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Foreword

The National Curriculum Framework (NCF), 2005, recommends that children’slife
at school must be linked to their life outside the school. This principle marks a
departure from the legacy of bookish learning which continues to shape our system
and causes agap between the school, home and community. The syllabi and textbooks
developed on the basis of NCF signify an attempt to implement thisbasicidea. They
aso attempt to discourage rote learning and the maintenance of sharp boundaries
between different subject areas. We hope these measures will take us significantly
further in the direction of achild-centred system of education outlined in the National
Policy on Education (1986).

The success of this effort depends on the steps that school principals and
teachers will take to encourage children to reflect on their own learning and to
pursue imaginative activities and questions. We must recognise that given space,
time and freedom, children generate new knowledge by engaging with theinformation
passed on to them by adults. Treating the prescribed textbook as the sole basis of
examination is one of the key reasons why other resources and sites of learning are
ignored. Inculcating creativity and initiative is possible if we perceive and treat
children as participants in learning, not as receivers of afixed body of knowledge.

These aims imply considerable change in school routines and mode of
functioning. Flexibility inthedaily time-tableisas necessary asrigour inimplementing
the annual calendar so that the required number of teaching daysare actually devoted
to teaching. The methods used for teaching and evaluation will aso determine how
effectivethistextbook provesfor making children’slife at school ahappy experience,
rather than a source of stress or boredom. Syllabus designers have tried to address
the problem of curricular burden by restructuring and reorienting knowledge at
different stageswith greater consideration for child psychology and thetime available
for teaching. The textbook attempts to enhance this endeavour by giving higher
priority and space to opportunities for contemplation and wondering, discussion in
small groups, and activities requiring hands-on experience.

TheNationa Council of Educational Research and Training (NCERT) appreciates
the hard work done by the Textbook Development Committee responsible for this



book. We wish to thank the Chairperson of the advisory group in Science and
Mathematics, Professor J.V. Narlikar and the Chief Advisor for this book
Professor PK. Jain for guiding the work of this committee. Several teachers
contributed to the development of this textbook; we are grateful to their principals
for making this possible. We are indebted to the institutions and organisationswhich
have generously permitted us to draw upon their resources, material and personnel.
We are especially grateful to the members of the National Monitoring Committee,
appointed by the Department of Secondary and Higher Education, Ministry of Human
Resource Development under the Chairpersonship of Professor Mrinal Miri and
Professor GP. Deshpande, for their val uabletime and contribution. Asan organisation
committed to the systemic reform and continuous improvement in the quality of its
products, NCERT welcomes comments and suggestions which will enable us to
undertake further revision and refinement.

Director
New Delhi National Council of Educational
20 December 2005 Research and Training
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BE A STUDENT OF STUDENTS

A teacher who establishes rapport with the taught, becomes
one with them, learns more from them than he teaches them.
He who learns nothing from his disciples is, in my opinion,
worthless. Whenever I talk with someone I learn from him. I
take from him more than I give him. In this way, a true
teacher regards himself as a student of his students. If you
will teach your pupils with this attitude, you will benefit
much from them.

Talk to Khadi Vidyalaya Students, Sevagram
Harijan Seva, 15 February 1942 (CW 75, p. 269)

USE ALL RESOURCES TO BE CONSTRUCTIVE AND CREATIVE

What we need is educationists with originality, fired with true
zeal, who will think out from day to day what they are going to
teach their pupils. The teacher cannot get this knowledge
through musty volumes. He has to use his own faculties of
observation and thinking and impart his knowledge to the
children through his lips, with the help of a craft. This means
a revolution in the method of teaching, a revolution in the
teachers' outlook. Up till now you have been guided by
inspector's reports. You wanted to do what the inspector
might like, so that you might get more money yet for your
institutions or higher salaries for yourselves. But the new
teacher will not care for all that. He will say, '1 have done my
duty to my pupil if | have made him a better man and in doing
No I have used all my resources. That is enough for me'.

\\ Harijan, 18 February 1939 (CW 68, pp. 374-75) ///
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Chapter 1

( SETS )

O In these days of conflict between ancient and modern studies; there
must surely be something to be said for a study which did not
begin with Pythagoras and will not end with Einstein; but
is the oldest and the youngest. — GH. HARDY O

1.1 Introduction

The concept of set serves as a fundamental part of the
present day mathematics. Today this concept is being used
in almost every branch of mathematics. Sets are used to
define the concepts of relations and functions. The study of
geometry, sequences, probability, etc. requires the knowledge
of sets.

The theory of sets was developed by German
mathematician Georg Cantor (1845-1918). He first
encountered sets while working on “problems on trigonometric
series”. In this Chapter, we discuss some basic definitions
and operations involving sets.

Georg Cantor
(1845-1918)

1.2 Setsand their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as,
a pack of cards, a crowd of people, a cricket team, etc. In mathematics also, we come
across collections, for example, of natural numbers, points, prime numbers, etc. More
specially, we examine the following collections:

(i) Odd natural numbers less than 10, i.e.,1,3,5,7,9
(i) The rivers of India
(i) The vowels in the English alphabet, namely, a, €, i, 0, U
(iv) Various kinds of triangles
(v) Prime factors of 210, namely, 2,3,5 and 7
(vi) The solution of the equation: X*— 5X + 6 = 0, viz, 2 and 3.

We note that each of the above example is a well-defined collection of objects in



2 MATHEMATICS

the sense that we can definitely decide whether a given particular object belongs to a
given collection or not. For example, we can say that the river Nile does not belong to
the collection of rivers of India. On the other hand, the river Ganga does belong to this
colleciton.

We give below a few more examples of sets used particularly in mathematics, viz.

N : the set of all natural numbers

Z : the set of all integers

Q : the set of all rational numbers

R : the set of real numbers

Z* : the set of positive integers

Q™ : the set of positive rational numbers, and

R* : the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout
this text.

Again the collection of five most renowned mathematicians of the world is not
well-defined, because the criterion for determining a mathematician as most renowned
may vary from person to person. Thus, it is not a well-defined collection.

We shall say that a set is a well-defined collection of objects.

The following points may be noted :

(i) Objects, elements and members of a set are synonymous terms.
(i) Sets are usually denoted by capital letters A, B, C, X, Y, Z, etc.
(iii) The elements of a set are represented by small letters a, b, C, X, V, z, etc.

If ais an element of a set A, we say that ““ a belongs to A” the Greek symbol €
(epsilon) is used to denote the phrase ‘belongsto’. Thus, we write a € A. If ‘b’ is not
an element of a set A, we write b ¢ A and read “b does not belong to A”.

Thus, in the set V of vowels in the English alphabet, ac V but b ¢ V. In the set
P of prime factors of 30,3 € Pbut 15 ¢ P.

There are two methods of representing a set :

(1) Roster or tabular form
(if) Set-builder form.

(i) Inroster form, all the elements of a set are listed, the elements are being separated
by commas and are enclosed within braces { }. For example, the set of all even
positive integers less than 7 is described in roster form as {2, 4, 6}. Some more
examples of representing a set in roster form are given below :

(a) The set of all natural numbers which divide 42 is {1, 2, 3,6, 7, 14, 21,42}.
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In roster form, the order in which the elements are listed is immaterial.
Thus, the above set can also be represented as {1, 3, 7, 21, 2, 6, 14, 42}.
(b) The set of all vowels in the English alphabet is {a, €, i, 0, u}.
(c) The set of odd natural numbers is represented by {1, 3, 5, .. .}. The dots
tell us that the list of odd numbers continue indefinitely.
It may be noted that while writing the set in roster form an element is not

generally repeated, i.e., all the elements are taken as distinct. For example, the set
of letters forming the word ‘SCHOOL’ is { S, C,H, O, L} or {H, O, L, C, S}. Here,
the order of listing elements has no relevance.

(i) In set-builder form, all the elements of a set possess a single common property

which is not possessed by any element outside the set. For example, in the set

{a, &1, 0, U}, all the elements possess a common property, namely, each of them

is a vowel in the English alphabet, and no other letter possess this property. Denoting

this set by V, we write

V = {x: xis a vowel in English alphabet}

It may be observed that we describe the element of the set by using a symbol X
(any other symbol like the letters Y, z, etc. could be used) which is followed by a colon
“: 7. After the sign of colon, we write the characteristic property possessed by the
elements of the set and then enclose the whole description within braces. The above
description of the set V is read as “the set of all X such that X is a vowel of the English
alphabet”. In this description the braces stand for “the set of all”, the colon stands for
“such that”. For example, the set

A = {X: Xis a natural number and 3 <X < 10} is read as “the set of all X such that

X 1s a natural number and X lies between 3 and 10. Hence, the numbers 4, 5, 6, 7,

8 and 9 are the elements of the set A.

If we denote the sets described in (@), (b) and () above in roster form by A, B,
C, respectively, then A, B, C can also be represented in set-builder form as follows:

A= {X: Xis a natural number which divides 42}

B= {y:yisavowel in the English alphabet}

C= {z: zis an odd natural number}

Example 1 Write the solution set of the equation X*+ X —2 = 0 in roster form.

Solution The given equation can be written as
x—=1) (x+2)=0,i.e, x=1,-2
Therefore, the solution set of the given equation can be written in roster form as {1, —2}.

Example 2 Write the set {X : X is a positive integer and X* <40} in the roster form.
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Solution The required numbers are 1, 2, 3, 4, 5, 6. So, the given set in the roster form
is {1,2,3,4,5,6}.

Example 3 Write the set A={1,4,9, 16,25, . .. }in set-builder form.

Solution We may write the set A as
A = {X: X1is the square of a natural number}
Alternatively, we can write
A= {x:x=nr’ where ne N}
E .4 Write the set {=+2 =2} in the set-builder f
xample PN I R R R R - .
p rite the set 15+5.7 557 in the set-builder form
Solution We see that each member in the given set has the numerator one less than
the denominator. Also, the numerator begin from 1 and do not exceed 6. Hence, in the
set-builder form the given set is

{X: Xzil,where nis a natural number and 1 < n< 6}
n+
Example 5 Match each of the set on the left described in the roster form with the
same set on the right described in the set-builder form :
1 {P,R,,N,C,A,L} (a){Xx:Xisapositive integer and is a divisor of 18}

@@ {0} (b) { x: x1is an integer and X*— 9 = 0}
@) {1,2,3,6,9,18} (c) {x:xis an integer and X + 1= 1}
@iv) {3,-3} (d) {x: x1is a letter of the word PRINCIPAL}

Solution Since in (d), there are 9 letters in the word PRINCIPAL and two letters P and I
are repeated, so (i) matches (d). Similarly, (ii) matches (c) as X + 1 = 1 implies
x=0.Also, 1,2,3, 6,9, 18 are all divisors of 18 and so (iii) matches (a). Finally, X*—~9 =0
implies X =3, -3 and so (iv) matches (b).

|EXERCISE 1.1

1. Which of the following are sets ? Justify your answer.
(i) The collection of all the months of a year beginning with the letter J.
(i) The collection of ten most talented writers of India.
(i) A team of eleven best-cricket batsmen of the world.
(iv) The collection of all boys in your class.
(v) The collection of all natural numbers less than 100.
(vi) A collection of novels written by the writer Munshi Prem Chand.
(vii) The collection of all even integers.
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(viii) The collection of questions in this Chapter.
(ix) A collection of most dangerous animals of the world.
Let A= {1, 2, 3,4, 5, 6}. Insert the appropriate symbol € or ¢ in the blank
spaces:
i S5...A @i 8...A @) O0...A
(iv) 4...A v) 2...A (viy 10...A
Write the following sets in roster form:
(i) A= {X:Xisan integer and -3 <X <7}
(i) B = {x:Xis anatural number less than 6}
(i) C={X:xis atwo-digit natural number such that the sum of its digits is 8}
(iv) D= {x:xis a prime number which is divisor of 60}
(v) E =The set of all letters in the word TRIGONOMETRY
(vi) F = The set of all letters in the word BETTER
Write the following sets in the set-builder form :
(i (3,6,9,12} (1) {2,4,8,16,32} @) {5,25, 125,625}
(iv) {2,4,6,...} (v) {14)9,...,100}
List all the elements of the following sets :
(i) A= {X:Xis an odd natural number}

(i) B = {X:Xis an integer, B <X< E}

(i) C= {x:Xis an integer, X’ < 4}

(iv) D= {x:Xis a letter in the word “LOYAL”}

(v) E = {x:xis amonth of a year not having 31 days}

(vi) F= {x:xis a consonant in the English alphabet which precedes k }.
Match each of the set on the left in the roster form with the same set on the right
described in set-builder form:

(1 {1,2,3,6} (a) {Xx:xisaprime number and a divisor of 6}
@@ {2,3} (b) {X:Xis an odd natural number less than 10}
(i) {M,A,T,HE,ILC,S} (¢c) {X:Xisnatural number and divisor of 6}
@iv) {1,3,5,7,9} (d) {x:xis aletter of the word MATHEMATICS}.

1.3 TheEmpty Set

Consider the set

A = { x: xis a student of Class XI presently studying in a school }
We can go to the school and count the number of students presently studying in

Class XI in the school. Thus, the set A contains a finite number of elements.

We now write another set B as follows:
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B = { X: Xis a student presently studying in both Classes X and XI }
We observe that a student cannot study simultaneously in both Classes X and XI.
Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the
null set or the void set.
According to this definition, B is an empty set while A is not an empty set. The
empty set is denoted by the symbol ¢ or { }.
We give below a few examples of empty sets.
(i) Let A= {x:1<x<2,Xxis anatural number}. Then A is the empty set,
because there is no natural number between 1 and 2.
(i) B={x:X*—2=0and X s rational number}. Then B is the empty set because
the equation X*— 2 = 0 is not satisfied by any rational value of X.
(i) C= {X:Xisan even prime number greater than 2}.Then C is the empty set,
because 2 is the only even prime number.
(iv) D= {x:x=4,xisodd }. Then D is the empty set, because the equation
X2= 4 is not satisfied by any odd value of X.

1.4 Finiteand Infinite Sets

Let A=1{1,2,3,4,5}, B=1{a b,cd e g}

and C = { men living presently in different parts of the world}

We observe that A contains 5 elements and B contains 6 elements. How many elements
does C contain? As it is, we do not know the number of elements in C, but it is some
natural number which may be quite a big number. By number of elements of a set S,
we mean the number of distinct elements of the set and we denote it by n (S). If n (S)
is a natural number, then S is hon-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this
set is not finite since there are infinite number of natural numbers. We say that the set
of natural numbers is an infinite set. The sets A, B and C given above are finite sets
and n(A) =5, n(B) = 6 and n(C) = some finite number.

Definition 2 A set which is empty or consists of a definite number of elements is
called finite otherwise, the set is called infinite.

Consider some examples :

(i) Let W be the set of the days of the week. Then W is finite.

(i) Let S be the set of solutions of the equation X*—16 = 0. Then S is finite.

(i) Let G be the set of points on a line. Then G is infinite.

When we represent a set in the roster form, we write all the elements of the set
within braces { }. It is not possible to write all the elements of an infinite set within
braces { } because the numbers of elements of such a set is not finite. So, we represent
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some infinite set in the roster form by writing a few elements which clearly indicate the
structure of the set followed ( or preceded ) by three dots.

For example, {1, 2,3 ...} is the set of natural numbers, {1, 3,5, 7, ...} is the set
of odd natural numbers, {...—3,-2,-1,0,1,2,3,...} is the set of integers. All these
sets are infinite.

‘@ Note|All infinite sets cannot be described in the roster form. For example, the

set of real numbers cannot be described in this form, because the elements of this
set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite :
(i) {Xx:xe Nand(x-1)(x-2)=0}
(i) {x:Xe Nandx =4}
@) {X:Xe Nand2x-1=0}
(iv) {X:xe Nand xis prime}
(v) {X:Xe Nand Xxis odd}
Solution (i) Given set= {1, 2}. Hence, it is finite.
(i) Given set = {2}. Hence, it is finite.
(i) Given set = ¢. Hence, it is finite.
(iv) The given set is the set of all prime numbers and since set of prime
numbers is infinite. Hence the given set is infinite
(v) Since there are infinite number of odd numbers, hence, the given set is
infinite.
1.5 Equal Sets
Given two sets A and B, if every element of A is also an element of B and if every

element of B is also an element of A, then the sets A and B are said to be equal.
Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same
elements and we write A = B. Otherwise, the sets are said to be unequal and we write
A #B.
We consider the following examples :
(i) LetA={1,2,3,4}and B=1{3,1,4,2}. Then A=B.
(i) LetA be the set of prime numbers less than 6 and P the set of prime factors
of 30. Then A and P are equal, since 2, 3 and 5 are the only prime factors of
30 and also these are less than 6.

A set does not change if one or more elements of the set are repeated.
For example, the sets A = {1, 2, 3} and B = {2, 2, 1, 3, 3} are equal, since each
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element of A is in B and vice-versa. That is why we generally do not repeat any
element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:
A={0}, B={x:x>15and x<5},
C={x:x=5=01}, D = {x: x*=25},
E = {X: Xis an integral positive root of the equation x> — 2x—15=0}.

Solution Since 0 € A and 0 does not belong to any of the sets B, C, D and E, it
follows that, A#zB,A#C,A=D,A#E.

Since B = ¢ but none of the other sets are empty. Therefore B# C, B # D
and B # E. Also C = {5} but =5 € D, hence C # D.

Since E = {5}, C=E. Further, D= {-5,5} and E = {5}, we find that, D # E.
Thus, the only pair of equal sets is C and E.

Example 8 Which of the following pairs of sets are equal? Justify your answer.
(i) X, the set of letters in “ALLOY” and B, the set of letters in “LOYAL”.
(@) A= {n:ne Zandn*<4} and B= {Xx:xe Rand X¥*— 3x+2=0}.

