the set {ENF,ENEE' nFE,E NF’}
is a partition of the sample space S. It may be mentioned that the partition of a sample
space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2 Theorem of total probability
Let {E,E,...E } beapartition of the sample space S, and suppose that each of the
eventsE , E,...., E_has nonzero probability of occurrence. Let A be any event associated

12 o0

with S, then
P(A) =P(E)) P(AIE) + P(E) P(AE,) + ... + P(E)) P(A[E,)
= D P(E))P(AE))
j=1

Proof GiventhatE ,E,...., E isa partition of the sample space S (Fig 13.4). Therefore,

B,
S=E UE,u... UE S .. (D)

and EimEj=¢,i¢j,i,j=1,2,...,n
Now, we know that for any event A,
A=ANS
=AN((E VE U..UE)
=(ANE)UANE)U..UANE) Fig13.4

Also ANE and AN E are respectively the subsets of E, and E. We know that
E, and EJ. are disjoint, for I # ], therefore, A NE and A N EJ. are also disjoint for all
i#j, ,j=1,2,..,n
Thus, P(AA)=P[(ANE)UANE)U...UANE)]
=P(AANnE)+P(ANnE)+..+P(ANE)
Now, by multiplication rule of probability, we have
P(ANE)=PE)PA[E)as P (E)=0Vi=12,.n
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Therefore, P(A)=P(E)P (AE)+P(E) P (AE) + ..+ P (E)PAE)

or P(A) = Y P(E))P(A[E))
j=1

Example 15 A person has undertaken a construction job. The probabilities are 0.65
that there will be strike, 0.80 that the construction job will be completed on time if there
is no strike, and 0.32 that the construction job will be completed on time if there is a
strike. Determine the probability that the construction job will be completed on time.

Solution Let A be the event that the construction job will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have

P(B) = 0.65, P(no strike) =P(B)=1—-P(B)=1-0.65=0.35
P(AB) =0.32, P(A|B") = 0.80
Since events B and B” form a partition of the sample space S, therefore, by theorem
on total probability, we have
P(A) = P(B) P(A|B) + P(B") P(AB")
=0.65x0.32+0.35x0.8
=0.208 +0.28 = 0.488
Thus, the probability that the construction job will be completed in time is 0.488.
We shall now state and prove the Bayes' theorem.

Bayes Theorem IfE , E, ,..., E_are nnon empty events which constitute a partition
of sample space S,i.e. E,E ,..., E_are pairwise disjointand EUE U ... UE_ =S and
A is any event of nonzero probability, then
__PE)PAJE) -
P(E|A) = foranyi=1,2,3,..,n
> P(E;)P(AE))
j=1

Proof By formula of conditional probability, we know that
P(ANE,))

P(A)
P(E)P(A[E;)

= TA) (by multiplication rule of probability)

P(E|A) =

P(E) P(A[E;)

D P(E;)P(AE))
j=1

(by the result of theorem of total probability)
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Remark The following terminology is generally used when Bayes' theorem is applied.
The events E, E,, ..., E_are called hypotheses.
The probability P(E) is called the priori probability of the hypothesis E,

The conditional probability P(E, |A) is called a posteriori probability of the
hypothesis E.

Bayes' theorem is also called the formula for the probability of "causes". Since the
E's are a partition of the sample space S, one and only one of the events E, occurs (i.e.
one of the events E, must occur and only one can occur). Hence, the above formula
gives us the probability of a particular E, (i.e. a "Cause"), given that the event A has
occurred.

The Bayes' theorem has its applications in variety of situations, few of which are
illustrated in following examples.

Example 16 Bag I contains 3 red and 4 black balls while another Bag II contains 5 red
and 6 black balls. One ball is drawn at random from one of the bags and it is found to
be red. Find the probability that it was drawn from Bag II.

Solution Let E| be the event of choosing the bag I, E, the event of choosing the bag 11
and A be the event of drawing a red ball.

1
Then P(E)) =P(E) = )
. 3
Also P(A|E,) = P(drawing a red ball from Bag I) = 7
. 5
and P(AIE,) = P(drawing a red ball from Bag I) = —

11
Now, the probability of drawing a ball from Bag II, being given that it is red,
is P(E,|A)

By using Bayes' theorem, we have

1.5
7X7
P(E.JA) = P(E,)P(AIE,) 211 3
’ P(E,)P(A[E))+P(E,)P(AE,) 1 3 1 5 68
277 2711

Example 17 Given three identical boxes I, I and III, each containing two coins. In
box I, both coins are gold coins, in box 11, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
Ifthe coin is of gold, what is the probability that the other coin in the box is also of gold?



552 MATHEMATICS

Solution Let E , E, and E, be the events that boxes I, Il and I11 are chosen, respectively.

Then P(E)) = P(E,) = P(E,) = ;

Also, let A be the event that ‘the coin drawn is of gold’

2
Then P(A[E,) = P(a gold coin from bag I) = 5= 1
P(AIE,) = P(a gold coin from bag II) = 0

1
P(AIE,) = P(a gold coin from bag III) = )

Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box .
=P(E,A)
By Bayes' theorem, we know that
_ P(E,) P(AJE,)
P(E,)P(A[E))+P(E,) P(A[E,) +P(E;) P(A[E;)

P(E,|A)

1
§X1 _2

1><1+l><0+l><l 3
3 3 3 2

Example 18 Suppose that the reliability of a HIV test is specified as follows:

Of people having HIV, 90% of the test detect the disease but 10% go undetected. Of
people free of HIV, 99% of the test are judged HIV—-ive but 1% are diagnosed as
showing HIV+ive. From a large population of which only 0.1% have HIV, one person
is selected at random, given the HIV test, and the pathologist reports him/her as
HIV+ive. What is the probability that the person actually has HIV?

Solution Let E denote the event that the person selected is actually having HIV and A
the event that the person's HIV test is diagnosed as +ive. We need to find P(E|A).
Also E” denotes the event that the person selected is actually not having HIV.

Clearly, {E, E’} is a partition of the sample space of all people in the population.
We are given that

0.1
~0.1% =——=0.001
P(E) = 0.1% =
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P(E") =1-P(E)=10.999
P(AJE) = P(Person tested as HIV+ive given that he/she
is actually having HIV)

90
= 0 :—:09
90% 100

and P(A|E’) = P(Person tested as HIV +ive given that he/she
is actually not having HIV)

1
=10, = — —
1% 100 0.01

Now, by Bayes' theorem
P(E)P(A|E)
P(E)P(A|E)+P(E")P(AIE")

P(EJA) =

0.001x0.9 90
0.001x0.9+0.999x0.01 1089
= 0.083 approx.

Thus, the probability that a person selected at random is actually having HIV
given that he/she is tested HIV+ive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 25%, 35% and 40% of the bolts. Of their outputs, 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?

Solution Let events B, B,, B, be the following :
B, : the bolt is manufactured by machine A
B, : the bolt is manufactured by machine B
B, : the bolt is manufactured by machine C

Clearly, B,, B,, B, are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.

Let the event E be ‘the bolt is defective’.
The event E occurs with B, or with B, or with B,. Given that,
P(B)) =25% =0.25, P (B, = 0.35 and P(B,) = 0.40
Again P(E|B)) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5% = 0.05
Similarly, ~ P(E[B,) = 0.04, P(E[B,) = 0.02.
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Hence, by Bayes' Theorem, we have
P(B,)P(EB,)
P(B,)P(E[B,)+P(B,) P(E[B,)+P(B)P(E[B;)
0.35x0.04
0.25%0.05+0.35x0.04 +0.40 x 0.02

~0.0140 _ 28
0.0345 69
Example 20 A doctor is to visit a patient. From the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport
2 1
5 12’
if he comes by train, bus and scooter respectively, but if he comes by other means of

transport, then he will not be late. When he arrives, he is late. What is the probability
that he comes by train?

P(B,[E)

311 11
are respectively E’E’Eand . The probabilities that he will be late are 3 and

Solution Let E be the event that the doctor visits the patient late and let T, T,, T,, T,
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.

1

3 1 2
Then P(T) = E,P(Tz)zg,P(TQ:Eand P(T4)=g (given)

P(E|T,) = Probability that the doctor arriving late comes by train =

N

1 1
Similarly, P(E|T)) = 3 P(E|T,) = I and P(E|T,) = 0, since he is not late if he
comes by other means of transport.

Therefore, by Bayes' Theorem, we have
P(T,|E) = Probability that the doctor arriving late comes by train

3 P(T)P(ET)
P(T) P(E[T,)+P(T,) P(E[T,) +P(T;) P(E|T; )+ P (T,)P (E[T,)
3.1
_ 10”4 _ 3,120 1
i><l+1><1+i><i+gx0 40 18 2
10 4 53 10 12 5

. |
Hence, the required probability is 3
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Example 21 A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually a six.

Solution Let E be the event that the man reports that six occurs in the throwing of the
die and let S, be the event that six occurs and S, be the event that six does not occur.

1
Then P(S,) = Probability that SiX occurs = 5

N | W

P(S,) = Probability that six does not occur =

P(E|S,) = Probability that the man reports that six occurs when SiX has
actually occurred on the die

3
= Probability that the man speaks the truth = 1

P(E[S,) = Probability that the man reports that SiX occurs when six has
not actually occurred on the die

N

o 3
= Probability that the man does not speak the truth =1- i

Thus, by Bayes' theorem, we get
P(S,|E) = Probability that the report of the man that Six has occurred is
actually a SiX
) P(S)P(E[S,)
P(S)P(E[S,)+P(S,) P(E[S,)

1 3
__6'a 1,243
T 3,51 88 8
6 4
: e 3
Hence, the required probability is )
|EXERCISE 13.3

1. Anurn contains 5 red and 5 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?
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A bag contains 4 red and 4 black balls, another bag contains 2 red and 6 black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. Find the probability that the ball is drawn from the
first bag.