Solution (i) We have, X = {A,L,L,0,Y},B={L,0,Y, A, L}. Then X and B are

equal sets as repetition of elements in a set do not change a set. Thus,
X={A,L,0,Y} =B

(i)A={-2,-1,0,1,2}, B={1,2}.Since 0 € Aand 0 ¢ B, A and B are not equal sets.

|EXERCISE 1.2|

1. Which of the following are examples of the null set
(i) Set of odd natural numbers divisible by 2
(i) Set of even prime numbers
(i) { x: X1is a natural numbers, X <5 and X>7 }
(iv) {y:y isapoint common to any two parallel lines}
2. Which of the following sets are finite or infinite
(1) The set of months of a year
@i {1,2,3,...}
@) {1,2,3,...99,100}
(iv) The set of positive integers greater than 100
(v) The set of prime numbers less than 99
3. State whether each of the following set is finite or infinite:
(1) The set of lines which are parallel to the x-axis
(i) The set of letters in the English alphabet
(ii}) The set of numbers which are multiple of 5
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(iv) The set of animals living on the earth
(v) The set of circles passing through the origin (0,0)
4.  Inthe following, state whether A =B or not:
i A={abrcd} B = {dcba}
(i) A={4,8,12,16} B = {8,4,16,18}
(i) A=1{2,4,6,8,10} B = {X:Xispositive even integer and X < 10}
(iv) A= {X:X is amultiple of 10}, B = {10,15,20,25,30,...}
5. Are the following pair of sets equal ? Give reasons.
(1) A=1{2,3}, B= {x:xissolution of X* + 5x+ 6 =0}
(i) A= {x:Xisaletter in the word FOLLOW}
B = {y:yis aletter in the word WOLF}
6.  From the sets given below, select equal sets :
A=1{2,4,8,12}, B={1,2,3,4}, C={4,8,12,14}, D={3
E={-1,1}, F=1{0,a}, G={l1,-1}, H={0,1}

1.6 Subsets
Consider the sets : X = set of all students in your school, Y = set of all students in your
class.

We note that every element of Y is also an element of X; we say that Y is a subset
of X. The fact that Y is subset of X is expressed in symbols as Y  X. The symbol c
stands for ‘is a subset of” or ‘is contained in’.

Definition 4 A set A is said to be a subset of a set B if every element of A is also an
element of B.

In other words, A c B if whenever a€ A, then a € B. It is often convenient to
use the symbol “=" which means implies. Using this symbol, we can write the definiton
of subset as follows:

AcBifae A=>aeB

We read the above statement as “A is a subset of B if a is an element of A
implies that a is also an element of B”. If A is not a subset of B, we write A ¢ B.

We may note that for A to be a subset of B, all that is needed is that every
element of A is in B. It is possible that every element of B may or may not be in A. If
it so happens that every element of B is also in A, then we shall also have B Cc A. In this
case, A and B are the same sets so that we have A © B and B ©¢ A & A =B, where
“<” is a symbol for two way implications, and is usually read as if and only if (briefly
written as “iff”).

It follows from the above definition that every set A is a subset of itself, i.e.,
A c A. Since the empty set ¢ has no elements, we agree to say that ¢ isa subset of
every set. We now consider some examples :
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(1) The set Q of rational numbers is a subset of the set R of real numbes, and
we write Q  R.
(i) If Ais the set of all divisors of 56 and B the set of all prime divisors of 56,
then B is a subset of A and we write B C A.
(i) LetA={l,3,5} and B= {X: Xis an odd natural number less than 6}. Then
A c B and B c A and hence A = B.
(iv) LetA={a,ei,0,u}and B={a,b,c, d}. Then A is not a subset of B,
also B is not a subset of A.
Let A and B be two sets. If A B and A # B, then A is called a proper subset
of B and B is called superset of A. For example,
A={l1,2,3} is a proper subset of B= {1, 2, 3, 4}.
If a set A has only one element, we call it a singleton set. Thus,{ a } is a
singleton set.

Example 9 Consider the sets
6, A={1,3}, B={1,509}, C={L13,5709}.
Insert the symbol c or & between each of the following pair of sets:

(i) ¢...B (i)A...B  (ii)A...C (iWB...C

Solution (i) ¢ < B as ¢ is a subset of every set.
(i) AzBas3eAand3¢ B
(i) AcCasl,3e Aalsobelongs to C
(iv) B < C as each element of B is also an element of C.

Example 10 LetA= {a, e i,0,u} and B= { a, b, ¢, d}. Is A a subset of B ? No.
(Why?). Is B a subset of A? No. (Why?)

Example 11 Let A, B and C be three sets. If A € B and B < C, is it true that
A c C?. If not, give an example.

Solution No.LetA={1},B = {{1},2} and C= {{1},2,3}. Here Ae BasA= {1}
and BcC.ButAzCasle Aand1 ¢ C.
Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers

As noted in Section 1.6, there are many important subsets of R. We give below the

names of some of these subsets.
The set of natural numbers =1{1,2,
The set of integers {..

.
L0123,

The set of rational numbers Q = { X: X =

4,5,.
-2,
B
q ,p,qe Zand gq=0}
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q

p and q are integers and q is not zero”. Members of Q include —5 (which can be

5 11

5 7
—Zy Z 3= ; L il
expressed as 1 ), 775 (which can be expressed as 5 ) and 3

The set of irrational numbers, denoted by T, is composed of all other real numbers.
Thus T ={x: xe Rand x¢ Q}, i.e., all real numbers that are not rational.

Members of T include /2 , /5 and m.

Some of the obvious relations among these subsets are:
NcZcQQcR TcR,NgT.

1.6.2 Intervalsassubsetsof R Leta, be R and a < b. Then the set of real numbers

{y:a<y< b} is called an open interval and is denoted by (a, b). All the points

between aand b belong to the open interval (a, b) but a, b themselves do not belong to

this interval.

The interval which contains the end points also is called closed interval and is
denoted by [ @, b ]. Thus

[a,b]={x:as<x<b}

We can also have intervals closed at one end and open at the other, i.e.,
[a,b)={x:a<x<b} isan openinterval from ato b, including a but excluding b.
(a,b]={x:a<x< b} isanopeninterval from ato b including b but excluding a.
These notations provide an alternative way of designating the subsets of set of

real numbers. For example , if A= (-3, 5) and B =[-7, 9], then A — B. The set [ 0, )

defines the set of non-negative real numbers, while set ( — oo, 0 ) defines the set of
negative real numbers. The set (— oo, oo ) describes the set of real numbers in relation

to a line extending from — oo to oo,

On real number line, various types of intervals described above as subsets of R,

are shown in the Fig 1.1.

which is read “ Q is the set of all numbers X such that X equals the quotient — , where

(a,b) [a,b] [a,) (a,b]

O O @ @ @ O O @

a b a b a b a b
Figl.1

Here, we note that an interval contains infinitely many points.

For example, the set {X: Xe R, -5 <X <7}, written in set-builder form, can be
written in the form of interval as (-5, 7] and the interval [-3, 5) can be written in set-
builder form as {X: -3 <x<5}.
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The number (b — a) is called the length of any of the intervals (a, b), [a, b],
[a, b) or (a, b].

1.7 Power Set

Consider the set {1, 2}. Let us write down all the subsets of the set {1, 2}. We
know that ¢ is a subset of every set . So, ¢ is a subset of {1, 2}. We see that {1}
and { 2 }are also subsets of {1, 2}. Also, we know that every set is a subset of
itself. So, { 1, 2 } is a subset of {1, 2}. Thus, the set { 1, 2 } has, in all, four
subsets, viz. ¢, { 1 }, {2 } and { 1,2 }. The set of all these subsets is called the
power set of { 1,2 }.

Definition 5 The collection of all subsets of a set A is called the power set of A. Tt is
denoted by P(A). In P(A), every element is a set.
Thus, as in above, if A= { 1, 2 }, then
PCA)={0.{1} {2}, {1.2}}
Also, note that n [ P (A) | =4 = 22
In general, if A is a set with n(A) = m, then it can be shown that
n[PA)]=2m

1.8 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a
basic set which is relevant to that particular context. For example, while studying the
system of numbers, we are interested in the set of natural numbers and its subsets such
as the set of all prime numbers, the set of all even numbers, and so forth. This basic set
is called the “Universal Set”. The universal set is usually denoted by U, and all its
subsets by the letters A, B, C, etc.

For example, for the set of all integers, the universal set can be the set of rational
numbers or, for that matter, the set R of real numbers. For another example, in human
population studies, the universal set consists of all the people in the world.

|EXERCISE 13|

1.  Make correct statements by filling in the symbols < or & in the blank spaces :
1 {2,3,4}...{1,2,3,45} (i) {abc}...{bcd}
(i) {X:Xis astudent of Class XI of your school}. . .{X: X student of your school}
(iv) {x:Xis acircle in the plane} . . .{X: X is a circle in the same plane with
radius 1 unit}
(v) {x:Xisatriangle in a plane} ... {X: X1is a rectangle in the plane}
(vi) {X:xisan equilateral triangle inaplane} ... {X:Xisatriangle in the same plane}
(vil) {X:Xis an even natural number} ... {X: Xis an integer}
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2. Examine whether the following statements are true or false:
) {able{bcal
(i) {a e} c {x:xisavowel in the English alphabet}
@ {1,2,3yc{1,3,5}
(iv) {ajc {abc}
(v) {aje {abc}
(vi) {X:Xisan even natural number less than 6} c { X: Xis a natural number
which divides 36}
3. Let A={1,2,{3,4},5}. Which of the following statements are incorrect and why?
1 {3,4)c A @) {3,4}e A (i) {{3,4}} c A
iv) 1e A v) 1cA vi) {1,2,5}c A
(vi) {1,2,5} e A (vii) {1,2,3} c A (ix) de A
x) 0c A (x) {0} c A
4. Write down all the subsets of the following sets
0 {a (i) {a b} () {1,2,3} @(iv) ¢
5. How many elements has P(A), if A = ¢?
6.  Write the following as intervals :
(i) {X:xe R,—4<x<6} (i) {x:xe R,—-12<x<-10}
@) {x:xe R,0<x<7} (iv) {X:xe R,3<x<4}
7. Write the following intervals in set-builder form :
i (=3,0) (i) [6,12] (ii)) (6, 12] (iv) [-23,95)
8.  What universal set(s) would you propose for each of the following :
(i) The set of right triangles. (i) The set of isosceles triangles.
9. Giventhesets A={1,3,5},B=1{2,4,6} and C = {0, 2, 4, 6, 8}, which of the
following may be considered as universal set (s) for all the three sets A, B and C
(1 {0,1,2,3,4,5,6}
(i) o
(i) {0,1,2,3,4,5,6,7,8,9,10}
(iv) {1,2,3,4,5,6,7,8}
1.9 Venn Diagrams U

Most of the relationships between sets can be
represented by means of diagrams which are known o1
as Venn diagrams. Venn diagrams are named after
the English logician, John Venn (1834-1883). These o5
diagrams consist of rectangles and closed curves
usually circles. The universal set is represented
usually by a rectangle and its subsets by circles.

9

In Venn diagrams, the elements of the sets

are written in their respective circles (Figs 1.2 and 1.3) Fig1.2
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Illustration 1InFig1.2,U={1,2,3,...,10} isthe U
universal set of which
A=1{24,6,8,10} is a subset. 1

Illustration 2InFig 1.3, U= {1,2,3, ..., 10} is the
universal set of which

A=1{2,4,6,8,10} and B= {4, 6} are subsets, 9
and also B Cc A. Fig1.3

The reader will see an extensive use of the
Venn diagrams when we discuss the union, intersection and difference of sets.

1.10 Operationson Sets

In earlier classes, we have learnt how to perform the operations of addition, subtraction,
multiplication and division on numbers. Each one of these operations was performed
on a pair of numbers to get another number. For example, when we perform the
operation of addition on the pair of numbers 5 and 13, we get the number 18. Again,
performing the operation of multiplication on the pair of numbers 5 and 13, we get 65.
Similarly, there are some operations which when performed on two sets give rise to
another set. We will now define certain operations on sets and examine their properties.
Henceforth, we will refer all our sets as subsets of some universal set.

1.10.1 Union of sets Let A and B be any two sets. The union of A and B is the set
which consists of all the elements of A and all the elements of B, the common elements
being taken only once. The symbol ‘U’ is used to denote the union. Symbolically, we
write A U B and usually read as ‘A union B'.

Example12 Let A= {2,4,6,8} and B= {6, 8, 10, 12}. Find A U B.

Solution Wehave AUB ={2,4,6,8, 10, 12}

Note that the common elements 6 and 8 have been taken only once while writing
A UB.

Example 13 LetA={a ei,o,u}and B=1{4a,i,u}. Showthat AUB =A

Solution We have, AUB={a, e i, o u}=A.

This example illustrates that union of sets A and its subset B is the set A
itself, i.e., if B c A, then AU B =A.

Example 14 Let X = {Ram, Geeta, Akbar} be the set of students of Class XI, who are
in school hockey team. Let Y = {Geeta, David, Ashok} be the set of students from
Class XI who are in the school football team. Find X U Y and interpret the set.

Solution We have, X U Y = {Ram, Geeta, Akbar, David, Ashok}. This is the set of
students from Class XI who are in the hockey team or the football team or both.
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Thus, we can define the union of two sets as follows:

Definition 6 The union of two sets A and B is the set C which consists of all those
elements which are either in A or in B (including
those which are in both). In symbols, we write. |U
AUB ={x:XeAorxeB}

The union of two sets can be represented by a A
Venn diagram as shown in Fig 1.4.

The shaded portion in Fig 1.4 represents A U B. B
Some Properties of the Operation of Union AUB

(i) AuB =BuUA (Commutative law) Figl.4
i@ (AuB)uC=AuU(BUCQ)
(Associative law )

) AVo=A (Law of identity element, ¢ is the identity of L)
(iv) AUA =A (Idempotent law)
v) UuA =U (Law of U)

1.10.2 Intersection of sets The intersection of sets A and B is the set of all elements
which are common to both A and B. The symbol ‘n’is used to denote the intersection.
The intersection of two sets A and B is the set of all those elements which belong to
both A and B. Symbolically, we write AN B = {x: Xe Aand Xe B}.

Example 15 Consider the sets A and B of Example 12. Find A n B.

Solution We see that 6, 8 are the only elements which are common to both A and B.
Hence AnB=1{6,8}.

Example 16 Consider the sets X and Y of Example 14. Find X N Y.

Solution We see that element ‘Geeta’ is the only element common to both. Hence,
X NY = {Geeta}.

Examplel7LetA={1,2,3,4,5,6,7,8,9,10} and B={2,3,5,7 }. Find A n B and
hence show that A n B =B.

Solution We have AN B=1{2,3,5,7}=B.We
note that B — A and that A N B =B. U
Definition 7 The intersection of two sets A and B
is the set of all those elements which belong to both A
A and B. Symbolically, we write

ANB={x:xe Aand xXe B} B
ANB

The shaded portion in Fig 1.5 indicates the
intersection of A and B. Figl5s
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If A and B are two sets such that A" B = ¢, then U
A and B are called digoint sets.

For example, let A= { 2,4, 6,8 } and
B=1{1,3,5, 7} Then A and B are disjoint sets,
because there are no elements which are common to
A and B. The disjoint sets can be represented by
means of Venn diagram as shown in the Fig 1.6

In the above diagram, A and B are disjoint sets. Fig1.6
Some Properties of Operation of Intersection
i) AnB =BnA (Commutative law).

i) (AnB)nC=An(BnNnC) (Associative law).

i) 6NA=0,UnA=A (Law of ¢ and U).

(iv) AnA=A (Idempotent law)

v) An(BuC) = (AnB)uU(AnC) (Distributive law ) i. e.,

N distributes over U

This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

) (BUC) (i) (ANB)

U

(
U

©

(i) AN(BUC) (iv) (ANC)

@vé

(v) (AnB)uU (ANC)
Figs 1.7 (i) to (v)
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1.10.3 Difference of sets The difference of the sets A and B in this order is the set
of elements which belong to A but not to B. Symbolically, we write A — B and read as
“ Aminus B”.

Example18 LetA={1,2,3,4,5,6}, B={2,4,6,8 }.Find A—B and B —A.

Solution We have, A—B = { 1, 3, 5 }, since the elements 1, 3, 5 belong to A but
notto B and B—-A = { 8 }, since the element 8 belongs to B and not to A.
We note that A— B #B — A.

Example 19 Let V= {a,€i,0,uU} and
B=1{aiku.FindV-BandB-V U

Solution Wehave, V—-B={ g 0}, since the elements
e 0belong to V butnotto Band B—V = { k}, since ‘
the element k belongs to B but not to V.

We note that V— B # B — V. Using the set-
builder notation, we can rewrite the definition of
difference as

A-B={x:xe Aandx¢ B}

The difference of two sets A and B can be |U

represented by Venn diagram as shown in Fig 1.8.
The shaded portion represents the difference of
the two sets A and B.

Remark The sets A— B, AN B and B — A are |A-B
mutually disjoint sets, i.e., the intersection of any of
these two sets is the null set as shown in Fig 1.9.

(ANB)
Fig1.9

|[EXERCISE 14|

1. Find the union of each of the following pairs of sets :
(1) X={1,3,5} Y={1,2,3}
(i) A=1TJaei,ou B={ab,c}
(i) A = {X:Xis anatural number and multiple of 3}
B = {x: xis a natural number less than 6}
(iv) A = {X:Xis anatural numberand 1 <X <6 }
B = {x: Xis a natural number and 6 <Xx< 10 }
v) A={1,2,3},B=0¢
LetA={ab},B= {abc}.IsAcB?WhatisAUB?
If A and B are two sets such that A — B, then whatis AU B ?
4. 1fA={1,2,3,4},B=1{3,4,5,6},C=1{5,6,7,8 }andD={7,8,9, 10 }; find

W 19
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(i) AuB @i AuC @) BuUC ivyBuD
v) AuBuUC (vij AuBuUD (vi) BuCuD
Find the intersection of each pair of sets of question 1 above.
IfA={3,5,7,9,11 },B={7,9,11,13},C= {11, 13, 15}and D = {15, 17}; find

i ANB (i) BNC (i) ANCAD
(iv) AnC (v) BAD vi) An(BuUCQ)
(vi) AnD i) An(BUD) (ix) (ANB)n(BuUC)

x) (AuD)Nn(BuUC(C)
If A= {X:Xis a natural number }, B = {X: Xis an even natural number}
C = {x: Xis an odd natural number}andD = {X : X is a prime number }, find
i) AnB i AnC @) AnND
(ivy BnC vy BnD (vij CnD
Which of the following pairs of sets are disjoint
(1) {1,2,3,4} and {X: Xis a natural number and 4 <X<6 }
(i) {aei,ou}and{cdef}
(i) {X:Xis an even integer } and {X: X is an odd integer}
IfA={3,6,9,12,15,18,21},B={4,8,12,16,20 },
C=1{2,4,6,8,10,12,14,16 },D= {5, 10, 15,20 }; find

i A-B () A-C (i) A-D (iv) B-A
v) C—A vi) D-A (i) B-C (vii) B-D
(ix) C-B x) D-B xi)y C-D (xii) D-C
IfX={ab,cd}andY={f b, d, g} find

() X-Y () Y-X (i) XY

If R is the set of real numbers and Q is the set of rational numbers, then what is

R-Q?

State whether each of the following statement is true or false. Justify your answer.
(1) {2,3,4,5}and {3, 6} are disjoint sets.

(i) {aei,ou}and{ab,c,d}are disjoint sets.

(i) {2,6,10,14 } and { 3,7, 11, 15} are disjoint sets.

(iv) {2,6,10} and {3,7, 11} are disjoint sets.

1.11 Complement of a Set

Let U be the universal set which consists of all prime numbers and A be the subset of

U which consists of all those prime numbers that are not divisors of 42. Thus,

A:

{x:xe Uand Xxis not a divisor of 42 }. We see that 2 € U but 2 ¢ A, because

2 is divisor of 42. Similarly,3€ Ubut3 ¢ A,and 7€ Ubut7 ¢ A. Now 2, 3 and 7 are
the only elements of U which do not belong to A. The set of these three prime numbers,
i.e., the set {2, 3, 7} is called the Complement of A with respect to U, and is denoted by
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A’. So we have A’= {2, 3, 7}. Thus, we see that
A’ = {x:xe Uand x¢ A }. This leads to the following definition.

Definition 8 Let U be the universal set and A a subset of U. Then the complement of
A is the set of all elements of U which are not the elements of A. Symbolically, we
write A” to denote the complement of A with respect to U. Thus,
A’={x:xe Uand x¢ A }. Obviously A’=U-A
We note that the complement of a set A can be looked upon, alternatively, as the
difference between a universal set U and the set A.

Example 20LetU= {1,2,3,4,5,6,7,8,9,10} and A= {1, 3,5,7,9}. Find A”.

Solution We note that 2, 4, 6, 8, 10 are the only elements of U which do not belong to
A. Hence A'=1{2,4,6,8,10}.

Example 21 Let U be universal set of all the students of Class XTI of a coeducational
school and A be the set of all girls in Class XI. Find A”.

Solution Since A is the set of all girls, A” is clearly the set of all boys in the class.

If A is a subset of the universal set U, then its complement A” is also a
subset of U.
Again in Example 20 above, we have A" ={2,4,6,8,10}
Hence (A’Y={x:xe Uand xe A’}
={1,3,5,7,9} =A
Itis clear from the definition of the complement that for any subset of the universal
set U, we have (A") =A

Now, we want to find the results for (A U B )" and A” N B’ in the followng
example.
Example 22 Let U= {1,2,3,4, 5,6}, A= {2,3) and B= {3, 4, 5.
Find A", B", A" nB’, A U B and hence show that( AUB ) =A’nB".

Solution Clearly A” = {1,4,5,6},B"={1,2,6 }. Hence A" "B ={ 1,6 }
AlsoAUB ={2,3,4,5},sothat (AUB) ={1,6}
(AUB) ={1,6}=A"NnB

It can be shown that the above result is true in general. If A and B are any two
subsets of the universal set U, then

(AuB) =A"NB. Similarly,(AnB ) = A" UB’. These two results are stated
in words as follows :
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The complement of the union of two sets is U
the intersection of their complements and the A
complement of the intersection of two sets is the
union of their complements. These are called De
Morgan’s laws. These are named after the
mathematician De Morgan.
The complement A” of a set A can be represented
by a Venn diagram as shown in Fig 1.10. Fig1.10
The shaded portion represents the complement of the set A.

Some Properties of Complement Sets
1. Complement laws: HAUA" =U i)ANA"=0
2. De Morgan’s law: A uUB) =A"nB (i)(An B) =A"UB
3. Law of double complementation : (A”)' = A

4. Laws of empty set and universal set ¢’ = U and U” = ¢.
These laws can be verified by using Venn diagrams.

|EXERCISE 15|

1. LetU=1{1,2,3,4,56,7,89},A=1{1,2,3,4,B=1{2, 4,6,8} and
C=1{3,4,56"}.Find (i) A" (ii) B’ (iii) (A U C) (iv) (AU BY (v) (A’Y

(vi) B -CY

2. IfU={aDb,cd,e°f g h} find the complements of the following sets :
(i)A={a, b, c} (i) B={d, e f, g}
(i) C=1{a,c, e g} (ivyD={f, g, h a}

3. Taking the set of natural numbers as the universal set, write down the complements
of'the following sets:

(i) {X:Xis an even natural number} (i1) {X:Xisan odd natural number }
(i) {x:Xis apositive multiple of 3} (iv) { X: Xis a prime number }
(v) {X:xis anatural number divisible by 3 and 5}
(vi) { X:Xis a perfect square } (vii) { X: X is a perfect cube}
(vii)) {X:X+5=8} (ix) {x:2x+5=9}
x) {x:x=>7} (xi) { X:Xe Nand 2x+1>10}
4. 1tU=1{1,2,3,4,5,6,7,8,9},A=1{2,4,6,8} and B= {2, 3,5, 7}. Verify that
HAuBY=A"NnB’ (i) (ANnBY=A"UB’
5. Draw appropriate Venn diagram for each of the following :
(i) (A UBY, (i)A"nB, (i) (AnB), (VA UB

6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at
least one angle different from 60°, what is A"?
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7. Fill in the blanks to make each of the following a true statement :
i AUVA'=... (i) ONA=...
i) ANnA'=... (iv) UnA=...

1.12 Practical Problems on Union and

I nter section of Two Sets =
In earlier Section, we have learnt union, intersection Q

and difference of two sets. In this Section, we will
go through some practical problems related to our
daily life.The formulae derived in this Section will

also be used in subsequent Chapter on Probability (ANB)
(Chapter 16). Fig1.11
Let A and B be finite sets. [f A N B = ¢, then
GO N(AUB)=n(A)+n(B)  ..(1)

The elements in A U B are either in A or in B but not in both as AN B =¢. So, (1)
follows immediately.

In general, if A and B are finite sets, then

@n(AuB)=n(A)+n(B)-n(AnNnB) .. (2)

Note that the sets A— B, A n B and B — A are disjoint and their union is A U B
(Fig 1.11). Therefore
N(AuB)=n(A-B)+n(A nB)+n(B-A)
=n(A-B)+ n(AnB)+n(B-A)+n(A nB)-n(A nB)
=n(A)+n(B)-n(A n B), which verifies (2)
(ii1) If A, B and C are finite sets, then
N(AuUBUC)=n(A)+n(B)+n(C)-n(A nB)-n(B nC)
-n(AnC)+n(AnB nC) .. (3)
In fact, we have
n(AuBuUC)=nA)+n(BuC)-n[ANn(BuUC)] [by (2)]
=nA)+n(B)+n(C)-n(B nC)-n[ANn(BuUC)] [by (2)]
SinceA Nn(BuUC)=(A nB)u(A nC), we get
Nf[AN(BuC)]=n(AnB)+tn(AnNnC)-n[(AnNnB)n((A nQ)]
=n(AnB)*tn(AnC)-nAnBnNnO(C
Therefore
N(AuUBUC) =nA)+n(B)+n(C)-n(A nB)-n(B nO)
-n(A nC)+n(A nB n(C)
This proves (3).

Example 23 If X and Y are two sets such that X U Y has 50 elements, X has
28 elements and Y has 32 elements, how many elements does X N'Y have ?
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Solution Given that U
N(XuY)=50,n(X)=28, n(Y)=32,

nNXNnY)=?

By using the formula Q
N(XuY)=n(X)+n(Y)-n(XnNnY),

we find that (XAY)
N(XNY)=n(X)+n(Y)-n(XuUY)

=28+32-50=10 Fig1.12

Alternatively, suppose N ( X N'Y ) =k, then
N(X-Y)=28-k,n(Y-X)=32-k(by Venn diagram in Fig 1.12)
Thisgives5S0=n(XuY)=nX-Y)+nX nY)+n(Y-X)
=(28-k)+k+(32-k)
Hence k =10.

Example 24 In a school there are 20 teachers who teach mathematics or physics. Of
these, 12 teach mathematics and 4 teach both physics and mathematics. How many
teach physics ?

Solution Let M denote the set of teachers who teach mathematics and P denote the
set of teachers who teach physics. In the statement of the problem, the word ‘or’ gives
us a clue of union and the word ‘and’ gives us a clue of intersection. We, therefore,
have
N(MuUP)=20,n(M)=12andn(MnNP)=4
We wish to determine n ( P ).
Using the result
N(MuUP)=n(M)+n(P)-n (MnNP),
we obtain
20=12+n(P)-4
Thus n(P)=12
Hence 12 teachers teach physics.

Example 25 In a class of 35 students, 24 like to play cricket and 16 like to play
football. Also, each student likes to play at least one of the two games. How many
students like to play both cricket and football ?

Solution Let X be the set of students who like to play cricket and Y be the set of

students who like to play football. Then X U'Y is the set of students who like to play

at least one game, and X N'Y is the set of students who like to play both games.

Given nN(X)=24,n(Y)=16,n(XuY)=35n(XNnY)="?

Using the formulan (X uY)=n(X)+n(Y)-n (XNY), we get
35=24+16—-n(XNY)
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Thus, nxX NnY)=>5
ie., 5 students like to play both games.

Example 26 In a survey of 400 students in a school, 100 were listed as taking apple
juice, 150 as taking orange juice and 75 were listed as taking both apple as well as
orange juice. Find how many students were taking neither apple juice nor orange juice.

Solution Let U denote the set of surveyed students and A denote the set of students
taking apple juice and B denote the set of students taking orange juice. Then

n (U) =400, n (A) =100, n (B) =150 and n (A N B) =75.
Now n(A’'nB’) =n(AuUB)
=n{U)-n(AuB)
=nU)-n(A)—-n(B)+n(AnB)
=400-100—-150+75=225
Hence 225 students were taking neither apple juice nor orange juice.

Example 27 There are 200 individuals with a skin disorder, 120 had been exposed to
the chemical C , 50 to chemical C,, and 30 to both the chemicals C, and C,. Find the
number of individuals exposed to

(i)  Chemical C, but not chemical C, (i) Chemical C, but not chemical C,
(iii) Chemical C, or chemical C,

Solution Let U denote the universal set consisting of individuals suffering from the
skin disorder, A denote the set of individuals exposed to the chemical C, and B denote
the set of individuals exposed to the chemical C,.

Here n(U)=200,n(A)=120,n(B)=50andn(AnB)=30

(i) From the Venn diagram given in Fig 1.13, we have
A=(A-B)U(ANB).
nA)=n(A-B)+n(AnB) (Since A—B)and A N B are disjoint.)
orn(A-B)=n(A)-n(AnB)=120-30=90

Hence, the number of individuals exposed to
chemical C, but not to chemical C, is 90.

U
(i1) From the Fig 1.13, we have
B=(B-A)U(ANB). Q
andso, n(B)=nB-A)+n(AnNB)

(Since B — A and A NB are disjoint.)
or n(B-A)=n(B)-n(AnB) (AnB)
=50-30= 20 Fig1.13
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Thus, the number of individuals exposed to chemical C, and not to chemical C, is 20.
(i) The number of individuals exposed either to chemical C, or to chemical C, i.e.,
nN(AuB)=n(A)+n(B)-n(AnNnB)
=120+ 50 — 30 = 140.

|EXERCISE 16|

1. IfXandY aretwosetssuchthatn(X)=17,n(Y)=23andn(XuwY)=38,
findn(XNY).

2. IfXandY are two sets such that X U Y has 18 elements, X has 8 elements and
Y has 15 elements ; how many elements does X N'Y have?

3. Ina group of 400 people, 250 can speak Hindi and 200 can speak English. How
many people can speak both Hindi and English?

4. IfSand T are two sets such that S has 21 elements, T has 32 elements, and SN T
has 11 elements, how many elements does S U T have?

5. IfXand are two sets such that X has 40 elements, X U Y has 60 elements and
X MY has 10 elements, how many elements does Y have?

6. Ina group of 70 people, 37 like coffee, 52 like tea and each person likes at least
one of the two drinks. How many people like both coffee and tea?

7. Inagroup of 65 people, 40 like cricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?

8. In a committee, 50 people speak French, 20 speak Spanish and 10 speak both
Spanish and French. How many speak at least one of these two languages?

Miscellaneous Examples

Example 28 Show that the set of letters needed to spell “ CATARACT ” and the
set of letters needed to spell “ TRACT” are equal.

Solution Let X be the set of letters in “CATARACT”. Then
X={CA TR}

Let Y be the set of letters in “ TRACT”. Then
Y={T,R,A,C,T}={T,R,A,C}

Since every element in X is in Y and every element in Y is in X. It follows that X =Y.

Example 29 List all the subsets of the set { -1, 0, 1 }.

Solution Let A= {-1,0, 1 }. The subset of A having no element is the empty
set ¢. The subsets of A having one element are { —1 }, {0 }, { 1 }. The subsets of
A having two elements are {—1, 0}, {—1, 1} ,{0, 1}. The subset of A having three
elements of A is A itself. So, all the subsets of A are ¢, {—1}, {0}, {1}, {-1,0}, {-1, 1},
{0, 1} and {-1, 0, 1}.
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Example 30 Show that AU B= A n B implies A=B

Solution Letae A. Thenae AUB. Since AUB=A NnB,ae A nB.Soac B.
Therefore, A — B. Similarly, if be B, thenbe AU B. Since
AUB=ANB,be AnB. So,be A. Therefore, Bc A. Thus, A=B

Example 31 For any sets A and B, show that
P(AnB)=P(A)nP( B).

Solution Let X € P(AN B ). Then X € AN B. So, X ¢ A and X c B. Therefore,
X e P(A)and X € P(B) which implies X € P(A) "N P(B). This givesP(ANB)
cP(A)nP(B). LetYe P(A)nP(B).ThenYe P(A)andY € P(B). So,
Y c AandY c B. Therefore, Y € A n B, which implies Y € P(A n B). This gives
P(A)nP(B)cP(ANnB)

Hence P(ANB)=P(A)nP(B).

Example 32 A market research group conducted a survey of 1000 consumers and
reported that 720 consumers like product A and 450 consumers like product B, what is
the least number that must have liked both products?

Solution Let U be the set of consumers questioned, S be the set of consumers who
liked the product A and T be the set of consumers who like the product B. Given that
n(U)=1000,n(S)=720,n( T)=450
So N(SuUT)=n(S)+n(T)-n(SNT)
=720+450-n(SNT)=1170-n(SNT)

Therefore, N (S U T ) is maximum when n (S N T ) is least. But S U T < U implies
N(SuUT) <n(U)=1000. So, maximum values of n (S w T ) is 1000. Thus, the least
value of N (S M T)is 170. Hence, the least number of consumers who liked both products
is 170.

Example 33 Out of 500 car owners investigated, 400 owned car A and 200 owned
car B, 50 owned both A and B cars. Is this data correct?

Solution Let U be the set of car owners investigated, M be the set of persons who
owned car A and S be the set of persons who owned car B.

Given that n(U)=500,n(M)=400,n(S)=200andn(S"M)=50.
Then n(SuM)=n(S)+n(M)-n(SNM) =200 +400—50 =550
ButSUM < Uimpliesn(SuM)<n(U).

This is a contradiction. So, the given data is incorrect.

Example 34 A college awarded 38 medals in football, 15 in basketball and 20 in
cricket. If these medals went to a total of 58 men and only three men got medals in all
the three sports, how many received medals in exactly two of the three sports ?
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Solution Let F, B and C denote the set of men who [yg

received medals in football, basketball and cricket,

respectively. F a B

Thenn(F)=38,n(B)=15,n(C)=20 9@&
nFuBuUC)=58andn(FNBNC)=3

Therefore, n(FuBuUC)=n(F)+n(B) C

+n(C)-n(FNnB)-n(FNC)-nBNC)+

n(FNBn C), Fig1.14

givesn(FNB)+n(FNnC)+n(BnC)=18

Consider the Venn diagram as given in Fig 1.14

Here, a denotes the number of men who got medals in football and basketball only, b
denotes the number of men who got medals in football and cricket only, ¢ denotes the
number of men who got medals in basket ball and cricket only and d denotes the
number of men who got medal in all the three. Thus,d=n(FNnBNC)=3anda+
d+b+d+c+d=18

Therefore atb+c=9,

which is the number of people who got medals in exactly two of the three sports.

Miscellaneous Exercise on Chapter 1

1.  Decide, among the following sets, which sets are subsets of one and another:
A={x:xe R and xsatisfy x> - 8x+ 12= 0 },
B={2,4,6}, C={2,4,6,8,...},D={6}.

2. Ineach ofthe following, determine whether the statement is true or false. If'it is
true, prove it. If it is false, give an example.

(i) Ifxe AandAe B,thenxe B
(i) IfA cBandBe C,thenAe C
(i) IfAcBandBcC,thenA cC
(iv fAgzBandB z C,thenA ¢ C
(v) Ifxe Aand Az B ,thenxe B
(vij IfAcBandxe¢ B,thenxg A

3. LetA, B, and C be the sets such that AU B=Au Cand AnB=An C. Show
that B = C.

4. Show that the following four conditions are equivalent :

()AcB(@i)A-B=¢ (iii)AuB=B (ivV AnB=A

Show that if A< B, then C —B c C — A.

Assume that P (A ) =P (B). Show that A=B

7. Isit true that for any sets Aand B,P(A) UP(B)=P (A U B)? Justify your
answer.

o o
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Show that for any sets A and B,

A=(ANn B) U(A-B)andAuU(B-A)= (AuUB)

Using properties of sets, show that

HDAU(A NB)=A (i) An(AUB)=A.

Show that A M B = A n C need not imply B =C.

Let Aand B besets. [fFA " X=BnNnX=¢and Au X =B U X for some set
X, show that A = B.