Of the students in a college, it is known that 60% reside in hostel and 40% are
day scholars (not residing in hostel). Previous year results report that 30% of all
students who reside in hostel attain A grade and 20% of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
at random from the college and he has an A grade, what is the probability that the
student is a hostlier?

In answering a question on a multiple choice test, a student either knows the

3
answer or guesses. Let 1 be the probability that he knows the answer and 4

be the probability that he guesses. Assuming that a student who guesses at the

1
answer will be correct with probability e What is the probability that the stu-
dent knows the answer given that he answered it correctly?

A laboratory blood test is 99% effective in detecting a certain disease when it is
in fact, present. However, the test also yields a false positive result for 0.5% of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?

There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75% of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?

An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?

A factory has two machines A and B. Past record shows that machine A produced
60% of the items of output and machine B produced 40% of the items. Further,
2% of the items produced by machine A and 1% produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are



10.

11.

12.

13.

14,

PROBABILITY 557

0.6 and 0.4 respectively. Further, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. Find the probability that the new product introduced was by
the second group.

Suppose a girl throws a die. If she gets a 5 or 6, she tosses a coin three times and
notes the number of heads. If she gets 1, 2, 3 or 4, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, 2, 3 or 4 with the die?

A manufacturer has three machine operators A, B and C. The first operator A
produces 1% defective items, where as the other two operators B and C pro-
duce 5% and 7% defective items respectively. A is on the job for 50% of the
time, B is on the job for 30% of the time and C is on the job for 20% of the time.
A defective item is produced, what is the probability that it was produced by A?
A card from a pack of 52 cards is lost. From the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. Find the probability of
the lost card being a diamond.

4
Probability that A speaks truth is 5 A coin is tossed. A reports that a head
appears. The probability that actually there was head is
A) 2 B) 0 < D) 2
(A) 3 (B) 3 © 3 (D) 3

If A and B are two events such that A < B and P(B) # 0, then which of the
following is correct?

_P(@B)
(A) P(AIB)—P ) (B) P(AB) < P(A)
(C) P(AB) = P(A) (D) None of these

13.6 Random Variablesand itsProbability Distributions

We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following
examples/experiments.

(i) Intossing two dice, we may be interested in the sum of the numbers on the

two dice.

(i) In tossing a coin 50 times, we may want the number of heads obtained.
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(i) In the experiment of taking out four articles (one after the other) at random
from a lot of 20 articles in which 6 are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.

In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by X.

If you recall the definition of a function, you will realise that the random variable X
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows :

Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.

For example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is S = {HH, HT, TH, TT}.
If X denotes the number of heads obtained, then X is a random variable and for
each outcome, its value is as given below :
XHH)=2,XHT)=1,X(TH) =1, X (TT)=0.
More than one random variables can be defined on the same sample space. For

example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.

Then Y(HH) =2, Y (HT)=0, Y (TH) =0, Y (TT) = 2.
Thus, X and Y are two different random variables defined on the same sample
space S.

Example 22 A person plays a game of tossing a coin thrice. For each head, he is
given Rs 2 by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let X denote the amount gained or lost by the person. Show that X is a
random variable and exhibit it as a function on the sample space of the experiment.

Solution X is a number whose values are defined on the outcomes of a random
experiment. Therefore, X is a random variable.
Now, sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}



PROBABILITY 559

Then X(HHH)=Rs(2x3)=Rs6
X(HHT) = X(HTH) = X(THH) =Rs (2 x 2 — 1 x 1.50) = Rs 2.50
X(HTT) = X(THT) =(TTH)=Rs (1 x2) — (2 x 1.50)=—Re 1

and X(TTT)=—-Rs (3 x 1.50) = —Rs 4.50

where, minus sign shows the loss to the player. Thus, for each element of the sample

space, X takes a unique value, hence, X is a function on the sample space whose range
is

{~1, 2.50, —4.50, 6}

Example23 A bag contains 2 white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again. If X
denotes the number of red balls recorded in the two draws, describe X.

Solution Let the balls in the bag be denoted by w , w,, r. Then the sample space is
S=1{w, W, W, W, W, W,, W, W,, W, I, W, ', ' W, T W, T}
Now, for we S
X () = number of red balls
Therefore
X(w, wi i) = X({w, W, 1) = X({w, w,}) = X({w, w,}) =0
X({w1 ry) = X({w2 ry)=Xyr Wl}) =X{r Wz}) =land X({rr})=2
Thus, X is a random variable which can take values 0, 1 or 2.

13.6.1 Probability distribution of a random variable

Letus look at the experiment of selecting one family out of ten families f, f ..., in
such a manner that each family is equally likely to be selected. Let the families f , f

1?2
s fw have 3,4, 3, 2, 5,4, 3, 6, 4, 5 members, respectively.
Let us select a family and note down the number of members in the family denoting

X. Clearly, X is a random variable defined as below :
X(f) =3, X(f) =4, X(f,) =3, X(f) =2, X(f) =5,
X(f) =4, X(f) =3, X(f) =6, X(f)=4,X(f,)=5
Thus, X can take any value 2,3.4,5 or 6 depending upon which family is selected.

Now, X will take the value 2 when the family f, is selected. X can take the value

3 when any one of the families f, f,, f is selected.

Similarly, X =4, when family f, f_or f, is selected,

2% 76
X=5, when family f, or f  is selected

and X =6, when family f_ is selected.
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Since we had assumed that each family is equally likely to be selected, the probability

that family f, is selected is %

1 1
Thus, the probability that X can take the value 2 is 10 We write P(X = 2) T

Also, the probability that any one of the families f , f, or f, is selected is

3
P £ £ = 5

3
Thus, the probability that X can take the value 3 = 0

3
We write PX=3)= m

Similarly, we obtain

3

P(X=4)=P({f, f, L)) =7
2

P(X=5)=P(f, f }) T

and P(X=6)=P({f}) =%

Such a description giving the values of the random variable along with the
corresponding probabilities is called the probability distribution of the random
variable X.

In general, the probability distribution of a random variable X is defined as follows:

Definition 5 The probability distribution of a random variable X is the system of numbers

X : X, X, X,
P(X) P, P, P,
n
where, p>0, > p =1,i=1,2,..n
i=l1

The real numbers X, X,,..., X _are the possible values of the random variable X and
p, (i = 1,2,..., n) is the probability of the random variable X taking the value X i.e.,
P(X = X) =P,
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If X is one of the possible values of a random variable X, the statement

X =X is true only at some point (s) of the sample space. Hence, the probability that
X takes value X is always nonzero, i.e. P(X = x) # 0.

Also for all possible values of the random variable X, all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.

Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 52 cards. Find the probability distribution of the number of aces.

Solution The number of aces is a random variable. Let it be denoted by X. Clearly, X
can take the values 0, 1, or 2.

Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.

Therefore, P(X = 0) = P(non-ace and non-ace)

= P(non-ace) x P(non-ace)

48 48 144

- 1o,ae 2t
52 52 169
P(X =1) = P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) + P(non-ace and ace)
= P(ace). P(non-ace) + P (non-ace) . P(ace)

4 48 48 4 _24

52 52 52 52 169

and P(X =2)=P (ace and ace)
AV
52 52 169
Thus, the required probability distribution is
X 0 1 2
by | 144 [ 24| 1
) 169 169 | 169

Example 25 Find the probability distribution of number of doublets in three throws of
a pair of dice.
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Solution Let X denote the number of doublets. Possible doublets are
(1,1),(2,2), (3,3), (4,4), (5,5),(6,6)
Clearly, X can take the value 0, 1, 2, or 3.

Probability of getting a doublet = 3£ = %
- . 1 5
Probability of not getting a doublet =1 - Ay
N P(X=0)=P(nod blt-éxéxé_lz—5
o (X =0) =P (no doublet) = £ =16

P(X = 1) = P (one doublet and two non-doublets)
1 5 5 5 1 5 5 5 1
X X

= —X—X—+—X—X—+—X—X—
6 6 6 6 6 6 6 6 6
(1 52 75
:3k—><_2):_
6 6 216
P(X = 2) = P (two doublets and one non-doublet)
115151511(15)15
—X—X—F+—X—X—F+—X—X—=3[ —=—X—|=—+
6 6 6 6 6 6 6 6 6 6> 6/ 216
and P(X = 3) = P (three doublets)
1 1 1 1
= —X—X—=—
6 6 6 216
Thus, the required probability distribution is

X 0 1 2 3

125 75 15 1
216 | 216 | 216 | 216

P(X)

Verification Sum of the probabilities

3 125 75 15 1

Zp. = + + +

i 216 216 216 216
125+75+15+1 216

- 1
216 216
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Example 26 Let X denote the number of hours you study during a randomly selected
school day. The probability that X can take the values X, has the following form, where
K is some unknown constant.

0.L,if x=0
kx, if x=1or2
k(5-x), if x=3o0r4

0, otherwise

P(X=X)=

(a) Find the value of k.

(b) What is the probability that you study at least two hours ? Exactly two hours? At
most two hours?