(Hints A=An(AuX),B=Bn(Bu X)and use Distributive law )
Find sets A, B and C such that A "B, B N C and A n C are non-empty
setsand AN B N C=¢.

In a survey of 600 students in a school, 150 students were found to be taking tea
and 225 taking coffee, 100 were taking both tea and coffee. Find how many
students were taking neither tea nor coffee?

In a group of students, 100 students know Hindi, 50 know English and 25 know
both. Each of the students knows either Hindi or English. How many students
are there in the group?

In a survey of 60 people, it was found that 25 people read newspaper H, 26 read
newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T,
8 read both T and I, 3 read all three newspapers. Find:

(1) the number of people who read at least one of the newspapers.

(i1) the number of people who read exactly one newspaper.

In a survey it was found that 21 people liked product A, 26 liked product B and
29 liked product C. If 14 people liked products A and B, 12 people liked products
C and A, 14 people liked products B and C and 8 liked all the three products.
Find how many liked product C only.

Summary

This chapter deals with some basic definitions and operations involving sets. These

are summarised below:

@ A set is a well-defined collection of objects.

@ A set which does not contain any element is called empty set.

@ A set which consists of a definite number of elements is called finite set,
otherwise, the set is called infinite set.

@ Two sets A and B are said to be equal if they have exactly the same elements.

@ Aset A is said to be subset of a set B, if every element of A is also an element
of B. Intervals are subsets of R.

@ A power set of a set A is collection of all subsets of A. It is denoted by P(A).
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# The union of two sets A and B is the set of all those elements which are either
in A or in B.

& The intersection of two sets A and B is the set of all elements which are
common. The difference of two sets A and B in this order is the set of elements
which belong to A but not to B.

# The complement of a subset A of universal set U is the set of all elements of U
which are not the elements of A.

¢ For any two sets Aand B, (AUB)Y =A"nB’and (AnB)=A"UB’

¢ If A and B are finite sets such that A N B = ¢, then
n(AuB)=n(A)+n(B).

IfA N B # 0, then
nN(AuB)=n(A)+n(B)-n(AnNB)

Historical Note

The modern theory of sets is considered to have been originated largely by the
German mathematician Georg Cantor (1845-1918). His papers on set theory
appeared sometimes during 1874 to 1897. His study of set theory came when he
was studying trigonometric series of the form @, sin X + &, sin 2X+ @, sin 3X+ ...
He published in a paper in 1874 that the set of real numbers could not be put into
one-to-one correspondence wih the integers. From 1879 onwards, he publishd
several papers showing various properties of abstract sets.

Cantor’s work was well received by another famous mathematician Richard
Dedekind (1831-1916). But Kronecker (1810-1893) castigated him for regarding
infinite set the same way as finite sets. Another German mathematician Gottlob
Frege, at the turn of the century, presented the set theory as principles of logic.
Till then the entire set theory was based on the assumption of the existence of the
set of all sets. It was the famous Englih Philosopher Bertand Russell (1872-
1970 ) who showed in 1902 that the assumption of existence of a set of all sets
leads to a contradiction. This led to the famous Russell’s Paradox. Paul R.Halmos
writes about it in his book ‘Naive Set Theory’ that “nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory.
Many paradoxes were produced later by several mathematicians and logicians.
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As a consequence of all these paradoxes, the first axiomatisation of set theory
was published in 1908 by Ernst Zermelo. Another one was proposed by Abraham
Fraenkel in 1922. John Von Neumann in 1925 introduced explicitly the axiom of
regularity. Later in 1937 Paul Bernays gave a set of more satisfactory
axiomatisation. A modification of these axioms was done by Kurt Gddel in his
monograph in 1940. This was known as Von Neumann-Bernays (VNB) or Godel-
Bernays (GB) set theory.

Despite all these difficulties, Cantor’s set theory is used in present day
mathematics. In fact, these days most of the concepts and results in mathematics
are expressed in the set theoretic language.

29



Chapter 2

(RELATIONS AND FUNCTIONS )

* Mathematics is the indispensable instrument of
all physical research. - BERTHELOT <%

2.1 Introduction

Much of mathematics is about finding a pattern — a

recognisable link between quantities that change. In our

daily life, we come across many patterns that characterise

relations such as brother and sister, father and son, teacher

and student. In mathematics also, we come across many

relations such as number m is less than number 7, line/ is

parallel to line m, set Ais a subset of set B. In all these, we

notice that a relation involves pairs of objects in certain

order. In this Chapter, we will learn how to link pairs of

objects from two sets and then introduce relations between

the two objects in the pair. Finally, we will learn about G.W. Leibnitz
special relations which will qualify to be functions. The (1646-1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.

2.2 Cartesian Products of Sets

Suppose A is a set of 2 colours and B is a set of 3 objects, i.e.,
A = {red, blue}and B = {b, c, s},

where b, ¢ and s represent a particular bag, coat and shirt, respectively.

How many pairs of coloured objects can be made from these two sets?

Proceeding in a very orderly manner, we can see that there will be 6
distinct pairs as given below:

(red, b), (red, c), (red, s), (blue, b), (blue, ¢), (blue, s). b
.. . . [ ] [ ]
Thus, we get 6 distinct objects (Fig 2.1). red  blue
Let us recall from our earlier classes that an ordered pair of elements Fig 2.1

taken from any two sets P and Q is a pair of elements written in small

2015-16
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brackets and grouped together in a particular order, i.e., (,q), p € Pand g€ Q. This
leads to the following definition:

Definition 1 Given two non-empty sets P and Q. The cartesian product P X Q is the

set of all ordered pairs of elements from P and Q, i.e.,
PXxQ={(pg:pebPqgeQ}

If either P or Q is the null set, then P X Q will also be empty set, i.e., P XQ = ¢

From the illustration given above we note that

A X B = {(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.

Again, consider the two sets:

A = {DL, MP, KA}, where DL, MP, KA represent Delhi,
Madhya Pradesh and Karnataka, respectively and B = {01,02,
03 }representing codes for the licence plates of vehicles issued
by DL, MP and KA . 01

If the three states, Delhi, Madhya Pradesh and Karnataka )
were making codes for the licence plates of vehicles, withthe DL MP KA
restriction that the code begins with an element from set A,
which are the pairs available from these sets and how many such
pairs will there be (Fig 2.2)?

The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
AX B ={(DL,01), (DL,02), (DL,03), (MP01), (MP,02), (MP,03), (KA,01), (KA,02),

(KA,03)}.

It can easily be seen that there will be 9 such pairs in the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elements are paired is crucial. For example, the code
(DL, 01) will not be the same as the code (01, DL).

As a final illustration, consider the two sets A= {q,, a,} and b,

B={b,b,b,b,} (Fig23). b,

AXB ={(a,b), (a, D)), (a,b,), (a,b,), @, b)), @, b), b,

(a, b)), (a,b)}. b,
The 8 ordered pairs thus formed can represent the position of points in
the plane if A and B are subsets of the set of real numbers and it is @, a,
obvious that the point in the position (a,, b,) will be distinct from the point
in the position (b, a,).

Fig 2.2

Fig 2.3
Remarks

(i) Two ordered pairs are equal, if and only if the corresponding first elements
are equal and the second elements are also equal.

2015-16
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(i) If there are p elements in A and ¢ elements in B, then there will be pg
elements in A X B, i.e., if n(A) = p and n(B) = ¢, then n(AX B) =pq.

(iii) If A and B are non-empty sets and either A or B is an infinite set, then so is
A X B.

iv) AxAxA={(a,b,c):a,b,ce A}. Here (a, b, c) is called an ordered
triplet.

Example1 If (x+1,y-2)=(3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x+1=3andy-2=1.
Solvingweget x=2andy=23.

Example 2 If P = {a, b, ¢} and Q = {r}, form the sets P X Q and Q X P.
Are these two products equal?

Solution By the definition of the cartesian product,
PxQ= {(a,r), (b, r),(c,r)} and QXP = {(r,a), (r,D), (r,c)}
Since, by the definition of equality of ordered pairs, the pair (a, r) is not equal to the pair
(r, a), we conclude that Px Q #Q x P.
However, the number of elements in each set will be the same.

Example 3 Let A= {1,2,3}, B={3,4} and C = {4,5,6}. Find
i) AxBnNO @ (AxB)Nn(AxC)
@) AxBuO @iv) (AxB)U(AxC)
Solution (i) By the definition of the intersection of two sets, (B M C) = {4}.
Therefore, A x (B N C) = {(1,4), (2,4), (3,4)}.
(i) Now (A xB)={(1,3),(1,4),(2,3),(2,4),(3.,3),(3,4)}
and (AXC)={(1,4),(1,5),(1,6),(2,4), (2,5),(2,6), (3,4),(3.,5),(3,6)}
Therefore, (AXB)M (A XC) ={(,4),(2,4),(3,4)}.
(i) Since, (Bu C)={3,4, 5, 6}, we have
AX (B uUC) =({(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,3),
(3,4),(3.5), (3,6)}.
(iv) Using the sets A X B and A X C from part (ii) above, we obtain

(AXB)U(AXC)={(1,3),(1,4),(1,5), (1,6), (2,3), (2,4), (2,5), (2,6),
(3,3),(3.4), (3,5), (3,6)}.
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Example 4 If P= {1, 2}, form the set P XP X P.

Solution We have, PXPXP= {(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2), (2,2,1),
(2,2,2)}.

Example 5 If R is the set of all real numbers, what do the cartesian products R x R

and R X R X R represent?

Solution The Cartesian product R X R represents the set R x R={(x, y) : x, y € R}

which represents the coordinates of all the points in two dimensional space and the

cartesian product R X R X R represents the set RX RXR ={(x,y,2): x, y,z€ R}
which represents the coordinates of all the points in three-dimensional space.

Example 6 If AXB ={(p, ¢).(p, 1), (m, q), (m, r)}, find A and B.

Solution A = set of first elements = { p, m}
B = set of second elements = {g, r}.

| EXERCISE 2.1 |

51

X 2
_+]~) - === i .
1. If (3 y ?J (3 3J,fmdthevaluesofxandy

2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of
elements in (AXB).
3. fG={7,8}andH={5,4,2},findGXHand HX G
4. State whether each of the following statements are true or false. If the statement
is false, rewrite the given statement correctly.
(1) IfP={m, n}and Q= { n,m}, then P X Q = {(mn, n),(n, m)}.
(i) If Aand B are non-empty sets, then A X B is a non-empty set of ordered

pairs (x, y) such that x € Aand y € B.

@) IfA={1,2},B={3,4},thenAX (B M ¢)=¢.

5. IfA={-1,1},find AXAXA.

IfAX B ={@,x),(a,y), (b, x),(b,y)}. Find A and B.

7. LetA={1,2},B={1,2,3,4},C={5,6} and D = {5, 6, 7, 8}. Verity that
HAXB NC)=(AXB) N (AXC). (i) A XCisasubset of B X D.

8. LetA={1,2}and B={3,4}. Write A XB. How many subsets will A X B have?
List them.

9. LetAand B be two sets such that n(A) =3 and n(B) = 2. If (x, 1), (y, 2), (z, 1)
are in A X B, find A and B, where x, y and z are distinct elements.

=)
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10. The Cartesian product A X A has 9 elements among which are found (-1, 0) and
(0,1). Find the set A and the remaining elements of A X A.

2.3 Relations
Consider the two sets P = {a, b, ¢} and Q = {Ali, Bhanu, Binoy, Chandra, Divya}.
The cartesian product of P Q
P and Q has 15 ordered pairs which
can be listed as P x Q = {(a, Ali),
(a,Bhanu), (a, Binoy), ..., (¢, Divya)}.
We can now obtain a subset of
P x Q by introducing a relation R
between the first element x and the
second element y of each ordered pair
(x,y) as
R={ (x,y): x is the first letter of the namey, x € P, ye Q}.
Then R = {(a, Ali), (b, Bhanu), (b, Binoy), (¢, Chandra)}
A visual representation of this relation R (called an arrow diagram) is shown
in Fig 2.4.

o Ali
eBhanu
eBinoy

eChandra
eDivya

Definition 2 A relation R from a non-empty set A to a non-empty set B is a subset of
the cartesian product A X B. The subset is derived by describing a relationship between
the first element and the second element of the ordered pairs in A X B. The second
element is called the image of the first element.

Definition 3 The set of all first elements of the ordered pairs in a relation R from a set
A to a set B is called the domain of the relation R.

Definition 4 The set of all second elements in a relation R from a set A to a set B is
called the range of the relation R. The whole set B is called the codomain of the
relation R. Note that range < codomain.

Remarks (i) A relation may be represented algebraically either by the Roster
method or by the Set-builder method.
(i) An arrow diagram is a visual representation of a relation.

Example 7 Let A = {1, 2, 3,4, 5, 6}. Define a relation R from A to A by
R={(x,y):y=x+1}
(1) Depict this relation using an arrow diagram.
(i) Write down the domain, codomain and range of R.

Solution (i) By the definition of the relation,
R=1{(1,2),(2,3),(34),(4.5),(5,6)}.
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The corresponding arrow diagram is
shown in Fig 2.5.

(i1) We can see that the
domain={1, 2, 3,4,5,}

Similarly, the range = {2, 3, 4, 5, 6}
and the codomain= {1, 2, 3,4, 5, 6}.

Fig2.5
Example 8 The Fig 2.6 shows a relation

between the sets Pand Q. Write this relation (i) in set-builder form, (ii) in roster form.
Whatis its domain and range? P

Solution It is obvious that the relation R is

“x is the square of y”.
(1) In set-builder form, R = {(x, y): x
is the square of y, x € P, y € Q}
(i1) In roster form, R = {(9, 3),
9,-3), (4,2),(4,-2),(25,5), (25,-5)} Fig 2.6
The domain of this relation is {4, 9, 25}.
The range of this relation is {- 2, 2, -3, 3, -5, 5}.
Note that the element 1 is not related to any element in set P.

The set Q is the codomain of this relation.

'@ Note [The total number of relations that can be defined from a set A to a set B
is the number of possible subsets of A X B. If n(A ) = p and n(B) = ¢, then
n (A X B) = pg and the total number of relations is 2.

Example 9 Let A = {1, 2} and B = {3, 4}. Find the number of relations from A to B.

Solution We have,

AXB={(1,3),(1,4),(2,3),(2,4)}.
Since n (AXB ) = 4, the number of subsets of AXB is 24 Therefore, the number of
relations from A into B will be 2.

Remark A relation R from A to A is also stated as a relation on A.

|EXERCISE 2.2 |

1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by
R={(x,y):3x—y =0, where x,y € A}. Write down its domain, codomain and
range.
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2. Define a relation R on the set N of natural numbers by R = {(x,y): y= x+35,
x is a natural number less than 4; x, y € N}. Depict this relationship using roster
form. Write down the domain and the range.

3. A={1,2,3,5} and B = {4, 6, 9}. Define a relation R from A to B by
R = {(x, y): the difference between x and y is odd; x € A, y € B}. Write R in
roster form.

P
4. The Fig2.7 shows a relationship
between the sets P and Q. Write this >
relation
(i) in set-builder form (ii) roster form. >
What is its domain and range? S

5. LetA=1{1,2,3,4,6}. Let R be the
relation on A defined by Fig 2.7
{(a, b): a, beA, bis exactly divisible by a}.

(1) Write R in roster form
(i) Find the domain of R
(iii) Find the range of R.
6. Determine the domain and range of the relation R defined by
R={(,x +5:x€e{0,1,2,3,4,5}}.
7. Write the relation R = {(x,x?) : x is a prime number less than 10} in roster form.
Let A= {x, y, z} and B = {1, 2}. Find the number of relations from A to B.
9. LetR be the relation on Z defined by R = {(a,b): a, b€ Z,a —b is an integer}.
Find the domain and range of R.

&

2.4 Functions

In this Section, we study a special type of relation called function. It is one of the most
important concepts in mathematics. We can, visualise a function as a rule, which produces
new elements out of some given elements. There are many terms such as ‘map’ or
‘mapping’ used to denote a function.

Definition 5 A relation f from a set A to a set B is said to be a function if every
element of set A has one and only one image in set B.

In other words, a function fis a relation from a non-empty set A to a non-empty
set B such that the domain of fis A and no two distinct ordered pairs in f have the
same first element.

If fis a function from A to B and (a, b) € f, thenf (a) = b, where b is called the
image of a under f and a is called the preimage of b under f.
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The function f from A to B is denoted by f: A > B.
Looking at the previous examples, we can easily see that the relation in Example 7 is
not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the
domain are connected to more than one images. Similarly, the relation in Example 9 is
also not a function. (Why?) In the examples given below, we will see many more
relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on
N such that R = {(x,y):y=2x, x, ye N}.
What is the domain, codomain and range of R? Is this relation a function?

Solution The domain of R is the set of natural numbers N. The codomain is also N.
The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a
function.

Example 11 Examine each of the following relations given below and state in each
case, giving reasons whether it is a function or not?
® R={ZD,GE.D,42)}, (hR={(2.2),(24).3,3),(4.4)}
(i) R={(1,2),2,3),(3,4),(4.5),(5.6), (6.1}

Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images,

this relation R is a function.

(i) Since the same first element 2 corresponds to two different images 2
and 4, this relation is not a function.
(ii)) Since every element has one and only one image, this relation is a

function.

Definition 6 A function which has either R or one of its subsets as its range is called
a real valued function. Further, if its domain is also either R or a subset of R, it is
called a real function.

Example 12 Let N be the set of natural numbers. Define a real valued function

f:N-> Nby f(x) =2x + 1. Using this definition, complete the table given below.

X 1 2 3 4 5 6 7

Y| (D= fQ=..fQO=..|f@O=..[fO)=...1fO6)=.. |f(T)=..
Solution The completed table is given by

X 1 2 3 4 5 6 7

y | fM)=3] fQ=5]fQ=T7[fD=9fO)=11)f®6)=13[ f(7) =I5
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2.4.1 Some functions and their graphs
(i)  Identity function Let R be the set of real numbers. Define the real valued

function f: R — R by y = f(x) = x for each x € R. Such a function is called the

identity function. Here the domain and range of fare R. The graph is a straight line as
shown in Fig 2.8. It passes through the origin.

Y

Y/
Sx)=x
Fig 2.8
(i) Constant function Define the function f: R - Rby y = f (x) = ¢, x€ R where

c is a constant and each x € R. Here domain of fis R and its range is {c}.
Y
N

N

v

8
6
4 +
2

X' €—4+——+—+—F—F+—+—+—+—>X
8 -6-4-=2 |02 4 6 8

Fig2.9
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The graph is a line parallel to x-axis. For example, if fix)=3 for each xe R, then its
graph will be a line as shown in the Fig 2.9.

@iii) Polynomial function A function f: R — R is said to be polynomial function if
foreachxin Ry = f(x) =a,+ ax +ax’+ ..+a, X', where nis a non-negative
integer and a, a,, a,,...,a,€R.

The functions defined by fix) = x* — x*+ 2, and g(x) = x* + ,/5 x are some examples

2

of polynomial functions, whereas the function /4 defined by h(x) = x3 + 2x is not a

polynomial function.(Why?)

Example 13 Define the function f; R — R by y = fix) =% x € R. Complete the
Table given below by using this definition. What is the domain and range of this function?
Draw the graph of f.

X -4 13 [-2 [-1 0Ol 1 2 3 4

y=fx) =x°

wn

olution The completed Table is given below:

x 4| 3| 2|-1lo|1 |2 ]3| 4
y=f@=x2|16] 9| 4| 1| o1 |4 |9 |16

Domain of f= {x : xe R}. Range of f = {xz: x € R}. The graph of fis given
by Fig2.10

Y

Y
fix)=x? Fig 2.10
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Example 14 Draw the graph of the functionf :R — R defined by f (x) = x°, xe R.

Solution We have
f0)=0, f(1) =1,f{-1) =-1, f(2) = 8,f(-2) =8, f(3) =27; f(-3) =-27, etc.
Y

Therefore, f = {(x,x%): xeR}.
The graph of fis given in Fig 2.11.

S =
Fig 2.11
© d

20 where f(x) and g(x) are

polynomial functions of x defined in a domain, where g(x) # 0.

(iv) Rational functions are functions of the type

1
Example 15 Define the real valued function f: R — {0} — R defined by f(x)= ; ,

xe€ R—-{0}. Complete the Table given below using this definition. What is the domain
and range of this function?

X 2 | -15]-11-05(025]05]( 1 1.5 2
4

YTy

Solution The completed Table is given by

X -2 -1.5 | -1[-0.5] 025 05 [ 1 1.5 2
1

y=-— -051-067-1]1-2 | 4 2 1| 067 0.5
X
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The domain is all real numbers except 0 and its range is also all real numbers

except 0. The graph of fis given in Fig 2.12.
Y

Y/
Fighd2.12 A9 -1

(v) The Modulus function The function
f: R—R defined by f(x) = Ix| for each
x € R is called modulus function. For each

non-negative value of x, f(x) is equal to x.
But for negative values of x, the value of
Jf(x) is the negative of the value of x, i.e.,

x,x=>0

-x,x<0

f(X)={

The graph of the modulus function is given
inFig 2.13.

(vi) Signum function The function
S R—R defined by

Lif x>0
f)=<0if x=0
—1,if x<0

is called the signum function. The domain of the signum function is R and the range is
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the set {—1, 0, 1}. The graph of the signum function is given by the Fig 2.14.

MATHEMATICS

Y
1 y=1
X' € 5 > X
y=-1 -1
Lal
flx)= =X OandOfor x =0
Fig 2.14
(vii) Greatest integer function x
The function f: R — R defined
by fix) = [x], x € R assumes the 13 —0
value of the greatest integer, l.ess 4 o
than or equal to x. Such a function
is called the greatest integer 32N T2 5 4 s
function. X'€ — S —_— X
From the definition of [x], we —0 -1
can see that —0 +2
=_ 1<
[x] 1for-1<x<0 3
[x]= Ofor0<x<1
[x]= 1forl <x<?2 v
YV
x]= 2for2 <x<3and
L J(x) = [x]
SO on.
Fig 2.15

The graph of the function is
shown in Fig 2.15.

2.4.2 Algebra of real functions In this Section, we shall learn how to add two real
functions, subtract a real function from another, multiply a real function by a scalar
(here by a scalar we mean a real number), multiply two real functions and divide one

real function by another.

(i) Addition of two real functions Let f: X — Rand g : X — R be any two real
functions, where X < R. Then, we define (f+ g): X — R by

F+g ) =f(x)+g &), forall x e X.
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(i) Subtraction of a real function from another Let f: X — Rand g: X — R be
any two real functions, where X CR. Then, we define (f — g) : X—R by

(f~g) () = fix) —g(x), for all x € X.

(iii) Multiplication by a scalar Let f: X—R be a real valued function and O be a
scalar. Here by scalar, we mean a real number. Then the product @ f is a function from
X to R defined by (0 f) (x) = o f(x), x € X.

(iv) Multiplication of two real functions The product (or multiplication) of two real
functions f:X—R and g:X—R is a function fg:X—R defined by

(f9) (x) = fix) g(x), for all x € X.
This is also called pointwise multiplication.

(v) Quotient of two real functions Let f and g be two real functions defined from

f
X—R where X CR. The quotient of f'by g denoted by ; is a function defined by ,

[ﬁ](x) =%, provided g(x) #0,x e X

Example 16 Let fix) = Xand g(x) = 2x + 1 be two real functions.Find

(f+28) ), (f-g) (), (fe) (x), &)(X).

Solution We have, / i
f+e=x+2x+1, (f-9 )= x —2x -1,

2

X 1
2x+1° 2

(fo) () =x 2x+ 1) =2¢ +x, &J(x) _

Example 17 Let fix) = J; and g(x) =x be two functions defined over the set of non-

f
negative real numbers. Find (f + g) (x), (f— g) ), (fg) (x) and [; (x).
Solution We have

f+e) W= Jx+x -9 =x —x.

2 L
(fe) x = Nx(x)=x? and (ij(x) =£=x 2,x#0
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| EXERCISE 2.3 |

1. Which of the following relations are functions? Give reasons. If it is a function,
determine its domain and range.

i {@21,6G.D,@6,D,11,1),14,1),(17,1)}
() {(2.1),(4,2),(6,3),(84),(10,5),(12,6), (14,7)}
(i) {(1,3),(1.5),(2,5)}.

2.  Find the domain and range of the following real functions:
0 fx) =-|y (@) S0 = fo- 2.

3.  Afunction fis defined by f(x) = 2x —5. Write down the values of
® £, G f(7), @>i) f(3).

4. The function ‘¥ which maps temperature in degree Celsius into temperature in

9C
degree Fahrenheit is defined by #C) = ? + 32.
Find (i) #«0) (i) #28) (iii) ¢(=10) (iv) The value of C, when #(C) = 212.

5.  Find the range of each of the following functions.
1 f(x) =2-3xxe R, x>0.
i) f(x) =x*+ 2, xis areal number.
@iii) f(x) =x, x1is areal number.

Miscellaneous Examples

Example 18 Let R be the set of real numbers.

Define the real function }{\
fR=>R by fix) =x+ 10

and sketch the graph of this function. (0.10)
Solution Here f(0) = 10, f(1) = 11, fi2) = 12, .., ,
f(10) = 20, etc., and

f-1)=9.f-2)=8, ... fi-10)=0and so on. (10-0) -

Therefore, shape of the graph of the given X V (0] -
function assumes the form as shown in Fig 2.16.
Remark The function f defined by fix) = mx + ¢, ;{"
x € R, is called linear function, where m and c are fx)=x+10
constants. Above function is an example of a linear

Fig 2.16

function.
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Example 19 Let R be a relation from Q to Q defined by R = {(a,b): a,b € Q and
a —b e Z}. Show that

(1) (a,a)e Rforallae Q

@) (a,b) € R implies that (b, a) € R

(iii) (a,b) € R and (b,c) € R implies that (a,c) eR

Solution (i) Since,a —a=0 € Z, if follows that (a, a) € R.
(i) (a,b) € R implies that a — b € Z. So, b — a € Z. Therefore,
(b, a) e R
(@iii) (a, b)and (b, ¢) € R implies thata —b € Z. b—-c € Z. So,
a-c=(a->b)+(b-c)e Z. Therefore, (ac) € R

Example 20 Letf={(1,1), (2,3), (0,-1), (-1,-3)} be a linear function from Z into Z.
Find f(x).

Solution Since f'is a linear function, f (x) = mx + c. Also, since (1, 1), (0,— 1)€ R,
f()=m+c=1andf(0) =c=-1. This gives m = 2 and fix) =2x — 1.

. . ¢ x*+3x+5
Example 21 Find the domain of the function f (x) = —5———
x —5x+4

Solution Since x —5x +4 = (x—4) (x=1), the function fis defined for all real numbers
except at x =4 and x = 1. Hence the domain of fis R — {1, 4}.

Example 22 The function fis defined by

1-x, x<0
1 ,x=0
fx) = *
x+1, x>0
Draw the graph of f (x).
Solution Here, fix) =1-x, x<0, this gives X ! 1 2 3
——t— ¥
f4) =1-(=4=5; -3 -2 -1 (0)
fi=3) =l-(=3)=4, -
-2
f=2) =1-(=2)=3
D) =1-(1) =2ete, -3
and f(1) =2,f(2)=3,f(3)=4 \A
f(4) =5andsoon for f(x)=x+1,x>0. Y’
Thus, the graph of fis as shown in Fig 2.17 Fig 2.17
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Miscellaneous Exercise on Chapter 2

The relation fis defined by f ()= ¢ 0sx<3
e relation fis defined by 3x,3<x<10

_ o ()= x,0<x<2
The relation g is defined by & 3x,2<x<10

Show that f'is a function and g is not a function.

1.D)-fd
100 =, find 242D
1.1-1)
2
Find the d in of the fi i _—x+2x+1
ind the domain of the function f (x) 2 8it12"

Find the domain and the range of the real function fdefined by f(x) = J(x -1).

Find the domain and the range of the real function f defined by f (x) = |x —1| .

2
X
Let f :{ [x, 1+ 2 ] ‘XEe R}be a function from R into R. Determine the range

of f.
Let f, g : R—=R be defined, respectively by fix) = x + 1, g(x) = 2x — 3. Find

+ di
f+gf-gan PR

Let f= {(1,1), (2,3), (0,-1), (-1, =3)} be a function from Z to Z defined by
f(x) = ax + b, for some integers a, b. Determine a, b.

Let R be arelation from N to N defined by R={(a,b) :a,b eNand a = bz}. Are
the following true?
(i) (aa) e R, foralla e N () (a,b) € R, implies (b,a) e R
@) (a,b) € R, (b,c) € R implies (a,c) € R.
Justify your answer in each case.
LetA={1,2,3,4},B={1,5,9,11,15,16} and f={(1,5), (2,9), (3,1), (4,5), (2,11)}
Are the following true?
(i) fis arelation from Ato B (i) f is a function from A to B.
Justify your answer in each case.
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Let f be the subset of Z x Z defined by f = {(ab,a + b) : a, b€ Z}.1s f a
function from Z to Z? Justify your answer.

Let A= {9,10,11,12,13} and let f: A—N be defined by f(n) = the highest prime
factor of n. Find the range of f.

Summary

In this Chapter, we studied about relations and functions.The main features of
this Chapter are as follows:
@ Ordered pair A pair of elements grouped together in a particular order.
@ Cartesian product A x B of two sets A and B is given by
AxB= {(a,b):ae A,be B}
In particular R x R = {(x, y): x, y € R}
and RxRxR=(x,y,2):x,y,z€ R}
¢ If (a,b) = (x,y), then a= x and b = y.
¢ If n(A) = pand n(B) = g, then n(A x B) = pgq.
®AXO=0
@ In general, Ax B # B X A.

® Relation A relation R from a set A to a set B is a subset of the cartesian
product A x B obtained by describing a relationship between the first element
x and the second element y of the ordered pairs in A x B.

® The image of an element x under a relation R is given by y, where (x, y) € R,

¢ The domain of R is the set of all first elements of the ordered pairs in a
relation R.

@ The range of the relation R is the set of all second elements of the ordered
pairs in a relation R.

¢ Function A function ffrom a set A to a set B is a specific type of relation for
which every element x of set A has one and only one image y in set B.

We write f: A—B, where fix) = y.

¢ A is the domain and B is the codomain of f.
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@ The range of the function is the set of images.

@ A real function has the set of real numbers or one of its subsets both as its
domain and as its range.

¢ Algebra of functions For functions f: X — Rand g: X — R, we have
(f+8 @=f+gx,xeX
(f-8 ) =f(x-gkx),xe X
(fe) @ =f g, xeX
(kHh ®) =k (fx)),xe X, where k is a real number.

LA ic)]

Historical Note

The word FUNCTION first appears in a Latin manuscript “Methodus
tangentium inversa, seu de fuctionibus” written by Gottfried Wilhelm Leibnitz
(1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He
considered a function in terms of “mathematical job” — the “employee” being
just a curve.

On July 5, 1698, Johan Bernoulli, in a letter to Leibnitz, for the first time
deliberately assigned a specialised use of the term function in the analytical
sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers’ Cyclopaedia: “The
term function is used in algebra, for an analytical expression any way compounded
of a variable quantity, and of numbers, or constant quantities”.

2015-16



Chapter 3

(TRIGONOMETRIC FUNCTIONS )

+*A mathematician knows how to solve a problem,
he can not solve it. — MILNE ¢

3.1 Introduction

The word ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘measuring the sides of
a triangle’. The subject was originally developed to solve
geometric problems involving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.

In earlier classes, we have studied the trigonometric Arya Bhatt
ratios of acute angles as the ratio of the sides of a right (476-550)
angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, we will generalise the concept of trigonometric ratios to trigonometric functions
and study their properties.

3.2 Angles

Angle is a measure of rotation of a given ray about its initial point. The original ray is

B Vertex Initial side

Vertex Initial side
(i)Positive angle Fig 3.1 (ii) Negative angle
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called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotation is anticlockwise, the angle is said to be positive and if the direction of rotation
is clockwise, then the angle is negative (Fig 3.1).

The measure of an angle is the amount of Initial side \A
rotation performed to get the terminal side from g Terminal Side i B

the initial side. There are several units for
measuring angles. The definition of an angle Fig 3.2

suggests a unit, viz. one complete revolution from the position of the initial side as
indicated in Fig 3.2.

This is often convenient for large angles. For example, we can say that a rapidly
spinning wheel is making an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

1 th
3.2.1 Degree measure If arotation from the initial side to terminal side is (%) of

a revolution, the angle is said to have a measure of one degree, written as 1°. A degree is
divided into 60 minutes, and a minute is divided into 60 seconds . One sixtieth of a degree is
called a minute, written as 1”, and one sixtieth of a minute is called a second, written as 1”.
Thus, 1° =60, 1"=60"

Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
shown in Fig 3.3.

360° A o 270
B

0)

420 o A A
~30° 420
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3.2.2 Radian measure There is another unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unit in a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig

3.4(i) to (iv), OA is the initial side and OB is the terminal side. The figures show the

1 1
angles whose measures are 1 radian, —1 radian, 15 radian and —1 ) radian.
B\ B‘\
1
17
A\, T

(i) (it)

(iii)

(iv)
Fig 3.4 (i) to (iv)
We know that the circumference of a circle of radius 1 unit is 2w. Thus, one
complete revolution of the initial side subtends an angle of 27 radian.

More generally, in a circle of radius r, an arc of length r will subtend an angle of
1 radian. It is well-known that equal arcs of a circle subtend equal angle at the centre.
Since in a circle of radius r, an arc of length r subtends an angle whose measure is 1
radian, an arc of length | will subtend an angle whose measure is v radian. Thus, if in

a circle of radius r, an arc of length | subtends an angle 6 radian at the centre, we have

I
O=—orl =ro.
r
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3.2.3 Relation between radian and real numbers AN
Consider the unit circle with centre O. Let A be any point 1
on the circle. Consider OA as initial side of an angle.
Then the length of an arc of the circle will give the radian 1
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0

real number zero, AP represents positive real number and
AQ represents negative real numbers (Fig 3.5). If we

rope the line AP in the anticlockwise direction along the -
circle, and AQ in the clockwise direction, then every real

number will correspond to a radian measure and 122
conversely. Thus, radian measures and real numbers can Fig 3.5 Vv Q

be considered as one and the same.

3.2.4 Relation between degree and radian Since a circle subtends at the centre
an angle whose radian measure is 27 and its degree measure is 360°, it follows that

2n radian = 360° or mwradian = 180°

The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

22
of w as 7, we have
1 radian = =57° 16" approximately.
T
Also 1°= —— radian = 0.01746 radian approximately.

180

The relation between degree measures and radian measure of some common angles
are given in the following table:

Degree 30° 45° 60° 90° 180° 270° 360°
Radi @ @ ) @ S
adian | 4 3 2 & 2 ez
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Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measure is 6 and
whenever we write angle B, we mean the angle whose radian measure is [.

Note that when an angle is expressed in radians, the word ‘radian’ is frequently

. ° T ° . . . T
omitted. Thus, 7 =180°and 1 45° are written with the understanding that 7t and 2

are radian measures. Thus, we can say that

T

Radian measure = 180 X Degree measure
180 _
Degree measure = — x Radian measure
s

Example 1 Convert 40° 20" into radian measure.

Solution We know that 180° = m radian.

H 40°20° =40  degree = = x o radian = 2% rag
ence = 3 egree = 180 X 3 radian = 540 radaian.
Theref 40020 = 2 i
ererore = 540 radian.

Example 2 Convert 6 radians into degree measure.

Solution We know that = radian = 180°.

H 6 radians = : 6d = Md
ence radians = —=x6 degree = — egree
7 7x60
= 343ﬁdegree =343°+ minute [as 1° = 60']
2
=343°+38" + 11 minute [as 1" =60"]
=343°+38"+10.9” =343°38’ 11” approximately.
Hence 6 radians = 343° 38" 11” approximately.

Example 3 Find the radius of the circle in which a central angle of 60° intercepts an

2
arc of length 37.4 cm (use ™ =7).



54 MATHEMATICS

60mn ) T
Solution Here | =37.4 cm and 6 = 60° = 180 radian = 3

Hence, byr= 6’ we have
37.4x3  37.4x3x7
r= = =35.7 cm
T 22

Example 4 The minute hand of a watch is 1.5 cm long. How far does its tip move in
40 minutes? (Use t = 3.14).