Solution The probability distribution of X is

X [ o 1 [ 2 3
PX) | 0.1 k | 2k | 2k | k

(a) We know that Z P =1
i1
Therefore 0.1 +k+2k+2k+k=1
ie. k=0.15
(b) P(you study at least two hours) =P(X22)

=P(X=2)+P(X=3)+P (X=4)
=2k+2k+k=5k=5x0.15=0.75

P(you study exactly two hours) =P(X=2)
=2k=2x0.15=0.3
P(you study at most two hours) =P(X<2)

=P (X=0)+P(X=1)+PX=2)
=0.1+k+2k=0.1+3k=0.1+3x0.15
=0.55

13.6.2 Mean of arandom variable

In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. Few
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
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Definition 6 Let X be a random variable whose possible values X, X,, X;, ..., X, occur

with probabilities p,, p,, P,,..., P, respectively. The mean of X, denoted by L, is the

n
number Z % P, i.e. the mean of X is the weighted average of the possible values of X,
i=1
each value being weighted by its probability with which it occurs.

The mean of a random variable X is also called the expectation of X, denoted by
E(X).

Thus, E(X)=p=2%h =X P XPp,+..+XP,.
i=1

In other words, the mean or expectation of a random variable X is the sum of the
products of all possible values of X by their respective probabilities.

Example 27 Let a pair of dice be thrown and the random variable X be the sum of the
numbers that appear on the two dice. Find the mean or expectation of X.

Solution The sample space of the experiment consists of 36 elementary events in the
form of ordered pairs (X, Y,), where x = 1,2, 3,4,5,6andy =1, 2,3,4,5,6.

The random variable X i.e. the sum of the numbers on the two dice takes the
values 2, 3,4,5,6,7,8,9,10, 11 or 12.

Now P(X =2)=P({(1,1)}) =%
P(X=3)=P({(1,2), (2,D}) =%
P(X =4)=P({(1.3),(2.2). 3.D}) Z%
P(X = 5) = P({(1,4), (2,3), (3,2), (4,1)})=%
P(X = 6) = P({(1,5),(2,4), 3,3), (4,2), (5,)}) = %

6
P(X=7)=P({(1,6), (2,5), 3.4), (4,3), (5.2), (6D} =3¢

5
P(X=8) =P({(2,6), 3,5), (4:4), (5.3), (6,2)}) =3¢
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4
P(X=9)= P({(3.6), (45),(54), (63)) =5,
3
P(X=10) = P({(4:6). (5.5). (64 =5
P(X=11)=P({(5,6), (6,5 _i
(X=1D)=P((5.6). (6.9 =7

1
P(X=12)=P({(6,6)}) =3¢

The probability distribution of X is

X or X 2 3 (4 S |[6 |7 |89 (101 | 12

1 (2 [3 (4 ([5]6 (5 ([4](3]|2 1

PO orpl 36136 |36 |36 | 36 | 36 |36 |36 |36 |36 | 36

Therefore,

=EX)= Zn:xlp —2><L+3><£+4><i+5><i
H SR TR 36T 36 36

+6><i+7><£+8><i +9><i+10><i+11><£+12xi
6 36 36 36 36

2+46+12+20+30+42+40+36+30+22+12 _7
36

Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.

13.6.3 Variance of a random variable

The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of X and Y.

X 1 2 3 4
o | L] 2] 2]z
(X) 8 8 8 8
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Y -1 0 4 5 6
ol L2 ]
¥) 8 8 8 8 8
1 2 3 2 22
= Ix—42Xx—43x=—+4x—="=2.75
Clearly E(X) 2 g g P
1 2 3 1 1 22
= —IXx—+0Xx—4+4x=+5x—= 6x—=—=2.75
and E § 8§ 8 8 8 8

The variables X and Y are different, however their means are same. It is also
easily observable from the diagramatic representation of these distributions (Fig 13.5).

P(X) P(Y)

3/8 T 3/8
Ys1 s

1] " | ]
A S S S T T
@ _ (i)
Fig 13.5
To distinguish X from Y, we require a measure of the extent to which the values of
the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the

)
5]
F N

values of a random variable may be measured by variance.

Definition 7 Let X be a random variable whose possible values X, X,,...,X_ occur with
probabilities p(X,), P(X,),..., P(X,) respectively.

Let u = E (X) be the mean of X. The variance of X, denoted by Var (X) or O'X2 is

defined as

o> = Var(X)=> (% -1’ p(x)

i=1

or equivalently o> =EB(X — ny>
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The non-negative number

= Var(X) JZ(x —1)” p(x)

is called the standard deviation of the random variable X.
Another formulato find the variance of a random variable. We know that,

Var (X) = an(& -’ p(%)
i=1

= > (% + p’=2u%) p(x)
i=1

Il
M:

X2 p(x)+ Zu p(X)— Z2u>q p(%)

Il
M:

X2 p(x )+’ Z p(%)— 2uZ>q p(%)

X P(X)+p* —2u [smcezpoo landp= pr(m}

I
M:

= > %7 p(x)—p’
i=1
n n 2
or Var (X) = > %’ p(&)—[Zx p(&)}
i=1 i=1

or Var (X) = E(X?) — [E(X)]%, where E(X2) =Zn;>q2 (%)

i1
Example 28 Find the variance of the number obtained on a throw of an unbiased die.

Solution The sample space of the experiment is S = {1, 2, 3, 4, 5, 6}.

Let X denote the number obtained on the throw. Then X is a random variable
which can take values 1, 2, 3, 4, 5, or 6.
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N =

Also P(1) = P(2) = P(3) = P(4) = P(5) = P(6) =

Therefore, the Probability distribution of X is

X 1 2 3 4 5 6

|~
|~
| =

ol Ll L] L
()666

Now E(X) = in P(X%)
i1

= 1><l—i—2><l—i—3><l +4><l+5><l+6><l=2
6 6 6 6 6 6 6

1 1 1 1 1 1 91
2) = Px—422x— 43 x—+ 4 x—+ 52 x—+ 6" x—=—
Also E(X%) 6 6 6 6 6 6 6

Thus, Var (X) = E (X?) — (E(X))?

91 (2}2_91 41 35
- 6 36 12

“ 6 6

Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 52 cards. Find the mean, variance and standard deviation
of the number of kings.

Solution Let X denote the number of kings in a draw of two cards. X is a random
variable which can assume the values 0, 1 or 2.

48!
48 DIAR —
. C, 21(48-2)! 48x47 188
Now P(X =0) =P (no king) =——2= = =2
(X=0=r( ¢ >, 52! 52x51 221
21(52-2)!
40 B0
P(X = 1) = P (one king and one non-king) :#
2
~ 4x48x2 32

52x51 221
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4
C 4x3 1
and P(X =2) =P (two kings) =——= = —
2C,  52x51 221

Thus, the probability distribution of X is
X 0 1 2
188 [ 32 | 1

PR 21 | 21 | 221
n
Now Mean of X =E(X)= in P(X%)
i=1
= OX@+1X£+2XL=£
221 221 221 221
. 2
Also E(X?) = in p(x)
i=1
=02 X@HZ x£+22 XLZE
221 221 221 221
Now Var(X) = E(X?) — [E(X)]?
NENEA
221 \221) (221)?
Therefore 6, = Var(X) = gi?ozow
|EXERCISE 13.4|

1. State which of the following are not the probability distributions of a random
variable. Give reasons for your answer.

| xlo |1 |2
PX)| 04 | 04 |02

G | x o |1 [2 | 3|4

PX)| 0.1 | 05|02 |-0.1] 03
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iy [ Y [-1 To [1
P(Y)| 06| 01 02

v |z [3 |2 [1 o [
Pz)| 03 |02 | 04 | 0.1 | 0.05

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X
represent the number of black balls. What are the possible values of X? Is X a
random variable ?

Let X represent the difference between the number of heads and the number of
tails obtained when a coin is tossed 6 times. What are possible values of X?

Find the probability distribution of
(1) number of heads in two tosses of a coin.

(i) number of tails in the simultaneous tosses of three coins.

(i) number of heads in four tosses of a coin.

Find the probability distribution of the number of successes in two tosses of a die,
where a success is defined as

(i) number greater than 4
(i) six appears on at least one die
From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn

at random with replacement. Find the probability distribution of the number of
defective bulbs.

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is
tossed twice, find the probability distribution of number of tails.

A random variable X has the following probability distribution:

X 0 112|134 5] 6 7
p)| o | k [ 2k] 2k | 3k | k2 |2k 7ke+k

Determine
(i) k (i) P(X<3)
(i) P(X>6) (iv) P(0<X <3)
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The random variable X has a probability distribution P(X) of the following form,
where K is some number :

k, if x=0
2K, if x=1
3k, if x=2

0, otherwise

P(X) =

(a) Determine the value of k.
(b) FindP (X<2), P(X<L2),P(X2>2).
Find the mean number of heads in three tosses of a fair coin.

Two dice are thrown simultaneously. If X denotes the number of sixes, find the
expectation of X.

Two numbers are selected at random (without replacement) from the first six
positive integers. Let X denote the larger of the two numbers obtained. Find
E(X).

Let X denote the sum of the numbers obtained when two fair dice are rolled.
Find the variance and standard deviation of X.

A class has 15 students whose ages are 14, 17, 15, 14,21, 17, 19, 20, 16, 18, 20,
17,16, 19 and 20 years. One student is selected in such a manner that each has
the same chance of being chosen and the age X of the selected student is
recorded. What is the probability distribution of the random variable X? Find
mean, variance and standard deviation of X.

In a meeting, 70% of the members favour and 30% oppose a certain proposal.
A member is selected at random and we take X = 0 if he opposed, and X =1 if
he is in favour. Find E(X) and Var (X).

Choose the correct answer in each of the following:

16.

17.