Solution In 60 minutes, the minute hand of a watch completes one revolution. Therefore,

2
in 40 minutes, the minute hand turns through 3 of arevolution. Therefore, 0 = 3 x 360°

T
or 3~ radian. Hence, the required distance travelled is given by

l=r0 = 1.5x4?ncm=2ncm=2><3.14cm=6.280m.

Example 5 If the arcs of the same lengths in two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Letr, and r, be the radii of the two circles. Given that

9_650_ix65_13_n di
1= 65°= 70 = 3¢ radian
T 22n
=110°= —x110 = — radi
and 0, =110 180 36 radian
Let | be the length of each of the arc. Then| = r 6, = r,0,, which gives
36 xr, = 36 xr,, ie., Lo 13
Hence ro:or,=22:13.
| EXERCISE 3.1 |

1. Find the radian measures corresponding to the following degree measures:
(1) 25° (ii)—47°30 (iii) 240° (iv) 520°
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2. Find the degree measures corresponding to the following radian measures

2
(Use = - ).
(1) 16 (i) —4 (iii) 3 (iv) 6

3. A wheel makes 360 revolutions in one minute. Through how many radians does
it turn in one second?
4.  Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use © = 7).

5. Inacircle of diameter 40 cm, the length of a chord is 20 cm. Find the length of
minor arc of the chord.
6. If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find the ratio of their radii.
7.  Find the angle in radian through which a pendulum swings if its length is 75 cm
and th e tip describes an arc of length
(i) 10cm (i) 15cm (i) 21 cm

3.3 Trigonometric Functions

In earlier classes, we have studied trigonometric ratios for acute angles as the ratio of
sides of a right angled triangle. We will now extend the definition of trigonometric
ratios to any angle in terms of radian measure and study them as trigonometric functions.

Consider a unit circle with centre v
at origin of the coordinate axes. Let A
P (&, b) be any point on the circle with
angle AOP = xradian, i.e., length of arc ODIB p (a, b)

AP = x (Fig 3.6).
We define cos Xx=aand sin X= b
Since AOMP is aright triangle, we have _ (;1’ 0)C
OM? + MP> = OPor @ + P =1 % ©
Thus, for every point on the unit circle,
we have
a2+ b?=1 or cos’x + sin?’x= 1

. . (09_1) D

Since one complete revolution
subtends an angle of 2r radian at the v
YV

7[ .
centre of the circle, ZAOB = 7> Fig 3.6
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3n i
ZAOC=mand ZAOD= 5 All angles which are integral multiples of o are called

guadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1, 0), (0, 1), (-1, 0) and (0, —1). Therefore, for quadrantal angles, we have

cos 0°=1 sin 0° =0,
i T
cosE=0 sm5=1
cosm=—1 sint =0
cos > - sin y T
cos 2m =1 sin2n =0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we also observe that if X increases (or decreases) by any integral
multiple of 2r, the values of sine and cosine functions do not change. Thus,

sin(2nt +X) =sinXsne Z, cos (2Nt +X)=cosX>-Ne Z
Further, sinx=0, if X =0,+ 7, + 21, +3m, ..., i.e., when Xis an integral multiple of
3n S5t

. T
and cos Xx=0,if X =+ -, + — , +

5 5 5o i.e., cos X vanishes when X is an odd

T
multiple of 3 Thus
sin X = 0 implies X = n®, where n is any integer
T
cos X = 0 implies X = (2n + 1) 20 where n is any integer.

We now define other trigonometric functions in terms of sine and cosine functions:

1

cosec X= ——_, X# Nm, where N is any integer.
sin X

1 i3
secX = ,X#((2n+ 1) —, where nis any integer.
COos X ( ) 2 Y g

sin X 0 l)n N , .
tan X = , X# (2n+1)—, where n 1s any integer.
COos X 2 Y g

COS X

cotX = ———,X#nm, where nis any integer.
sin X
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We have shown that for all real X, sin?X+ cos’X =1
It follows that
1 + tan®X = sec? X (why?)

1 + cot’> X = cosec? X (why?)
In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°,45°,60° and 90°. The values of trigonometric functions for these angles are same

as that of trigonometric ratios studied in earlier classes. Thus, we have the following
table:

S . O . .2 3n
6 4 3 | 2 i 2 | 2"
1 1 NE)
i - | = = 1 ~1
sin 0 > NG 2 0 0
IR
cos 1 Y N 2 0 -1 0 1
1 not not
tan v NE) 1 \/5 defined L defined L
The values of cosec X, sec X and cot X %
are the reciprocal of the values of sin X, N
cos X and tan X, respectively.
peeIEy OD|B b W
3.3.1 Sign of trigonometric functions \\
Let P (a, b) be a point on the unit circle 1
with centre at the origin such that  (-1,0) C X | b \,(1, 0)
ZAOP = x. If ZAOQ = — x, then the X < o\ fA >X
coordinates of the point Q will be (&, —b) x
(Fig 3.7). Therefore | /
cos (— X) = cos X 0~-1) |D Q(a-b)
and sin (— X) =—sin X
v
Since for every point P (a, b) on Y’

the unit circle, — 1 < a <1 and Fig 3.7
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—1< b<1,wehave—1<cosXx<1and -1 <sinXx<1 for all Xx. We have learnt in

T
previous classes that in the first quadrant (0 <x < B ) aand b are both positive, in the
second quadrant (5 < X <m) a is negative and b is positive, in the third quadrant

3n 3n
(m<x< EX ) aand b are both negative and in the fourth quadrant (? <X<2m)ais

positive and b is negative. Therefore, sin X is positive for 0 < X< r, and negative for

T T 3n
T <X<2x. Similarly, cos Xis positive for 0 <x< R negative for B < x< o and also

3n
positive for EX < X < 2m. Likewise, we can find the signs of other trigonometric

functions in different quadrants. In fact, we have the following table.

I II I11 v
sin X + + — —
cos X + — — +
tan X + = + =
cosec X + + = =
sec X + — — +
cot X + = + =

3.3.2 Domain andrangeof trigonometric functions From the definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each real number X,

—I1<sinx<land —1<cosx<1

Thus, domain of y = sin X and y = cos X is the set of all real numbers and range

is the interval [-1, 1],i.e.,— 1 <y < 1.
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1

sin X’
X#Nm,Ne Z} andrange isthe set {y:ye R,y =1 ory <-—1}. Similarly, the domain

Since cosec X = the domain of y = cosec X is the set { X : X € R and

T
of y=sec xistheset {X:Xxe Rand x# (2n+ 1) 5,ne Z.} and range is the set

{y:y € R,y £—1lory=1}. The domain of y = tan X is the set {X : X € R and

T
X#@2n+1) 5 N € Z} and range is the set of all real numbers. The domain of

y=cot Xis the set {X: X € Rand X#nm, ne€ Z} and the range is the set of all real
numbers.

b
We further observe that in the first quadrant, as X increases from 0 to R sin X
i3
increases from 0 to 1, as X increases from E to m, sin X decreases from 1 to 0. In the
. . 3n | .
third quadrant, as X increases from 7 to 7 , sin X decreases from 0 to —1and finally, in

3n
the fourth quadrant, sin X increases from —1 to 0 as X increases from EX to 2m.

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
have the following table:

I quadrant II quadrant III quadrant IV quadrant

sin

increases from 0 to 1

decreases from 1 to 0

decreases from 0 to —1

increases from —1 to 0

Cos

decreases from 1 to 0

decreases from 0 to — 1

increases from —1 to 0

increases from 0 to 1

tan |increases from 0 to oo | increases from —ooto 0 | increases from 0 to o | increases from —ooto 0
cot |decreases from oo to 0| decreases from 0 to—oo | decreases from oo to 0 |decreases from Oto —co
sec |increases from 1 to oo | increases from —ooto—1 | decreases from —1to—oo| decreases from oo to 1

cosec | decreases from oo to 1| increases from 1 to oo | increases from —ooto—1 | decreases from—1to—oo

Remark In the above table, the statement tan X increases from 0 to o (infinity) for

T
< x< —

2

simply means that tan X increases as X increases for 0 < X <

I and
zan
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T
assumes arbitraily large positive values as X approaches to 3 Similarly, to say that

cosec X decreases from —1 to — oo (minus infinity) in the fourth quadrant means that

3n L .
cosec X decreases for X € (7 , 21) and assumes arbitrarily large negative values as

X approaches to 27. The symbols e and — e simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin X and cos X repeats after an interval of

2w. Hence, values of cosec X and sec X will also repeat after an interval of 2. We

1
X' €L— :/:\:0 : :/:\:4R\X
—?In -3n =21 T 1 Tf\/ln 3n\/ -
2

y=tanx Fig 3.10 y= cotx Fig 3.11
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] Y ] ]
c 2t/ ;
' ' '
X . L T
X'€ o o 'L =
2! -1 12 '
21 ;
Y’
y=secx y = cosec x
Fig 3.12 Fig 3.13

shall see in the next section that tan (1 + X) = tan X. Hence, values of tan X will repeat
after an interval of 7. Since cot X is reciprocal of tan X, its values will also repeat after
an interval of . Using this knowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

Example 6 If cos X= — i , X lies in the third quadrant, find the values of other five
5
trigonometric functions.
. . 5
Solution Since cos X = —g , we have sec Xx= —5
Now sin’X + cos?X =1, i.e., sin?X = 1 — cos*X
9 16
or sin?’x=1- — = —
25 25
Hence sin X =+ g

Since X lies in third quadrant, sin X is negative. Therefore

: 4
X=-—
S 5

which also gives

5
cosec X = — —
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Further, we have

sinXx 4 cosX 3
tan X = = — and cotXx=—; =—.
cosXx 3 sinx 4
5 .
Example 7 If cot Xx=— E’ X lies in second quadrant, find the values of other five
trigonometric functions.
. 5 12
Solution  Since cot X= — E’ we have tan X = — ?
N Ix=1+t 2x—1+ﬁ—@
ow sec’X = an’ X = 5~ s
13
Hence sec X =+ ?
Since X lies in second quadrant, sec X will be negative. Therefore
13
X=——
sec 5>
which also gives
5
Cos X =——
13
Further, we have
. ¢ 5 12
X= X X=(— - —)=—
sin an X cos ( 5)><( 13) 13
q 1 13
an cosec X = ———= —,
sinx 12
31ln

Example 8 Find the value of sin 3 -

Solution We know that values of sin X repeats after an interval of 2xt. Therefore

J3

1 S
sin 3 =sin (107 3)—sm3— 7
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Example 9 Find the value of cos (—1710°).

Solution We know that values of cos X repeats after an interval of 2w or 360°.
Therefore, cos (—1710°)=cos (—1710° + 5 x360°)
=cos (—1710° + 1800°) = cos 90° = 0.

| EXERCISE 3.2 |

Find the values of other five trigonometric functions in Exercises 1 to 5.

1. cosx=-— E’ X lies in third quadrant.

3

2. sinx= g, X lies in second quadrant.

3
3. cotx= 1 X lies in third quadrant.

13
4. secX= ?, X lies in fourth quadrant.

5
5. tan X=- —, Xlies in second quadrant.

12

Find the values of the trigonometric functions in Exercises 6 to 10.

6. sin765° 7. cosec (— 1410°)
L o e lm
. tan 3 . sin (— 3 )

15n
10. cot (- T)

3.4 Trigonometric Functions of Sum and Difference of Two Angles

In this Section, we shall derive expressions for trigonometric functions of the sum and
difference of two numbers (angles) and related expressions. The basic results in this
connection are called trigonometric identities. We have seen that

1. sin (- X) =-—sin X
2. cos (— X) = cos X

We shall now prove some more results:
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3. cos (X+Y)=cos X cos y—sin X siny

Consider the unit circle with centre at the origin. LetX be the angle P,OP and y be
the angle P, OP,. Then (X + ) is the angle P,OP,. Also let (- Yy) be the angle P,OP..
Therefore, P, P,, P, and P, will have the coordinates P (cos X, sin X),
P, [cos (X +Y), sin (X +Y)], P, [cos (- ), sin (- y)] and P, (1, 0) (Fig 3.14).

Y
N

P, (cos x, sin x

X

K‘\
A

— <

P,(1,0)
> X

y

X< 5

-y

P, [cos(x +y), sin(x + y)] 7y
P, [eos(y), sin()] ~—F——"

Fig 3.14

Consider the triangles P OP, and P OP,. They are congruent (Why?). Therefore,
P P, and PP, are equal. By using distance formula, we get

P P2 =[cos X—cos (—y)J + [sin X - sin(-y]
= (cos X — cos Y)? + (sin X + sin y)*
= cos* X+ cos’ Yy —2 cos X cos Y + sin’X + sin’y + 2sin X sin y
=2 —2(cos Xcos Y — sin X sin y) (Why?)
Also, P.P? =[1-cos(X+y)]?+[0—sin(X+Yy)]
=1-2cos (X+Y)+cos* (X+Yy)+sin® (X+Y)

=2-2cos(X+Yy)
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Since P P, =PP, we have PP’ =PpP>
Therefore, 2 —2 (cos X cos Y — sin X sin y) =2 — 2 cos (X + ).
Hence cos (X +Y) = cos X cos Yy — sin X sin y

4. cos (X —Y) =cos X cos Yy + sin X sin y
Replacing y by — y in identity 3, we get
cos (X + (= Y)) = cos X cos (— Y) — sin X sin (—Y)
or cos (X—Y)=cosXcosYy+sinXsiny

n
5. cos (E_X) = sin X

T
If we replace x by ) and y by X in Identity (4), we get

n T L .
cos(E—X)=cos E cos X + sin E sin X = sin X.

n
6. sin (E_X) = cos X

Using the Identity 5, we have

ton-e (5
s1n(5— ) =cos 5\ 3 =cos X.

7. sin (X +Yy) = sin X cos Y + cos X sin y
We know that

sin (X +Y) = cos (%_(X+ Y)) = oS ((g_x)_YJ

T . T .
= cos (E_X) cos Yy + sin (E—X) siny

=sin X cos Y + cos X sin 'y
8. sin (X —y) = sin X cos Y — cos X sin y
If we replace y by -V, in the Identity 7, we get the result.

9. By taking suitable values of X and y in the identities 3, 4, 7 and 8, we get the
following results:

T T
cos (E‘*' X) = — sin X sin (E‘*‘ X) = cos X

cos (T — X) =— cos X sin (Tt — X) = sin X
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cos (T + X) =—cos X sin (T + X) = — sin X
cos (2T — X) = cos X sin (2T — X) = — sin X
Similar results for tan X, cot X, sec X and cosec X can be obtained from the results of sin

X and cos X.

U
10. If none of the angles X, y and (X + Y) is an odd multiple of 3 then

tan X +tan y

tan (x +) = 1-tan X tan y

s
Since none of the X, y and (X + y) is an odd multiple of 5 it follows that cos X,
cos Y and cos (X +Y) are non-zero. Now

sin(X+Y) sinXcosy+cosXsiny
cos(X+Y) cosXcosy—sinXsiny’

tan (X +Yy) =

Dividing numerator and denominator by cos X cos y, we have

sin Xcos y . cos Xsin 'y

COSXCOosY cosXcosy

+y) = : -
tan (X +y) CosXcosy  sinXsiny
COS XCOSY cosXcosy
tan X+tan y
~ l-tanXxtany
tan X —tan y
11. tan (X —-Yy)=

1+tan X tan y
If we replace y by — y in Identity 10, we get
tan (X—y) = tan [X + (- Y)]
tan X+tan (—Y) tan X—tan 'y
1—tan Xtan (-Y) B 1+tan Xtan y

12. If none of the angles X, y and (X + Y) is a multiple of &, then

cotXcoty—1

cot (x+y) = cot y+cot X
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Since, none of the X, y and (X + y) is multiple of «, we find that sin X sin y and
sin (X + Y) are non-zero. Now,

cos (X+Y) cos Xcos Y —sin Xsin y

sin (X+Y) sin Xcos Y+ cos Xsin Y

cot (X+y)=

Dividing numerator and denominator by sin X sin Yy, we have

cotXcoty—1
cot(Xx+y)=—"-"—"
coty +cotX
tXxcoty+1
13. cot (X —y)= cotxeoty®? if none of angles X, y and x—y is a multiple of &

cot y —cot X

If we replace y by —V in identity 12, we get the result

1—tan® x

14. cos 2Xx =cos’X —sin? X =2 cos’ X —1=1-2sin’> X = 2
1+tan” X

We know that
cos (X +Y) =cos X cosy—sin Xsiny
Replacing y by X, we get
cos 2X = cos’X — sin?X
=c0s’X— (1 —cos?’X) =2 cos’™X — 1
Again, cos 2X = cos* X — sin?X
=1-sin’ X—sin’ X=1 — 2 sin’X.
cos” X—sin” X
We have Cos 2X=cCos* X—8in?’X = —5 5
€os” X+sin ~ X

Dividing numerator and denominator by cos? X, we get

1—tan® x o . .
cos 2X= ———5 _, X#N@+— where nis an integer
1+tan” X 2
2tan X

T . )
15. sin 2X = 2 sinX cos X = X# nTE+E, where n is an integer

1+ tan? x

We have
sin (X +Yy) =sin X cos Y + cos X sin Y
Replacing y by X, we get sin 2X =2 sin X cos X.

2sin Xcos X

Again sin2X="_5_ . 2.
g cos? x+sin? x
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Dividing each term by cos? X, we get
2tan X

Sin 2X = 1+tan® X

2tan X

16. tan 2X = 1—tan? x

. T . .
if 2X# nn+5, where n is an integer

We know that

tan X+ tan y

tan (X+y) = l—tanXtany
. 2 tan X
Replacing y by x, we get tan2x:1ti2
—tan” X

17. sin 3x =3 sin X — 4 sin® X
We have,
sin 3X = sin (2X + X)
= 8in 2X cos X + cos 2X sin X
=2 sin X cos X cos X + (1 — 2sin®X) sin X
=2 sin X (1 —sin*X) + sin X — 2 sin*X
=2 sin X— 2 sin’X + sin X — 2 sin*X
=3 sin X —4 sin®X
18. cos 3Xx=4 cos*X — 3 cos X
We have,
cos 3X = cos (2X +X)
= c0s 2X €0s X — sin 2X sin X
= (2cos?X — 1) cos X — 2sin X cos X sin X
=(2cos?X — 1) cos X — 2cos X (1 — cos*X)
=2c08*X — cos X — 2cos X + 2 cos* X
=4co0s*X — 3cos X.

3 tan x—tan® X

. tan3x= if 3£ N+~ is an i
19 1—3tan® x if 2,Where n is an integer

We have tan 3X=tan (2X + X)

2tan X
tan 2X+tan X _ 1—tan® X

© l—tan2Xtan X I—M
1—tan® x

+ tan X
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_ 2tan X+ tan X —tan’x _ 3tan X — tan’x

1—tan’x—2tan’x  1-3tan’x
X+ X—
20. (i) cos X + cosy = 2cos TycosTy
. X+ . X—
(i) cos X — cos y = — 2sin TySlll—y
. X+ X—
(iii) sin X + sin y = 2sin Ty cos 2= Y
X+ . X—
(iv) sin X —sin y = 2cos Tysm—y
We know that
cos (X +Y) =cos Xcos y— sin X sin y .. (1)
and cos (X—Y) = cos X cos Y + sin X sin y .. (2)
Adding and subtracting (1) and (2), we get
cos (X+Yy)+cos(X—Yy)= 2 cos XcosYy .. 3)
and cos (X+Yy)—cos (X—y)=—2sin Xsiny .. (4)
Further  sin (X+y) =sin X cos Y + cos X sin Y .. (5)
and sin (X —Y) =sin X cos Y — cos X sin Y ... (6)
Adding and subtracting (5) and (6), we get
sin (X +Yy) + sin (X—Y) =2 sin X cos y .. (7
sin (X +Y) —sin (X—Y) = 2cos X sin y .. (8)

Let X+ y =0 and X — y = ¢. Therefore

({5

Substituting the values of X and y in (3), (4), (7) and (8), we get

0 0—
cos 0 + cos ¢ =2 cos (%4))005 [Td))

cos B —cos ¢ =—2 sin (e+¢)sin(e_¢j
2 2

0 0—
sin @ +sin ¢ =2 sin (%d)j cos (Td)j
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sin © — sin ¢ =2 cos (?jsm (?)

Since 0 and ¢ can take any real values, we can replace 6 by X and ¢ by V.
Thus, we get

+y X=y . X+Y . X-y
+ = COS : — = _ sin—=—
cos X+ cos y =2 cos > 5 CcOoS X —cos Y 2 sin > >
X+ X— X+Yy . X-—
sin X + sin y =2 sin ycos 2y;sinX—siny=2cos 2ysmTy,

Remark As a part of identities given in 20, we can prove the following results:

21. (i) 2cosXcosy=cos (X+Yy)+cos(X-Y)
(ii) -2 sin X sin Yy = cos (X +Y) — cos (X — Y)
(iii) 2 sin X cos y =sin (X +y) + sin (X — Y)
(iv) 2 cos X sin y = sin (X + Yy) — sin (X — Y).

Example 10 Prove that
3sin£sec£—4sin5—ncot£=1
6 3 6 4
Solution We have

LHS. = 3sin£sec£—4sin5—ncotE
3 6 4

—Ax — XD _ T x1=73_ -
b S 6 N 6

1
=3-4x - =1=RHS.
2
Example 11 Find the value of sin 15°.

Solution  We have
sin 15° =sin (45° —30°)
= sin 45° cos 30° — cos 45° sin 30°

1 V3 1.1 V31

BN TN RN

137

Example 12 Find the value of tan 1
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Solution We have
131 TE+£ i—tan rr
tan B =tan 12 = tan 12 4 6

T T
tan — —tan — l-—
4 6 \/5 \/5_1:2_\/5

o o
1+tan—tan— 1+
4 6

Example 13 Prove that

sin(X+Y) tanX+tany
sin(X—y) tanX—tany "

Solution We have

_sin(X+Y) sinXcos Y+cosXsiny

L.H.S. _sin(x—y) sin Xcos y—cos Xsin Yy

Dividing the numerator and denominator by cos X cos y, we get

sin(X+Y) tanX+tany
sin(X—y) tanX—tany "

Example 14 Show that
tan 3 X tan 2 X tan X = tan 3X — tan 2 X — tan X

Solution We know that 3x = 2X + X
Therefore, tan 3X = tan (2X + X)

tan 2 X+tan X
or tan3X=——m—

1—tan 2 Xtan X
or tan 3X — tan 3X tan 2X tan X = tan 2X + tan X
or tan 3X — tan 2X — tan X = tan 3X tan 2X tan X
or tan 3X tan 2X tan X = tan 3X — tan 2X — tan X.

Example 15 Prove that
cos(%+xj+cos[%—xj=\/5 cos X

Solution Using the Identity 20(i), we have
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= cos E+X + cos E—X
L.H.S. 4 2
i T s s
—+X+——X —+X=(—=X)
=2cos 4 4 cos 4 4
2 2

T 1
=2 cos 1 cos X =2 x ﬁ cos X= ,/p cos Xx=R.H.S.

cos 7X+ cos 5X
sin 7X — sin 5X

Example 16 Prove that =cot X

Solution Using the Identities 20 (i) and 20 (iv), we get

TX+5X TX—5X
S COS

2co
LH.S - 2 2 S otx = RHS

sin 5 X—2sin 3X+ sin X
Example 17 Prove that = =tan X
COS5X—cos X

Solution We have

sin5X—2sin3X+sinX _ sin5X+sin X—2sin3X

LHS. =
COS5X—cos X CcOS5X—cos X
_2sin3xcos2X—2sin3x _  sin3X(cos2x—1)
—2sin 3Xsin 2X sin 3Xsin 2X

_1-cos2x 2sin? x
sin2X  2sin Xcos X

= tan X = R.H.S.
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| EXERCISE 3.3 |
Prove that:
] : 2£+ ZE t ZE—__ 2 2 ZE+ 2 ECOS2E—§
. sin p cos 3 an 4 > . 2sin p cosec 5 )
3. cot2E+cosecs—n+3tanZE=6 4. 25in23—n+2coszﬁ+256022=10
6 6 4 3
5. Find the value of:
(1) sin 75° (i1) tan 15°
Prove the following:
cos| = —x |cos E—y —sin| = - x |sin E—y =sin(X+Y)
6. 4 4 4 4
T
tan (4+Xj 1+ tan X ’ cos (m+X) cos (—X)
7. = ( a J 8. = cot’X
tan |~ —x I-tan sin (m—X) cos (n+XJ
4 2
3n 3n
9. cos 7+X cos (2m+X) | cot 7—X +cot 2n+Xx)|=1
10. sin (n+ 1)xsin (n+ 2)x+ cos (N + 1)X cos (N + 2)X = cos X
11. cos [3—R+X)—cos [3—n—xj = —/2sinx
4 4
12. sin? 6X — sin?4X = sin 2X sin 10X 13. cos? 2X — cos? 6X = sin 4X sin 8X
14. sin2 X+ 2 sin 4X + sin 6X = 4 cos? X sin 4x
15. cot 4x (sin 5X + sin 3X) = cot X (sin 5X — sin 3X)
c0s9X — cos5X sin2 X sin5X + sin 3X
16. — - = - 17. ———— =tan4X
sin17X — sin3x cos10x cos5X + cos3x
sin X — sin Yy X—y sin X + sin 3X
18, — = tan 19, — =tan2Xx
COs X+ cos Y 2 COS X + cos3X
sin X — sin 3X ) cos4X+ cos3X + cos2X
20, —5——— = 2sinX 21. = cot 3X

sin® X — cos® X sin4 X + sin 3X + sin 2 X
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22.

23.

25.

MATHEMATICS

cot X cot 2X — cot 2X cot 3X — cot 3X cot X =1

4tan X (1—tan*x)

> " 24. cos 4Xx=1 — 8sin® X cos? X
1-6tan“X+ tan" X

tan 4X =

cos 6X =32 cos® X — 48cos* X+ 18 cos®> X — 1

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
eguations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 27 and the
values of tan X repeat after an interval of w. The solutions of a trigonometric equation
for which 0 £ X< 2m are called principal solutions. The expression involving integer
‘n” which gives all solutions of a trigonometric equation is called the general solution.
We shall use ‘Z’ to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

B3

Example 18 Find the principal solutions of the equation sin X = 7

. 3 . 2n . T . T
Solution We know that, smg = % and sin 3 =sin (n—gj =sin— =

3
B

3
Lo ) s 2n
Therefore, principal solutions are X= 3 and ER
1
Example 19 Find the principal solutions of the equation tan X = — E
1
Solution We know that, tanE = L Thus, tan (n —Ej =— tanE =——
6 3 6 6 3

d tan (Zn nj tan !
an ——|=-tan—=-—=
6 J3
Thus tan— =t &z—i.
6 3
. ) Sn 11n
Therefore, principal solutions are o and o

We will now find the general solutions of trigonometric equations. We have already
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seen that:
sinx =0 gives X=nm, where ne Z

cosx =0 gives X=(2n+ l)g , where ne Z.
We shall now prove the following results:
Theorem 1 For any real numbers X and Y,
sin X = sin Y implies X =nx + (-1)"y, where n € Z

Proof  If sin X = siny, then
X+Yy . X-Yy

sinX—siny=0 or 2cos sin 5 =0
S X+y . XYy
which gives cos =0 or sin =0
+y T -y
Therefore T =(2n+ 1)5 or 5 =nm, where N e Z
ie. X=2n+1)w—Yy or X=2nw + Y, where he Z
Hence Xx=02n+ Hr+ (-1)y"*'yor x=2nmw +(—1)"y, where n € Z.

Combining these two results, we get
Xx=nm+ (-1)"y, where n e Z.

Theorem 2 For any real numbers X and Yy, cos X = cos Y, implies X= 2nm £,
where ne Z

Proof If cos X= cos Y, then
Xty . X-Yy

cosX—cosy=0 ie, —2sin sin 5 =0
X+ X —
Thus sin y =0 or sin y =0
2 2
X+Yy X —
Therefore =nm or = nm, where n € Z
ie. X=2nm -y or X=2nn +Y, wherene Z
Hence X=2nm Yy, where ne Z
b
Theorem 3 Prove that if X and y are not odd mulitple of 5 , then

tan X = tan y implies X = nx + Yy, where n € Z
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Proof If tanx=tany, then tanX—tany=20

sin X cosy — cos X sin 'y 0

or

COSX cosy
which gives sin(X—y)=0 (Why?)
Therefore X—y=nmie,X=nn+Yy wherene Z
3

Example 20 Find the solution of sinx =— g

3 . T . 4n
Solution We have sinx =— — = —SIn—=sin| T+— | =sIn——

2 3 3 3
i . 4m ) )

Hence sin X = sm?, which gives

47
X= nn+(—1)n?,where ne Z.

4n ) 3
ER is one such value of X for which sin X = — % One may take any

3
other value of X for which sin X = — 7 The solutions obtained will be the same

although these may apparently look different.

Example 21 Solve cosX = —.
Solution We have, c0os X =

T
Therefore X=2nm=* 3 where n e Z.

Example 22 Solve tan 2X = — cot(x+§j.

Solution We have, tan 2x = — CO{XJFEJ = tan (g+ X+§]
3
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5n
or tan2X = tan X+?
5w
Therefore 2X=nNm+ X+ ? , Where ne Z
5w
or X=m+?,where ne Z.

Example 23 Solve sin 2X — sin 4X + sin 6X = 0.

Solution The equation can be written as
sin6X +sin2x —sin4x = 0

or 2sin4Xxcos2X—sin4x = 0
ie. sin4x(2cos2x—-1) =0
1
Therefore sin4x=0 or COs2X= E
. T
ie. sindX=0 or cos2X= cosg
i
Hence 4x=nm or 2X= Znnig, where ne Z
. nr T
ie. X:T or X =n7tig,where neZ.

Example 24 Solve 2 cos? X+ 3 sin Xx=0
Solution The equation can be written as

2(1—sin2 X)+3sinX =0

or 2sin? X—3sinx—-2 = 0
or (2sinx+1) (sinx—2) =0
) 1 )
Hence sin X= _E or sinX=2
But sin X =2 is not possible (Why?)
) 1 . In
Therefore sinXx= —— = sin—

[\

6
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Hence, the solution is given by

n
X = nn+(—1)n?, where ne Z.

| EXERCISE 3.4
Find the principal and general solutions of the following equations:
1. tanx=\/§ 2. secX=2
3. cotx=—\/§ 4. cosec X=-2
Find the general solution for each of the following equations:
5. cos4 XxX=cos2X 6. cos 3X+ cosXx—cos 2Xx=10
7.  sin2Xx+cosx=0 8. sec? 2x = 1-tan 2X

9. sinX+sin3X+sin 5X=0

Miscellaneous Examples

12
Example 25 If sin X= 5 cosy= TL where X and Yy both lie in second quadrant,
find the value of sin (X + Y).
Solution We know that
sin (X + y) =sin X cos Y + cos X sin 'y .. (1)
, 9 16
Now cos? Xx=1-sin’x=1-—=—
25 25
4

Therefore cos X= J_rg.

Since X lies in second quadrant, cos X is negative.

4
Hence CoOs X=——
5
] 144 25
Now sinfy=1-cos?y=1—-—-=—-
169 169
. s
ie. siny= = 3

5
Since y lies in second quadrant, hence sin y is positive. Therefore, sin y= E Substituting

the values of sin X, sin Yy, cos X and cos yin (1), we get
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12) ( 4) 5 36 20 56
+ == |x— = =

. 3 (
sm( X + = —X|—— — -
(x+y) 5 13 5/ 13 65 65 65"

Example 26  Prove that
X X . 5x
€0S 2X cos— — cos 3X cos% =sin 5X sin 5? .
Solution  We have

1 X 9x
= — | 2c0s 2X cos— —2c0os — cos 3X
it - s 2 s

= 1 cos[2x+§j+cos (ZX—ZJ—COS[%-F3XJ—COS(%—3XJ
2 2 2 2 2

1l 5x 3x 15x 3x| 1] 5x 15x |
= —Lcos—+ COS— —COS— —COS— | = —Lcos—— cos—J
2 2 2 2 24 2 2 2

5% 15X 5% 15x] |

1 ST PR

__2sin g Sin g
=2 2 2

) . 5X . ~ 5%
= —sinSX sm[—;) = smSx sm? = R.H.S.

T
Example 27 Find the value of tan rE

T T
Solution Let X= rE Then 2X= e

2 tan X
Now tan2X = ————
1-tan” X
ZtanE
or tan— = 8
1— tan? i
8
2y

o
Let y=tan —.Then 1 = 5

8 I-y
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or yV+2y—-1=0

2+22

Therefore y= — = 1+42

T T
Since 3 lies in the first quadrant, y = tan 3 is positve. Hence

tangzx/i—l,

X X

3 3n
Example 28 If tan X= 7 T<X< o find the value of sinE, cosg and tanz.

3n
Solution Since T<X< BE cOsX 1s negative.

3

Al Lp.p
SO —<—<—.
2 2 4

. X . .. X . .
Therefore, sin Py is positive and cos Py is negative.

9 25
Now sec’X=1+tan’x= 1+—=—
16 16
16 4
Therefore cos2X=2—5 or cos X = -3 (Why?)
., X 4 9
Now 2sin"—=1-cosx =1+—=—.
2 5 5
X 9
Therefore sin? — = —
2 10
X 3 .
in—-= —— Why?
or sm2 J10 (Why?)
X ) 4 1
; 2 — =]l-—=-
Again 2cos > 1+ cos X 57 s

Therefore cos
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X 1
— =——"7= (Why?
or cos2 m( y?)
X
; IR 3 (=410)
ence an — = = X =-3.
=)
2 COSE 10 !

Example 29  Prove that cos®X + cosz(x+§J +cos’ (X—gj =

Do | W

Solution  We have

1+cos(2x+2nj 1+cos(2x—2nj
LHS. = 1+coszxJr 3 N 3) .

2 2 2

= —| 3+ cos2X+cos (2X+2?nj+cos (ZX—%H

N | =
T

= 3+ cos 2X+ 2cos 2X cosz?n}

N | =

34+ c0s 2X+2¢cos 2X cos (n —gﬂ

N | =

3+4+cos 2X—2cos 2X cos g}

[3 +cos 2X— cos 2X] == =R.HS.

D= N =

3
2
Miscellaneous Exercise on Chapter 3

Prove that:

T on 3n 5w
1. 2cos— cos—+cos —+cos —=0
13 13 13 13

2. (sin 3X+ sin X) sin X + (cos 3X — cos X) cos X =0



82 MATHEMATICS

3. (cos X+ cos Y)? + (sin X — sin y)* = 4 cos?

2
5. sin X+ sin 3X + sin 5X + sin 7X =4 cos X cos 2X sin 4X

4. (cosX—cos YY)+ (sinX— sin y)’> = 4 sin’

(sin 7X 4+ sin 5X) + (sin 9X + sin 3X)
6. =tan 6X
(cos 7X+ cos 5X) + (cos 9X + cos 3X)

X 3X

7. sin 3X+ sin 2X — sin X = 4sin X cos 5 cos ?