The mean of the numbers obtained on throwing a die having written 1 on three
faces, 2 on two faces and 5 on one face is

8
(A) 1 (B) 2 ©) 5 (D) 3
Suppose that two cards are drawn at random from a deck of cards. Let X be the

number of aces obtained. Then the value of E(X) is

37 5 1 2
(A) 1 (B) e ©) e (D) e
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13.7 Bernoulli Trialsand Binomial Distribution

13.7.1 Bernoulli trials

Many experiments are dichotomous in nature. For example, a tossed coin shows a
‘head’ or ‘tail’, a manufactured item can be ‘defective’ or ‘non-defective’, the response
to a question might be “yes’ or ‘no’, an egg has ‘hatched’ or ‘not hatched’, the decision
is “yes’ or ‘no’ etc. In such cases, it is customary to call one of the outcomes a ‘success’
and the other ‘not success’ or ‘failure’. For example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.

Each time we toss a coin or roll a die or perform any other experiment, we call it a
trial. If a coin is tossed, say, 4 times, the number of trials is 4, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as ‘success’ or ‘failure’ are called Bernoulli trials.

Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions :
(1) There should be a finite number of trials.
(i) The trials should be independent.
(i) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.

For example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to 6

1 1
written on six faces, then p= ) andq=1-p= 5= probability of failure.

Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black
balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is

(i) replaced (i) not replaced in the urn.

Solution
(i) The number of trials is finite. When the drawing is done with replacement, the

7
probability of success (say, red ball) is p= It which is same for all six trials

(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
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(i) When the drawing is done without replacement, the probability of success
(i.e., red ball) in first trial is 16 in 2nd trial is 5 if the first ball drawn is red or

5 if the first ball drawn is black and so on. Clearly, the probability of success is

not same for all trials, hence the trials are not Bernoulli trials.

13.7.2 Binomial distribution
Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and F denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.
Clearly, six different cases are there as listed below:

SFFFFF, FSFFFF, FFSFFF, FFFSFF, FFFFSF, FFFFFS.

6!
Similarly, two successes and four failures can have 41% 21 combinations. It will be

lengthy job to list all of these ways. Therefore, calculation of probabilities of 0, 1, 2....,
N number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities of number of
successes in N-Bernoulli trials, a formula is derived. For this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and q =1 — p for
success and failure respectively in each trial. The sample space of the experiment is
the set

S = {SSS, SSF, SFS, FSS, SFF, FSF, FFS, FFF}
The number of successes is a random variable X and can take values 0, 1, 2, or 3.
The probability distribution of the number of successes is as below :

P(X =0) = P(no success)
= P({FFF}) = P(F) P(F) P(F)
=(0.q.q=¢’since the trials are independent

P(X =1)=P(one successes)
= P({SFF, FSF, FFS})
=P({SFF}) + P({FSF}) + P({FFS})
=P(S) P(F) P(F) + P(F) P(S) P(F) + P(F) P(F) P(S)
=p.gq+ g.p.q+ g.a.p = 3pg

P(X=2)=P (two successes)
= P({SSF, SFS, FSS})
=P({SSF}) + P ({SFS}) + P({FSS})
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=P(S) P(S) P(F) + P(S) P(F) P(S) + P(F) P(S) P(S)
=ppag.+ pap + gqpp = 3pq
and P(X = 3) = P(three success) = P ({SSS})
=P(S).P(S).P(S) =p’
Thus, the probability distribution of X is
X 0 1 2
P(X) a9’ | 3a’p| 39p* | p°

Also, the binominal expansion of (q+ p)* is

q3 + 3q2 p+ 3qp2 + p3
Note that the probabilities of 0, 1, 2 or 3 successes are respectively the 1st, 2nd,
3rd and 4th term in the expansion of (q + p)*.
Also, since + p= 1, it follows that the sum of these probabilities, as expected, is 1.

Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities
of 0, 1, 2,..., n successes can be obtained as 1st, 2nd,...,(n+ 1)" terms in the expansion
of (q+ p)". To prove this assertion (result), let us find the probability of X-successes in
an experiment of N-Bernoulli trials.

Clearly, in case of X successes (S), there will be (n— x) failures (F).

n!
Now, X successes (S) and (n — X) failures (F) can be obtained in XI(n—x)! Ways.

In each of these ways, the probability of X successes and (n — X) failures is

= P(X successes) . P(n—x) failures is

_ P(S).P(S)..P(S) - P(F).P(F)...P(F) _

n-x
Xtimes (N—X) times px q
n!
Thus, the probability of X successes in nN-Bernoulli trials is mpx g+
or nCX pX quX
Thus P(Xx successes) = "C,p*q"™*, Xx=0,1,2,.,n.(q=1-p)

Clearly, P(x successes), i.e. "C, p*q"*is the (X + 1) term in the binomial
expansion of (g + p)".

Thus, the probability distribution of number of successes in an experiment consisting
of'n Bernoulli trials may be obtained by the binomial expansion of (q+ p)". Hence, this
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distribution of number of successes X can be written as
X 0 1 2 X n
P (X) I"IC0 ql"l I"IC:1 qn—]p] I"IC2 qn—2p2 nCX qn—XpX I"IC:rw| pl"l

The above probability distribution is known as binomial distribution with parameters
N and p, because for given values of n and p, we can find the complete probability
distribution.

The probability of X successes P (X = X) is also denoted by P (X) and is given by
P(x) ="C. a~p, x=0,1,..,n.(q=1-p)
This P(X) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each
trial as p, is denoted by B(n, p).

Let us now take up some examples.
Example 31 If a fair coin is tossed 10 times, find the probability of
(i) exactly six heads
(if) at least six heads

(i) at most six heads

Solution The repeated tosses of a coin are Bernoulli trials. Let X denote the number
of heads in an experiment of 10 trials.

1
Clearly, X has the binomial distribution with n=10 and p= =

Therefore P(X=x) ="Cg~p, x=0,1, 2,.2..,n
1 1
Here n=10, ng,q:1—p—5
10—x X 10
Therefore P(X=x)="C, (lj (lJ =""c, (lj
2 2 2

1)10 100 1 105

N ) P(X =6 :10C _ — —_—
ow (i) P(X=6) 6(2 6!x41 2! 512

(i) P(at least six heads) = P(X = 6)
=P(X=6)+PX=7)+P(X=8)+P(X=9)+P (X=10)
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10 10 10
10C6[%J +10C7(%j +10C8(%j +10C9
S tor ) (10t ) (10
B k6'><4'J L7v><3vJ leleJ L9'><1'

(iii) P(at most six heads) = P(X < 6)
—P(X=0)+P(X=1)+P(X=2)+P(X=3)
+PX=4)+P(X=5)+P(X=06)

10 10 10 10
_ 1 +10¢, 1 +19¢, 1 +19¢, 1
2 2 2 2
10 10 10
1 1 1
+10C4(5j +10C5[5j +1°C6(5]

848 53

1024 64

Example 32 Ten eggs are drawn successively with replacement from a lot containing
10% defective eggs. Find the probability that there is at least one defective egg.

Solution Let X denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, X has the

0 1
binomial distribution withn=10 and P= EZE
Therefore q=1- p—i
10
Now P(at least one defective egg) =P(X21)=1-P (X =0)
10 10
- 1-"¢, L
10 010
|EXERCISE 13.5|
1. A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the
probability of
(i) 5 successes? (i) at least 5 successes?

(iii) at most 5 successes?
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A pair of dice is thrown 4 times. If getting a doublet is considered a success, find
the probability of two successes.

There are 5% defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?

Five cards are drawn successively with replacement from a well-shuffled deck
of 52 cards. What is the probability that

(i) all the five cards are spades?
(i) only 3 cards are spades?
(iii) none is a spade?

The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. Find the probability that out of 5 such bulbs

(1) none
(if) not more than one
(iii) more than one
(iv) at least one
will fuse after 150 days of use.
A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls

are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 0?

In an examination, 20 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true'; if it falls tails, he answers 'false'. Find the probability
that he answers at least 12 questions correctly.

Suppose X has a binomial distribution B (6, %) . Show that X = 3 is the most
likely outcome.

(Hint : P(X = 3) is the maximum among all P(x), x=0,1,2,3,4,5,6)

On a multiple choice examination with three possible answers for each of the

five questions, what is the probability that a candidate would get four or more
correct answers just by guessing ?

A person buys a lottery ticket in 50 lotteries, in each of which his chance of
winning a prize is 00 What is the probability that he will win a prize

(a) at least once (b) exactly once (c) at least twice?
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Find the probability of getting 5 exactly twice in 7 throws of a die.
Find the probability of throwing at most 2 sixes in 6 throws of a single die.

It is known that 10% of certain articles manufactured are defective. What is the
probability that in a random sample of 12 such articles, 9 are defective?

In each of the following, choose the correct answer:
In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is
© (2]
10

1 5
(B) (5)

1
The probability that a student is not a swimmer is 5 Then the probability that

9
(A) 10 D) 5

out of five students, four are swimmers is

4 AN
(A) 504@ % (B) [gj <

s 1[4
©) C1§ 5 (D) None of these

Miscellaneous Examples

Example 33 Coloured balls are distributed in four boxes as shown in the following

table:

Box Colour
Black White Red Blue
I 3 4 5 6
II 2 2 2
111 1 2 3 1
v 4 3 1 5

A box is selected at random and then a ball is randomly drawn from the selected
box. The colour of the ball is black, what is the probability that ball drawn is from the
box III?
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Solution Let A, E, E,, E, and E be the events as defined below :
A : ablack ball is selected E, : box I is selected
E, : box Il is selected E, : box Il is selected
E,: box IV is selected

Since the boxes are chosen at random,
1
Therefore P(E,) =P(E,) = P(E,) =P(E) = 1
3 2 1 4
Also P(A[E) = ITE P(A[E) = 3 P(A[E,)) = 7 and P(A[E,) = ')

P(box III is selected, given that the drawn ball is black) = P(E,|A). By Bayes'
theorem,

P(E;)-P(A[E;)

PIEIA) = B P(AIE, ) + P(E,) P(AIE, )+ P(E,) P(AIE,) + P(E, ) PATE, )
1.1
4 7 _
13111114‘0'165
XX — =X — A+ — X —
4 18 4 4 4 7 4 13

1
Example 34 Find the mean of the Binomial distribution B [4,5)

Solution Let X be the random variable whose probability distribution is B (4, 5)

H n=4 ! d 1 1 2
ere =4, p= — an =]l-===
P 3 a 3 3
4—X X
4 2
We know that P(X=x)="C, (5] [EJ ,X=0,1,2,3,4.
1.€. the distribution of X is
X, P(x.) X, P(x)
: 2]“
Gl 2
0 o3 0
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4
Now Mean (U) = in P(x%)
i-1

2V (1
s3]
3)\3

3
Example 35 The probability of a shooter hitting a target is 1 How many minimum

3

EOER

2

32+48+424+4 108 4

34

81 3

4><3—4+2><6><3—4+3><4><3£4+4><1><3L4

1 3
3 vl

14
3

number of times must he/she fire so that the probability of hitting the target at least
once is more than 0.99?

Solution Let the shooter fire n times. Obviously, n fires are N Bernoulli trials. In each

3
trial, p = probability of hitting the target = 1 and q = probability of not hitting the

1 n n—-Xx X n 1 m 3 g n
target=Z.Then PX=x)="C,q " p ="Cy| — ~|=C

Now, given that,
P (hitting the target at least once) > 0.99

1.€.

P(x> 1) > 0.99

4 4

X

3X
4_n.
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Therefore, 1-P(x=0)>0.99
1
or 1—”C04—n >0.99
n~ 1 |
or C, 4—n< 0.01 i.e. n <0.01
4n > L 100 (1
or 0.01

The minimum value of N to satisfy the inequality (1) is 4.

Thus, the shooter must fire 4 times.

Example 36 A and B throw a die alternatively till one of them gets a ‘6” and wins the
game. Find their respective probabilities of winning, if A starts first.

Solution Let S denote the success (getting a ‘6’) and F denote the failure (not getting
a‘6’).
Th P(S) - =, P(F)=2
us, ( ) = 6 s 6
o 1
P (A wins in the first throw) = P(S) = S

A gets the third throw, when the first throw by A and second throw by B result into
failures.

5 51
Therefore, P(A wins in the 3rd throw) = P(FFS) = P(F)P(F)P(S)= s X gx s

4
5 1
P(A wins in the 5th throw) = P (FFFFS) =(gj (gj and so on.

o v BT

_ 6
25 11

‘O\’_‘
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6 5
P(B wins) =1 — P (A wins) = _H:H

Remark Ifa+ar +ar?+... +ar™!' + .., where |r| < I, then sum of this infinite G.P.

a
is given by _r (Refer A.1.3 of Class XI Text book).

Example 37 If a machine is correctly set up, it produces 90% acceptable items. If it is
incorrectly set up, it produces only 40% acceptable items. Past experience shows that
80% of the set ups are correctly done. If after a certain set up, the machine produces
2 acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces 2 acceptable items.

Also let B, represent the event of correct set up and B, represent the event of
incorrect setup.

Now P(B,) = 0.8, P(B)) = 0.2
P(AB,) =0.9 x 0.9 and P(A|B,) = 0.4 x 0.4
Therefore P(B |A) = P(B,) P(AB,)
1 P(B,) P(AB,) +P(B,) P(AB,)
_ 0.8x0.9x0.9 648 _ 1 o

0.8x0.9x09+02x04x04 680

Miscellaneous Exercise on Chapter 13

1. A and B are two events such that P (A) # 0. Find P(B|A), if
(1) A is asubsetof B (i) AnB=¢
2. A couple has two children,
(i) Find the probability that both children are males, if it is known that at least
one of the children is male.
(ii) Find the probability that both children are females, if it is known that the
elder child is a female.

3. Suppose that 5% of men and 0.25% of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.

4. Suppose that 90% of people are right-handed. What is the probability that
at most 6 of a random sample of 10 people are right-handed?
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An urn contains 25 balls of which 10 balls bear a mark 'X' and the remaining 15
bear a mark 'Y'. A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If 6 balls are drawn in this way, find the probability that

(i) all will bear 'X' mark.
(ii) not more than 2 will bear "Y' mark.
(iii) at least one ball will bear "Y' mark.

(iv) the number of balls with 'X' mark and 'Y' mark will be equal.

In a hurdle race, a player has to cross 10 hurdles. The probability that he will

5
clear each hurdle is rx What is the probability that he will knock down fewer
than 2 hurdles?

A die is thrown again and again until three sixes are obtained. Find the probabil-
ity of obtaining the third six in the sixth throw of the die.

If a leap year is selected at random, what is the chance that it will contain 53
tuesdays?

An experiment succeeds twice as often as it fails. Find the probability that in the
next six trials, there will be atleast 4 successes.

How many times must a man toss a fair coin so that the probability of having
at least one head is more than 90%?

In a game, a man wins a rupee for a six and loses a rupee for any other number
when a fair die is thrown. The man decided to throw a die thrice but to quit as
and when he gets a six. Find the expected value of the amount he wins / loses.

Suppose we have four boxes A,B,C and D containing coloured marbles as given
below:

Box Marble colour

Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from

it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
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Assume that the chances of a patient having a heart attack is 40%. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30% and prescription of certain drug reduces its chances by 25%. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. Find the probability that the patient followed a course of
meditation and yoga?

If each element of a second order determinant is either zero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being

1
assumed with probability ) ).

An electronic assembly consists of two subsystems, say, A and B. From previ-
ous testing procedures, the following probabilities are assumed to be known:

P(A fails) = 0.2
P (B fails alone) = 0.15
P(A and B fail) = 0.15
Evaluate the following probabilities
(i) P(A fails|B has failed) (ii) P(A fails alone)
Bag I contains 3 red and 4 black balls and Bag II contains 4 red and 5 black balls.
One ball is transferred from Bag I to Bag II and then a ball is drawn from Bag II.

The ball so drawn is found to be red in colour. Find the probability that the
transferred ball is black.

Choose the correct answer in each of the following:

17.

18.

19.

If A and B are two events such that P(A) # 0 and P(B | A) = 1, then

(A) AcB (B) Bc A (C) B=9¢ (D) A=0¢

If P(A|B) > P(A), then which of the following is correct :

(A) P(BJA) < P(B) (B) P(A nB) <P(A).P(B)

(C) P(BJA) > P(B) (D) P(BJA) = P(B)

If A and B are any two events such that P(A) + P(B) — P(A and B) = P(A), then
(A) P(BJA) =1 (B) P(AIB)=1

(C) P(BIA) =0 (D) P(AB) =0
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Summary
The salient features of the chapter are —

¢ The conditional probability of an event E, given the occurrence of the event F
.. P(ENF)
is given by P(E|F) :—P(F) , P(F)#0
¢ O0LZP(EF)<, P (E'[F)=1-P (E|F)
P ((E U F)|G) =P (E|G) + P (F|G) - P ((E N F)|G)
¢ P(ENF)=P(E)P (FE),P (E)#0
P(ENF)=P (F) P(E|F),P (F)#0
¢ IfE and F are independent, then
P(ENF)=P (E)P (F)
P (E[F)=P (E), P (F) # 0
P (FIE) =P (F), P(E) # 0
& Theorem of total probability

Let {E, E,, ...,E,) be a partition of a sample space and suppose that each of
E., E,, ..., E, has nonzero probability. Let A be any event associated with S,
then
P(A) =P(E) P (AIE,)) + P (E)) P (AIE) + .. + P (E) P(AIE)
¢ Bayes theorem If E., E,, ..., E_ are events which constitute a partition of
sample space S,i.e. E,E,, ..., E_ are pairwise disjointand E UE,U ... UE_ =S
and A be any event with nonzero probability, then
P(E,) P(A[E;)
P(E; |A)=—
D P(E)P(AE))
j=1

¢ A random variable is a real valued function whose domain is the sample
space of a random experiment.
@ The probability distribution of a random variable X is the system of numbers

X : X, X, X,

PX) : P, p, P,

n
where, p>0,> p=1i=12..n

i=1
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¢ Let X be arandom variable whose possible values X, X, X,, ..., X, occur with

probabilities p,, P,, P;, ... P, respectively. The mean of X, denoted by L, is

n
the number Z %0 .

i=1
The mean of a random variable X is also called the expectation of X, denoted
by E (X).

Let X be a random variable whose possible values X, X,, ..., X occur with
probabilities p(X,), P(X,), ..., P(X,) respectively.

Let u = E(X) be the mean of X. The variance of X, denoted by Var (X) or

0,’, is defined as o’ = Var(X)=Z(Xi —)’ p(%)

i=1
or equivalently 6= E (X —p)
The non-negative number

oy =\/Var(X)=\/Z(>q —w)’ p(x)
=il

is called the standard deviation of the random variable X.

Var (X) = E (X*) - [EX)]?

Trials of a random experiment are called Bernoulli trials, if they satisfy the
following conditions :

(1) There should be a finite number of trials.
(i) The trials should be independent.
(i) Each trial has exactly two outcomes : success or failure.
(iv) The probability of success remains the same in each trial.
For Binomial distribution B (n, p), P (X =X) ="C, q ™ p, x=0, 1,..,n
@=1-p

Historical Note

The earliest indication on measurement of chances in game of dice appeared

in 1477 in a commentary on Dante's Divine Comedy. A treatise on gambling
named liber de Ludo Alcae, by Geronimo Carden (1501-1576) was published
posthumously in 1663. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.
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Galileo (1564-1642) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. Galileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (1623-1662) and Pierre de Fermat
(1601-1665). A French gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 1654,
Pascal and Fermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while Fermat used the method of combinations.

Great Dutch Scientist, Huygens (1629-1695), became acquainted with the
content of the correspondence between Pascal and Fermat and published a first
book on probability, "De Ratiociniisin Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by Jacob Bernoulli (1654-1705),
in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, ‘Foundations of
probability’ published in 1933, introduces probability as a set function and is
considered a ‘classic!’.

—_— e —
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12.

14.

16.

18.

20.
22.

ANSWERS

|EXERCISE 7.1|
1 1.
——co0s2X 2. —sin3Xx 3.
2 3
1 1 4
—(ax+h)’ ——c0os2X——e*
3a( ) 5. —3 3 6.
3 3 2
X——x+C 8. £+—+CX+C 9.
3 3 2
2
X
7+log|x|—2X+C 11.
5 7 3
7x2+2x2+8\/§+C 13.
3 5
%X2 —%XZ +C 15
3
x* —3sin x+e*+C 17.
tan X + sec X + C 19.
2tan X—3 sec X+ C 21.
A
|EXERCISE 7.2|

1
log(1+x)+C 2. 3(10g|X|)3+C 3.

1
cos (cos X) + C 5. —4—acos2(ax+b)+C

3 5 3

1 o
2

4
§e3x+x+C

2
§f+€+c

X2

—+5X+—+4C
2 X

3
X—+x+C
3

7 3 3
—X? +§X2 +2x2+C

3
2 10 =
= +3c0sx+?ox2 +C

tan X — X+ C
C

log|1+logx|+C

2 = 2 29 3
—(@x+b)?+C 7. =(X+2)? —=(x+2)?+C
S (@x+b) S22 =2 (x+2)
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12.

14.

17.

20.

22.

24,

26.

29.

32.

34.

37.
39.

3

%(l+2x2)2 +C 9. g(x2+x+1)2+C

%1/x+4(x—8)+C

3 3
X =13 +=(X =13 +(

(lolg x)m +C
-m

1
2¢e

%log e +e*)+C
1
—Ztan (7-4x)+C

1 .
Elog|2sm X+3cos {+C

1 el
2sin/x +C 27. E(sin2x)2 +C

1 .
E(logsmx)2+C 30. —log (1+cosx)

X 1 .
———log|cosx+s1nx|+C
2 2

2,jtanX +C

1
—Zcos(tan ! X4)+C

B

1
15. —§10g|9—4x2 |

> +C 18. etan"x_’_c

1
35, 5(1+1ogx)3+c

13.

109.

21,

23.

25.

28.

38.
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2log|Vx - 1]+C

_;32+C
18(2+3x7)

le2x+3 +C

2

log(e*+&)+C

1
Etan(Zx—3)—x+C

%(sin X +C

.
(1—tan Xx)

2 /1+sin X+C

1
1+cos X

+C

x 1 .
———log|cos X—sin X|+C
2 2

1 3

5(x+log X)"+C

D
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11.

13.

15.
17.

19.

21,

23.

MATHEMATICS

|[EXERCISE 7.3

X 1 1 1
2 sin(4x+10)+C . ——cos7X+—=cosX+C
5 8sm( ) 2 2 )

l isin12x+x+lsin8x+lsin4x +C
4112 8 4

1 1 | PR S
—=—cos(2x+1)+—cos® 2x+1)+C 5. —cos® X——cos”* x+C
2cos( ) 6cos( ) ; 2
1|1 1
— —COS6X——COS4X—lCOSZX +C
4| 6 4 2
11 1
—| —sin4X——sin12X [+ C 8. Ztani—erC
21 4 12 2
1 1
X—tan§+C 10. 2——sin2x+—sin4X+C
2 8 4 32
1 1 .
2+— sin4x+—sin8Xx+C 12. x—sinx+C
1

2 (sinx + X cosor) + C 14, ~ S rsmx C
1 5 1 |
gsec 2X—Ese02X+C 16. Etan X—tan X+ X+ C
sec X — cosec X + C 18. tanx+ C

1. 5 .
log|tanx|+5tan X+C 20. log|cosx+smx|+C

2 1 cos(X—a
X X . c 02, = I g| (x-a) |
2 2 sin(a—b) |cos(X—b)|
A 24. B
|EXERCISE 7.4

2X+1+4x

+C

1
tan' x>+ C 2. Elog
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13.

15.

16.

18.

19.

20.

21,

22.
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1
log| - |+C 4. lsin‘lerC
‘2—x+\/x —4x+5‘ 5 3
3
itan 2x*+C 6 llog 1+X3 +C
2\2 © 6 |1-x
VX —1-log x+\/x2—1‘+C 8. %1og XX+ at+C
log|tan X+4/tan* X+4 ‘+C 10. 1og‘x+1+,/x2+2x+2‘+c
ltanf1 (3X+ 1) +C 12. sin”' (—X+ 3) +C
6 2 4
. 1 2Xx-3
log x—%+\/x2 —3x+2[+C 14 sin’ (ﬁj +C

+C

+
x—aTbh/(x—a)(x—b)
22x% +x-3+C 17. X —1+2log

glogbx2 +2X+ 1‘ —itanf1 [ﬂj +C

W2 V2
64/ X* —9X+20 + 34 log x—%h/x2 —9%+20

-2
—J4x=x* +4sin™ [XT) +C

X +2x+3+ log x+1+\/x2+2x+3‘+C

x—1-+/6
x—1+\/€

log

x+\/x2—1‘+C

+C

1 ) 2
—log| X* —2X—5|+—=1 +C
5 og‘ ‘ \/g og
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23.
24,

MATHEMATICS

5.%% +4x+10 — 7 log

X+ 244X +4x+10‘ +C

B 25. B
|EXERCISE 7.5|
(X+2) 1. [x-3
+C ~ +C
o8 |x+1] % 6 ¥x+3

log|x—1| - 510g|x— 2|+4log|x—3|+C

10.

11.

12.

13.

14.

16.

18.

%log|x—l| - 21og|x— 2|+%10g|x—3|+C

4log|x+2|-2log|x+1|+C

1 1 ) |
—log|Xx—1|——=log (X" +1)+—tan~ X+C
5 g|x—1| Z108(C+ D+

| |x-1

1

2
9

og - +C
|x+2 3(x-1)

5 1 12
Elog|x+l| —Blog|x—l|—?log|2x+ 3|+C

5 5 5
510g|x+1| _510g|x+ 2|+glog|x—2|+C

2

x° 1 3
7+Elog|x+1|+510g|x—1| +C

1
—log |X—1| +Elog (1+x)+tan'x+C

3log|x—2|—

1
—lo
0 g

2 4 X _
X+—tan~ ——3tan

3

n

n

X +1

1

+C

NE)

X—2

+C

1

15.
17.

X
—+C
2 19.

X 3
6. E+log|x|—zlog|1— 2X|+C

1 1 4

—logi——+C

2 X—1] x-1

1 -1 1

—logx— ——tan”' x+C

4 X+1| 2

log 2_S%nX+C
1-sinx

1 (x+1)

—logL 2+ )+C

2 X +3
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1, |x*-1 e -1
ZlogT+C 21. log( = ]+C
B 23. A
EXERCISE 7.6|
X 1.
—Xcos X+sinx+ C 2. —Ecos3x+§sm3x+c
X2 2
e -2x+2)+C 4, 7logx—7+c
2 2 3 3
X logax-X1c 6. Xlogx-24C
2 4 3 9
V1= X x? x 1
l(2x2—1)sin’1x+X1—X+C 8. —tan"' x—=+—tan"' x+C
4 4 2 2 2
-1
-1 X X 1o 4c
4 4

2
(sin_lx) X+2J1=x* sin ' x —=2x+C

—[\/l—x2 cos™! x+x]+C 12.
-1 1 2

Xtan X—Elog(1+x )+C 14.
X—3+x\lo X X—3 X+C

L3 ) g 9 16.
eX

1+x 18.
€ ic 20.
X

5 (2sin X—cos X) +C 22.
A 24

X tan X + log |cosx|+ C

2 2 2
X 5, X X
—(logx)" ——logx+—+C
2( gXx) 5 logx+—

e*sin X+ C

X
e“tan—+C
2
X

€

(x—1)2 +C

2x tan'x — log (1 +x*) + C

. B
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|EXERCISE 7.7|
1. %xﬂ+2sinlg+c 2. %sinl 2x+%xm+c
3. (XLZZ)JXZ+4X+6+I% x+2+\/x2+4x+6‘+C
4. @\/M—%log x+2+M‘+C
5. L X+2) x+2 P
5. Esm [WJ+T«H—4X—X +C
6. ()(Lzz)m—%log x+2+\/m‘+c

(2x—3) > 13 . 1[2x—3j
——\J1+3X— X" +—sin +C
[ 8 J13

8. 2X:3«/x2+3x —8210g x+%+«/x2+3x +C
9. 2\/x2+9+%10gx+\/x2+9‘+c
10. A 11. D
|[EXERCISE 7.8
1 35 19
_bz_a2 - _
1. 2( ) 2. 5 3. 3
27 1 8
4 2 5 e— 6 15+€
2 e 2
EXERCISE 7.9
1. 2 2. lo 3 3 “
' D) 3
1
4. 5 5.0 6. € (e-1)
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13.

15.

17.

20.

10.

I}

29

o
—log2
3 g
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| ( 3 .
(0] _
8 ng—ﬁ) o3
11 Log2 12. L
- 08, 4
1 3
—log6+—tan \/g
14. Flogb+—
5 5 3
16. 5——[91 2 —)
2\ OB T8,
18. 0 109. 3log2+3§
21. D 22. C
EXERCISE 7.10
64 T
2. 231 3. E—log2
.7 ) L 21+517
3 R
e (e -2
g £€ -2 9. D
4
|[EXERCISE 7.11
, , ,
4 4 4
I
6. 9 7 (n+)(n+2)
1642 . 1 n
. Sk - —log— =
o 5 10. S logy o
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12. = 13. 0 14. 0 15. 0
a

16. —mlog? 17. 5 18. 5 20. C

21. C

M sceLLANEOUS ExERcISE ON CHAPTER 7

2

1
1. Elog 3 +C 2.

3 3
(x+a)2 —(x+ b)2}+C
1-x

2
3(a-b)

1
2 [(a—X N
3, ——JL——2+C 4 _O+JJ4+C
a\l  x N

1 1 1

5. 24/x=3x3 +6x6 —6log(1+X6)+C

1 1 By 3 a4 X
——log|X+1{+—log (X" +9)+—tan~ —+C
6. 2 g| | 4 gl ) 2 3

3
X
7. sinalog|sin(x—a)|+Xcosa+C 8. ?+C

. _1[sinx
9. sin 1(s1n )+C 10. —lsin2X+C
2 2
1, — Og|cos(X+b)| 12. lsin’l(x4)+C
sin(a— b) |cos(X+ a)| 4
(1+e) 1 1 X
lo +C “tan ' X——tan ' =
13. gL2+ex) 14. 3"[an X 6tan 2+C
1 4 1 4
15. _ZCOS X+C 16. Zlog(x +1) +C

[f (ax+b)]™"! -2 [sin(x+a)
— — iC +C
17. a(n+1) 18. sin sin X

, 2
T T



20.

21,

23.

25.

27.

29.

31.

33.

41.
43.

10.

2J1-x+cos ' Vx +4x= %% +C
e“tan X + C 22.

%[Xcosl X—\ll—X2:|+C 24.
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—210g|x+1|—ﬁ+3log|x+ 2]+C

n T
k3 28. 25in‘1@
6 2
42 1
TN —log9
3 30. o log
T T
——1 32, —(m-2
5 2( )
19 1(2 D
_ J— e —_—
> 40. 3
A 42. B
D 44. B
|[EXERCISE 8.1
14 32-82
— 2. 16-442 3. 32-82
3 3
T
121 5 6n 6. —
3
8._2 E_l 8 2 9 !
22 4’ 3
9
3 11. 83 12. A 13. B
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13.
16.

© N wPE

11.

11.

MATHEMATICS

2 9 22
—+—sinT ——
6 4
21
2
B 7.

|EXERCISE 8.2|

Miscellaneous Exercise on Chapter 8

(1 3

1

g 3.
52 :
im '
ab

—(n-2 10
2 (n—2)

7 14.
D 17.

Order 4; Degree not defined

Order 2; Degree 1
Order 2; Degree 1
Order 3; Degree 1
Order 2; Degree 1
D

W

O ol o

(i) 624.8
4.9 5. 4
3
8. —(n-2
2( )
11. 2 12 l
. 3
15 9—n—2sin’1 (l)+—1
8 4 3) 32
18. C 19. B

EXERCISE9.1

2. Order 1; Degree 1
4. Order 2; Degree not defined
6. Order 3; Degree 2
8. Order 1; Degree 1
10. Order 2; Degree 1
12. A

EXERCISE 9.2

12. D
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11.

12.

14.
16.

18.
20.

22.

© N O wPE

y'=0

y' —y-6y=0
y' =2y +2y=0
Xy —2y=0

XYY EXY)P-yy =0

B

y=2tan§—x+C

y=1+Ae*

y=log (e¢+e*)+C

y=e

y=Xsin'X+ J]_x? +C
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EXERCISE 9.3|
2.y Xy -yy =0
4. Yy -4y +4y=0
6. 2y + X =y
8. Yy + XY -y =0
10. (R -9) (YP+x=0
12. C

|[EXERCISE 94|

2. y=2sin(x+C)

4. tanXtany=C

3
6. tan'y= X+X?+C

8. x*+y*=C
10. tany=C(1-€

_1 2,2 3 1 -1
y_Zlog[(x+1) X"+ J—Etan X+1

—ll (x2-1)
y_2 ogL 2 J
y = sec X

13. cos(y_zj =a
X

15. 2y —1 =¢€*(sin X— cos X)

y—x+2=log (@ (y+2) 17. y»—x =4

(X+4)Y2=y+3
6.93%

1
19. (63t+27)3
21. Rs 1648

23. A

EXERCISE 9.5|

2. y=xlog|x|+Cx
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11.

12.

14.

16.

~

11.

MATHEMATICS

tan' (_jzélog(x2+y2)+c 4. X +y =Cx

1 2
ml"gliiﬁilﬂ"g“'” 6y Y oK

wyeos (Y] = o, (1-cof 3] [-esn

X

cy = log X—l 10. ye§+x:c
X

T
log (X*+y?) +2 tan’! % = EHOgZ

y+2X=3Cy 13. cot(%)zlog|eX|
cos Y =log|ex| 15 YZL(X?&O, X+# €)
X ' 1—log|x|
C 17. D
|EXERCI SE 9.6|

1
y= g(Zsinx—cosX)vLCerzx 2. y=e>+ Ce™

4

X

xy=T+C 4. y(sec X+ tan X) =sec X +tan X — X+ C
X2
y=(tan X — 1) + Ce ™ 6. y:E(4logx—l)+Cx’2
-2 -2 . 24-1

ylogx=7(1+logx)+C 8. y=(+x) log|smx|+ C(1+x%)
y—l—cotx+

X Xsin x 10. x+y+1)=Cg¢

y2

12. x=3y* +Cy
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m
13. y=cos X—2 cos* X 14,y (1+%) = tan X 5
15. y=4sin® x— 2 sin* X 16. X+y+1=¢

17 y=4-x-2¢ 18. C 19. D

Miscellaneous Exercise on Chapter 9

1. (i) Order 2; Degree 1 (i) Order 1; Degree 3
(ii)) Order 4; Degree not defined

2y =% NP )
3. 4xy 5. (x+y)y=x-yr1+y)
6. sin'y+sin'x=C 8. cosy= seeX
' ' V2
P X
0. tan"y+tan"(e")=z 10. e¥=y+C
11, log |x—y|=x+y+1 12. ye* =(2Jx+0)
, 2X+1
13 ysinx=2x'=—(sinx#0) 14, y=log 1,X:ft—l
15. 31250 16. C
17. C 18. C

EXERCISE 10.1]

1. In the adjoining figure, the vector OP represents the required displacement.

N Scale

N —

10km

P
o/ 40km
7\ ,E

W<o
v
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2. (1) scalar (ii) vector (iii) scalar (iv) scalar (v) scalar
(vi) vector
3. (i) scalar (i) scalar (i) vector (iv) vector (v) scalar
4. (i) Vectors @ and b are coinitial
(i) Vectors b and d are equal
(i) Vectors @ and Care collinear but not equal
5. (i) True (i) False (iii) False (iv) False
|EXERCI SE 10.2|
1 [a=v3,|b|=ve2,|¢=1
2. An infinite number of possible answers.
3. An infinite number of possible answers.
4. x=2,y=3 5. —~7and 6; —7iand 6]
.y RN
6 —4J—k 7. \/g \/g \/g
1~ 1+ 14 1~ 15
—i+—]+—Kk —i+—=k
SN RN RN RN
40 o 8 i+ 16 Q 1 2 3
10 B0 Vo V0 SN VRN VRN V1
13, —1_22 15 () P+ 2545k iy 3743k
: 3733 . (1) 3 3'J 3 (i) =31 +3
16. 31 +2]+k 18. (C) 19. (D)
|EXERCI SE 10.3]
1. z 2. cosl[éj 3.0
4 7
4 =2 16V2 22 7. 6la*+11ab-35p|
A =T = . al an—
Ji14 W7 3T &+ o]
8. |al=1[b|-1 9. VI3 10. 8




12.

14.

15.

12.
17.
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_ -3
Vector b can be any vector 13. E)
Take any two non-zero perpendicular vectors dand b

o 10
cos [—\/@] 18. (D)

|EXERCISE 10.4|

L L2i2i0p o w11l
19v2 S EIESIES IR0

27 _
3,7 6. Either |8]=0 or ‘b‘=0
No; take any two nonzero collinear vectors
et 10. 15V2 11. (B) 12. (C)

2

Miscellaneous Exercise on Chapter 10

N
—I1+—]

2 2

Xz—X1,Yz—yl,zz—21;\/(X2—X1)2+(y2—y1)2+(22—21)2
=5p. 33
2

No; take &> b and € to represent the sides of a triangle.

1 3 \/1 ~ 3 I 3 ~ 2 ~
t— ZJ10 T = | | — + k
NE) 6. V0T NP RN RANGY

— 1 a~ ~ ~
2:3 9. 3a +5b 10. 7(3I—6J+2k);11\/§
1 Il a2 ~
E(160|—51+70k)13. r=1 16. (B)

(D) 18. (C) 19. (B)
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10.

11.

12.

16.
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|EXERCISE 11.1|
11 11 -9 6 -2
09_,_ 2 i_ai_ai_ T I T
NP 3Bl i
2 2 3.2 3 2 4 5 -

NN AR VAN TN TN TN Fo RN/ RN o)
|EXERCI SE 11.2|

F={+2]+3k+A(31+2]-2k),where L isareal number

F=20-]+4k+x(i+2]-Kk)and cartesian form is
X-2 y+1 z-4
2 -1
2 y-4 z+5
s 6
(5T =4 ]+6K) +1 (BT +7]+2K)

—

X

w |+

=
Il

Vector equation of the line:  F= A (51 -2 ]+ 3k );
. . . X

Cartesian equation of the line: — = —=—

Vector equation of the line: 7 =3

Cartesian equation of the line: =

(i) 6= cos™ (QJ (i) 6= cos' [Lj
21 53

(i) 0= cos” [ij (i) 6= cos™' (EJ
9./38 3
-2 32 15. 2429

=T 14.
11

P

%‘OON
©

3
\/E 17.
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EXERCISE 11.3|

(2) 0,0,1;2 (b) ==

Y NERINERRN RG]

2 3 1.5 8
© H7 T3 TaTa @ 0.1,0; 5
r‘(3f+5j—6kj:7

J70

(a) x+ty—-z=2 (b) 2x+3y—-4z=1
(¢) (s—2t)x+(3-t)y+(@2s+t)z=15

24 36 48 18 24
w (5% ») o [055)

1 1 1 -8
© (533 @ (0.5 0]

(@ [F-(-2K)]-(+]-Kk=0, x+ty-z=3
() [F-(+4]+6Kk)]-(T-2]+k=0; Xx—2y+z+1=0

(a) The points are collinear. There will be infinite number of planes
passing through the given points.
(b) 2x+3y-3z=5
5
Ex 5,-5 8. y=3 9. 7X-5y+4z-8=0

F-(38f+68}+312)=153 11, x-z+2=0

c0571 [1—5j
731

2
(a) cos™ (gj (b) The planes are perpendicular
(c) The planes are parallel (d) The planes are parallel
(e) 45°
3 NBE
@ 3 b) 5

(¢) 3 (d 2
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Miscellaneous Exercise on Chapter 11

3. 90° 4 E—X—E 5 (30871 (Lj
' 1 0 0 ' 187
-10 . R R . R R
6. szf‘ 7o T=1+42 ] 43k+A(1+2]-5K)
8. xty+z=a+b+c 9. 9
17 -13 17 23)
O,_,_ _707
10. ( > 2) (3 3 12. (1,-2,7)
7
13. 7x-8y+3z+25=0 14. p=10r§
15, y-3z+6=0 16. x+2y-3z-14=0
17. 33x+45y+50z-41=0 18. 13
19, F=l+2]+3K+A (=31 +5]+4Kk)
20. F=i+2]—4K+A1 (21 +3]+6k) 22. D

23. B

|[EXERCISE 12.1
Maximum Z = 16 at (0, 4)
2. Minimum Z =- 12 at (4, 0)

3 Maimum 7= 23 o (2.39)
. aximum Z = 19 at 19°19

o 3 1)
4. Minimum Z =7 at (2:2
5. Maximum Z = 18 at (4, 3)

6. Minimum Z = 6 at all the points on the line segment joining the points (6, 0)
and (0, 3).

7. Minimum Z =300 at (60, 0);

Maximum Z = 600 at all the points on the line segment joining the points (120, 0)
and (60, 30).
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Minimum Z = 100 at all the points on the line segment joining the points (0, 50)
and (20, 40);
Maximum Z = 400 at (0, 200)
Z has no maximum value

No feasible region, hence no maximum value of Z.

EXERCISE 12.2

- o .. (8 1
Minimum cost=Rs 160 at all points lying on segment joining (g , O) and [275) .

Maximum number of cakes = 30 of kind one and 10 cakes of another kind.
(1) 4 tennis rackets and 12 cricket bats

(i) Maximum profit =Rs 200

3 packages of nuts and 3 packages of bolts; Maximum profit = Rs 73.50.

30 packages of screws A and 20 packages of screws B; Maximum profit
=Rs 410

4 Pedestal lamps and 4 wooden shades; Maximum profit = Rs 32

8 Souvenir of types A and 20 of Souvenir of type B; Maximum profit
=Rs 1600.

200 units of desktop model and 50 units of portable model; Maximum profit
=Rs 1150000.

Minimise Z = 4X+ 6y

subject to 3x+ 6y > 80, 4x+ 3y > 100, x> 0 and y > 0, where X and y denote the
number of units of food F, and food F, respectively; Minimum cost = Rs 104
100 kg of fertiliser F, and 80 kg of fertiliser F,; Minimum cost = Rs 1000

(D)

Miscellaneous Exercise on Chapter 12
40 packets of food P and 15 packets of food Q; Maximum amount of vitamin A
=285 units.
3 bags of brand P and 6 bags of brand Q; Minimum cost of the mixture = Rs 1950
Least cost of the mixture is Rs 112 (2 kg of Food X and 4 kg of food Y).
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40 tickets of executive class and 160 tickets of economy class; Maximum profit
=Rs 136000.

From A : 10,50, 40 units; From B: 50,0,0 units to D, E and F respectively and
minimum cost =Rs 510

From A: 500, 3000 and 3500 litres; From B: 4000, 0, O litres to D, E and F
respectively; Minimum cost = Rs 4400

40 bags of brand P and 100 bags of brand Q; Minimum amount of nitrogen
=470 kg.

140 bags of brand P and 50 bags of brand Q; Maximum amount of nitrogen
=595 kg.

800 dolls of type A and 400 dolls of type B; Maximum profit = Rs 16000

|EXERCISE 13.1

2 1 16
P(E|F)=§,P(F|E)=§ 2. p(A|B)=2_5
(i) 032 (i) 0.64 (i) 0.98
11
26
. 4 L2
@ 11 (ii) 5 (1) 3
. L3 L6
@ 9 (i1) 7 (iii) 1l
@ 1 (i) 0
L 9.1 10 1 b 1
6 : - @3, 0y

11 I 31
O 3 3 i 5. 3 G
. L1 5
O 5 i) 3 183 5
L 15. 0 16. C 17. D
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EXERCISE 13.2

1 2 , B 3 M
25 - 102 © 91
4. A and B are independent 5. A and B are not independent
6. E and F are not independent
N PR |
7. (i) IO—IO (ii) p_S
8. (1) 0.12 (i) 0.58 @) 0.3 (iv) 0.4
3
0. 3 10. A and B are not independent
11. (i) 018 (i) 0.12 (i) 0.72  (iv) 0.28
b 7 o 16 20 40
- 8 - (1) 817(11) 81 7(111) 81
14. @ 2 i) o 15. (1), (i 16 1 b 1 !
BOERGE: ORC) @503, 5
17. D 18. B
|EXERCISE 13.3|
L , 2 ) , R
) 3 S 13 - 13
o B ;L ; !
- 1197 9 - 52 4
9 2 10 3 11 2 12 1
9 Sl Y -~ 50
13. A 14. C
|EXERCISE 13.4
(ii), (iii) and (iv) 2. X=0,1,2;yes 3. X=6,4,2,0
4. )| X 0 1 2
ol L L]
(X) 4 2 4
| X 0 1 2 3
ol L3131
X) 8 8 8 8
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111 X
0 1 2 3 4
ol L2 (2L [
&Y 16 4 8 4 16
5. () X 0 1 2
4 4 1
POTS 19 |9
1 X
(i) 0 1
P(X g E
G5 36 36
6 X 0 1 2 3 4
e 256 1256 | 96 16 L
&Y 625 | 625 [625 | 625 | 625
7. X 0 1 2
N
G5 16 16 | 16
. 1 . 3 17
8. (1) k=— 1) P(X<3)=— ) P(X>6)=—
Q) T (i) P( ) 0 (i) P( ) 100

(iv) P(0<X<3)=%

9. (a) k:é (b) P(X<2)=%,P(Xs2)=1,P(X22)=%

10. 1.5 1 L 12 2
S 3 3
13. Var(X)=5.833,S.D=2.415
14. X w15 w617 1819272

2 1 2 3 1 2 3 1

15015 |15 (15 [ 15 |15 ] 15| 15

Mean = 17.53, Var(X) = 4.78 and S.D(X) =2.19
15. E(X)=0.7 and Var (X)=0.21 16. B 17. D

P(X)
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|EXERCI SE 135

] 7 63
- (D) 0 (i1) 4 (ii1) 4

B @R

216 - (20120

Lo L a5 243

-0 To2a 312 ) 024

5. () (0.95)° Gi) (0.95) x 1.2 (i) 1-(0.95) x 1.2

(iv) 1-(0.95)

o (i)

1 20
( j [20C,, + 2°C 5+ 2°Cyy |

7. —
2
o 1L
© 243
0 1{2}” ) 1(2}‘” 1_&[2)‘9
- (@ 100 ® 7 700 © Tool100
TRACI . D=
©12\6 ©18\6 ©10"
14. C 15. A
Miscellaneous Exercise on Chapter 13
1. () 1 (i) 0
5 1 1
SO G
, 20
© 21
10
4. 1=->21°C(0.9)7(0.1)""

r=7

. (gjﬁ § 7(3)“ 1_@6 864
- (D) 5 (i1) 5 (1i1) 5 (v) 3125

o1
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510
2x6°

2(2)4
9\3
1 2 8

15°5°15
(i 0.5
A

10.

13.

(i) 0.05

18.

625
23328

14
29

—_— % —
L <4

11.

14.

16.
19.

|

11
216

16

16
31
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