X X X
Find sin 5, cos E and tan E in each of the following :

4 1
8. tanx = —;, X in quadrant 11 9. cosX= —5, X in quadrant I11

10. sinx = , Xin quadrant II

1
4

Summary

¢ Ifin a circle of radius r, an arc of length | subtends an angle of 0 radians, then
l=r6

. T
¢ Radian measure = @X Degree measure

180
@ Degree measure = —— X Radian measure
T

@ cos? X+ sin?x=1

¢ 1 + tan’>X = sec?X

@ 1 + cot> X = cosec? X
@ cos (2N + X) = cos X
¢ sin (2nw + X) = sin X
@ sin (— X) =—sin X

@ cos (— X) = cos X
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@ cos (X+Y)=cos Xcos Y —sin Xsiny
@ cos (X—Y) = cos Xcos Yy + sin X sin Y

T
@ cos (E_X) = sin X

T
Qsin(E—X)Icos X

@ sin (X +Y) =sin X cos Y + cos X sin y
@ sin (X —Y) = sin X cos Y — cos X sin Y

T T
@ cos (EJFXj:—sinX sin (5+Xj=cosx
cos (T — X) = — cos X sin (T — X) = sin X
cos (T +X) =—cos X sin (T + X) = — sin X
cos (2w — X) = cos X sin (2w — X) = — sin X

T
4 If none of the angles X, y and (X + Y) is an odd multiple of 7 then
tan X + tan y
tan (X+Yy)=7"—""
1—tan Xtany

tan X —tan 'y

¢ tan (X—y) = 1+ tan X tan y

¢ If none of the angles X, y and (X + Y) is a multiple of 7, then

cot Xcot y—1

cot (X +Y) = cot Yy + cot X
cotXcot y +1
Qocot(X—y)= " _—~

cot y — cotX

1 —tan’x

@ Ccos 2X = cos’X —sin’X =2cos?X— 1 =1—-2sin’ X =5
1+ tan“X
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) ) 2 tan X
@ sin 2X=2 sin X cos X ==
1+ tan“X
5 2tanX
tan 2X= ————
* 1—tan>x

@ sin 3X=3sin X — 4sin’ X
@ cos 3X = 4cos*X — 3cos X

3tan X—tan> X

¢ tan 3x = 1-3tan’ X
X_
& (1) cos X+ cosy=2cos cos Xy
. X—=
(i) cos X—cos y=— 2sin y sin )
e . . X-y
(i) sin X+ sin 'y =2 sin cos
2 2
. . . . X—Yy
X— =2 sin ——
(iv) sin X—sin Yy = 2cos 5 5

& (1) 2cos xcosy=cos (X+Y)+ cos (X—Y)
(i) — 2sin X sin Yy = cos (X + y) — cos (X —Y)
(iii) 2sin X cos Y = sin (X + Y) + sin (X —Y)
(iv) 2 cos X siny = sin (X +Yy) — sin (X —Y).

¢ sin X =0 gives X = ni, where n € Z.

T
@®cos X =0givesXx=(2n+ 1) E,where ne Z.

¢ sin X =sin Y implies X=nm + (- 1)"y, where n € Z.
@ cos X =cos Y, implies Xx=2nw £y, where n € Z.

¢ tan X = tan Y implies X=nn + Yy, where n € Z.
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Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476), Brahmagupta (598), Bhaskara I (600) and
Bhaskara II (1114) got important results. All this knowledge first went from
India to middle-east and from there to Europe. The Greeks had also started the
study of trigonometry but their approach was so clumsy that when the Indian
approach became known, it was immediately adopted throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents the main
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara I (about 600) gave formulae to find the values of sine functions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
(period) contains a proof for the expansion of sin (A + B). Exact expression for
sines or cosines of 18°, 36°, 54°, 72° etc., are given by
Bhaskara II.

The symbols sin™' X, cos™' X, etc., for arc sin X, arc cos X, etc., were
suggested by the astronomer Sir John F.W. Hersehel (1813) The names of Thales
(about 600 B.C.) is invariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing the ratios:

H h .
S s tan (sun’s altitude)

Thales is also said to have calculated the distance of a ship at sea through
the proportionality of sides of similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.
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PRINCIPLE OF
MATHEMATICAL INDUCTION

+*»*Analysis and natural philosophy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for histheorem of the binomial and the principle of
universal gravity. — LAPLACE

4.1 Introduction

One key basisfor mathematical thinking is deductive rea-
soning. Aninformal, and exampl e of deductive reasoning,
borrowed from the study of logic, isan argument expressed
in three statements:

(@) Socratesisaman.

(b) All men are mortal, therefore,

(c) Socratesismortal.

If statements (@) and (b) are true, then the truth of (c) is
established. To make this simple mathematical example,
we could write:

(i) Eightisdivisibleby two.

(i)  Any number divisibleby twoisan even number,

therefore,

(i) Eightisan even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidences till we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing dataisthe norm. Thus, in simple language,
we can say the word induction meansthe generalisation from particular cases or facts.

G. Peano
(1858-1932)
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Inalgebraor in other discipline of mathematics, there are certain results or state-
ments that are formulated in terms of n, where n is a positive integer. To prove such
statements the well-suited principle that is used—based on the specific technique, is
known asthe principle of mathematical induction.

4.2 Motivation

In mathematics, we use aform of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed as shown in Fig 4.1.

Fig4.1

When thefirst tileis pushed in theindicated direction, all thetileswill fall. To be
absolutely surethat all thetileswill fall, it issufficient to know that

(@) Thefirsttilefalls, and

(b) Intheevent that any tile fallsits successor necessarily falls.

Thisisthe underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. In fact, N isthe smallest subset of R with the following property:

A set Sissaidto beaninductiveset if 1€ Sand x+ 1€ Swhenever xe S. Since
N isthe smallest subset of R which isan inductive set, it follows that any subset of R
that is an inductive set must contain N.

[lustration

Supposewewish to find theformulafor the sum of positiveintegersi, 2, 3,...,n, that is,
aformulawhich will givethevaueof 1+ 2+ 3whenn =3, thevaluel + 2+ 3 + 4,
when n = 4 and so on and suppose that in some manner we are led to believe that the

n(n+1)
2

is the correct one.

formulal+ 2+ 3+..+n=

How can thisformulaactually be proved?We can, of course, verify the statement
for as many positive integral values of n aswe like, but this processwill not prove the
formulafor al values of n. What is needed is some kind of chain reaction which will
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have the effect that once the formula is proved for a particular positive integer the
formulawill automatically follow for the next positiveinteger and the next indefinitely.
Such areaction may be considered as produced by the method of mathematical induction.

4.3 ThePrincipleof Mathematical Induction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement istrue for n = 1, i.e, P(1) is true, and

(ii) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, i.e,, truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is simply a statement of fact. There may be situations when a
statement is true for al n > 4. In this case, step 1 will start from n = 4 and we shall
verify theresult for n =4, i.e,, P(4).

Property (ii) isaconditional property. It does not assert that the given statement
istruefor n=k, but only that if it istruefor n =k, thenitisalso truefor n=k +1. So,
to provethat the property holds, only provethat conditional proposition:

If the statement istrue for n =k, then it isalso truefor n =k + 1.

Thisissometimesreferred to astheinductive step. The assumption that the given
statement is true for n = kin this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, aformulawill be discovered that appears

tofit apattern like
1=12=1
4=22=1+3
9=3F=1+3+5
16=4=1+3+5+7,etc.

It is worth to be noted that the sum of the first two odd natural numbersis the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

1+3+5+7+..+(2n=-1)=n?,i.g
the sum of the first n odd natural numbers is the sgquare of n.

Let uswrite

P(N): 1+3+5+7+..+(2n-1) =n?

We wish to prove that P(n) istrue for al n.

Thefirst step in aproof that uses mathematical induction isto prove that
P (1) istrue. This step is called the basic step. Obviously
1=12i.e, P(1) istrue.
The next step is called the inductive step. Here, we suppose that P (k) istrue for some
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positive integer k and we need to prove that P (k + 1) istrue. Since P (K) is true, we
have

1+3+5+7+ ... +(2k-1) =k? .. (D)

Consider
1+3+5+7+ ... +(2k-1) +{2(k+1) -1} .. (2
=+ (2k+ 1) = (k+ 1)2 [Using (1)]

Therefore, P (k + 1) is true and the inductive proof is now completed.
Hence P(n) is true for al natural numbers n.

Example 1 For al n> 1, prove that

n(n+1)(2n+1)
6 .

Solution Let the given statement be P(n), i.e.,

n(n+1)(2n+1)
6

11+ (2x1+1)  1x2x3
6 - 6

Assume that P(K) is true for some positive integer k, i.e.,
k(k+D)(2k+1
124+ 22+ 3+ 42+, .+ K2 == .. (1)
We shall now prove that P(k + 1) is also true. Now, we have
(12 +22 +3% +4% +..+k* )+ (k+1)?

PP+ 22+ F+H+.+10° =

P(n): 12+ 22+ 32+ 4%+...+n? =

=1 which istrue.

Forn=1, P(1):1=

= wHk +1)? [Using (1)]
_ k(k+2)(2k +1)+6(k +1)?
6

(k +1) (2k? + 7k +6)
6

: (k+D(k+1+D{2(k+DH+1
B 6

Thus P(k + 1) is true, whenever P (K) is true.
Hence, from the principle of mathematical induction, the statement P(n) istrue
for al natural numbersn.
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Example 2 Prove that 2"> n for al positive integers n.
Solution Let P(n): 2">n
When n =1, 2'>1. Hence P(1) is true.
Assume that P(K) istrue for any positive integer k, i.e.,

2k >k .. (D
We shall now prove that P(k +1) is true whenever P(K) is true.
Multiplying both sides of (1) by 2, we get

2.2 > 2k

e, 21>2k=k+k>k+1

Therefore, P(k + 1) is true when P(K) is true. Hence, by principle of mathematical
induction, P(n) istrue for every positive integer n.

Example 3 For al n> 1, prove that
1 1 1 1 n

— et —t—t..t =
12 23 34 n(n+l) n+1-

Solution We can write
1 1 1 1 n

- —— ..+ =
P): 12723734 " nn+1) n+1

1 1 1 I .
We note that P(1): —=—=-——, which istrue. Thus, P(n) istruefor n = 1.
12 2 1+1

Assume that P(K) is true for some natural number Kk,

1 1 1 1 k
ie, E+?3+ﬂ+"'+k(k+1):k_ﬂ )
We need to prove that P(k + 1) is true whenever P(K) is true. We have

1 1 1 1 1
— et ——t—+..F +
12 23 34 k(k+D)  (k+1) (k+2)

1 1 1 1 1
—t—t—t ..+ +
[1.2 23 34 k(k+1)} (k+1)(k+2)

k_, 1
T k+1 (k+D(k+2)

[Using (1)]
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_ kk+2+1  (K+2k+D  (k+1)”  k+l_ k+l
T k+DKk+2)  (k+D(k+2) T (k+1)(k+2) k+2 (k+1)+1

Thus P(k + 1) is true whenever P(K) is true. Hence, by the principle of mathematical
induction, P(n) istruefor all natural numbers.

Example 4 For every positive integer n, prove that 7" — 3" isdivisible by 4.
Solution We can write
P(n) : 7"—3"isdivisible by 4.
We note that
P(1): 7 —3' =4 which isdivisible by 4. Thus P(n) istrueforn=1
Let P(K) be true for some natural number Kk,
i.e, P(K) : 7*— 3¢ isdivisible by 4.
We can write 7 — 3= 4d, where d € N.
Now, we wish to prove that P(k + 1) is true whenever P(K) is true.
NOW 7(k+ 1)_3(k+ 1) = 7(k +1) _7.3k + 7_3k_3(k +1)
=7(7—=3) + (7—-3)3 =7(4d) + (7 — 3)3*
=7(4d) + 4.3¢< = 4(7d + 39
From the last line, we see that 7 +9 — 3k *D isdivisible by 4. Thus, P(k + 1) istrue

when P(K) istrue. Therefore, by principle of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (1 + x)" > (1 + nx), for all natural number n, where x > — 1.
Solution Let P(n) be the given statement,
i.e, P(n): (L+x)">(1+nx), forx>-1.
We note that P(n) istruewhenn=1, since ( 1+x) > (1 +x) for x> -1
Assume that

PK): (1 +x)* > (1 +kx),x>—1istrue )
We want to prove that P(k + 1) is true for x > —1 whenever P(K) is true. - (2
Consider theidentity

(LT+x)<t=1+x(1+X
Giventhat x>-1,s0 (1+x) > 0.

Therefore, by using (1 + X)* > (1 + kx), we have
@A+x) 1> 1+ k)1 + X
i.e (A +x< 1> (1 +x+ kx+ k). .. (3)
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Here k is a natural number and x> > 0 so that kx* > 0. Therefore
Q+x+kx+kd)>(1+x+kx),
and so we obtain
@ +xk1 >(1+x+kx)
e, (L+xx1 > [1+(1+KX
Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) istruefor al natural numbers.

Example 6 Prove that
2.7+ 3.5"-5 isdivisibleby 24, for all ne N.

Solution Let the statement P(n) be defined as
P(n) : 27"+ 3.5"-5isdivisibleby 24.
We note that P(n) istruefor n=1, since 2.7 + 3.5-5= 24, which isdivisible by 24.
Assume that P(K) is true
i.e. 2.7+35-5=24g, whenqe N - (1)
Now, we wish to prove that P(k + 1) is true whenever P(K) is true.
We have
2.7+ 351 _5=27¢. 7'+ 35%. 5 -5
=7[27+35-5-35+5]+35<.5-5
=7[24q—-3.5+5] + 1555
=7x249—-215+35+155-5
=7 x 24q-6.5+ 30
=7x%x24q-6 (5<-5)
=7 % 249 —6 (4p) [(5*—5) isamultiple of 4 (why?)]
=7 x 24q - 24p
=24(79-p)
=24 xr;r =7q-p, issome natural number. .. (2

The expression on the R.H.S. of (1) isdivisible by 24. Thus P(k + 1) istrue whenever
P(k) is true.

Hence, by principle of mathematical induction, P(n) istruefor all ne N.
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Example 7 Prove that
n3
P+22+ ..+ > 3’”6 N
Solution Let P(n) be the given statement.

3
. n
ie,P(n):12+22+ ... +n? >§, ne N

: . 1
We note that P(n) is true for n = 1 since 2 > 3

Assume that P(K) is true

3
i.e Pk):12+22+ ..+ Kk > 3 ..(2)

We shall now prove that P(k + 1) is true whenever P(K) is true.
Wehave 12 + 22 + 32 + ... + K2+ (k + 1)?

= (P +2%+..+ k2) + (k+1)2 > k—; o (k+1)2 [by (1]

[k + 3k? + 6k + 3]

(2
b
3
1 1

=3 [(k+1)*+3k+ 2] > 3 (k+1)3

Therefore, P(k+ 1) isaso truewhenever P(K) istrue. Hence, by mathematical induction
P(n) istruefor all n e N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
i.,e.  P(n): (ab)" = ao".
We note that P(n) is true for n = 1 since (ab)!= ab.
Let P(k) be true, i.e.,
(ab)< = ab* - (D
We shall now prove that P(k + 1) is true whenever P(K) is true.
Now, we have

(ab)** 1= (ab)* (ab)



94

MATHEMATICS

= (a" ") (ab) [by (D]

= (. al) (bf . bY) = a1, bkt

Therefore, P(k + 1) is also true whenever P(K) is true. Hence, by principle of
mathematical induction, P(n) istruefor al ne N.

| EXERCISE 4.1 |

Prove thefollowing by using the principle of mathematical inductionfor all ne N:

1.

10.

11.

n_
1+3+32+...+3”1=—(321)

n(n +1)j2

13+23+33+...+n3=( 5

1 1 1 2n
1+ + ..+ =
@+2 (1+2+3) (1+2+3+..n) (n+1)-

n(n+)(n+2)(n+3)

123 +234+...+ n(n+l) (n+2) = 2

(2n-1)3"*+3
—

n(n+1)(n+2)}

1.3+23F+3.33+...+ n3=

12+23+34+...+n(n+l) = { 3

n(4n? + 6n—1)

1.3+35+5.7 +...+ (2n-1) (2n+1) = 3

12+222+ 32+ .. +n2"=(n-1) 21 + 2,

1 1 1 1 1
St —=1-=
2 4 8 2" 2"
1 1 1 1 n

e +ot =
25 58 811  (3n-1)(3n+2) (6n+4)"

1+1+1++ 1 _n(n+3)
123 234 345 7 nn+)(n+2) 4n+)(n+2)-




12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24.
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a(r" -1
r-1 -

(1+§J (1+§j £1+Zj ...£1+ (2n2+1)j —(n+1)?
1 4 9 n
(1+ }j (l+ 1) (1+ Ej (1+1j =(n+1)

1 2 3 n

n(2n-1)(2n+1)
3 .

1 1 1 1 n
— et ——t———F..+ =
14 47 710 (Bn-2)(3n+1) (3n+1)"

at+ar+ar?+.. +am™=

1PP+3F+5 + ...+ (2n-1)?% =

1 1 1 1 n
— et ..+ =
35 57 79 (2n+1(2n+3) 3(2n+3) "

1
1+2+3+...+n< §(2n+1)2.

n(n+1) (n+5)isamultipleof 3.
101 + lisdivisibleby 11.

X —y?isdivisible by x +.

32 —8n—9isdivisible by 8.
41" - 14" isamultiple of 27.
2n+7) <(n+3)>2

Summary

# Onekey basisfor mathematical thinking isdeductive reasoning. In contrast to

deduction, inductive reasoning depends on working with different cases and
developing a conjecture by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

# Theprinciple of mathematical induction isone such tool which can be used to

prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical inductionisnot
theinvention of aparticular individual at afixed moment. Itissaid that the principle
of mathematical induction was known by the Pythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

L ater the principlewas employed to provide aproof of the binomial theorem.

DeMorgan contributed many accomplishmentsin thefield of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan’s rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principle of mathematical induction isarestatement of one of the Peano’saxioms.

K/
— o —



Chapter 5

COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

**Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. — GAUSS +*

5.1 Introduction

In earlier classes, we have studied linear equations in one
and two variables and quadratic equations in one variable.
We have seen that the equation x> + 1 = 0 has no real
solution as x> + 1 = 0 gives X* = — 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation X* =— 1. In fact, the main
objective is to solve the equation ax* + bx + ¢ =0, where
D =b?*— 4ac <0, which is not possible in the system of
real numbers.

W. R. Hamilton
5.2 Complex Numbers (1805-1865)

Let us denote \/_1 by the symbol i. Then, we have i’ =—1. This means that i is a
solution of the equation X* + 1 = 0.
A number of the form a + ib, where a and b are real numbers, is defined to be a

(-1
complex number. For example, 2 +i3, (- 1)+ /3, 4+1i (HJ are complex numbers.

For the complex number z=a+ ib, ais called the real part, denoted by Re zand
b is called the imaginary part denoted by Im z of the complex number z For example,
ifz=2+1i5,thenRe z=2 and Im z= 5.

Two complex numbers z =a+iband z, = c +id are equal if a=cand b=d.
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Example LIf 4x +i(3Xx—Y) = 3 +i (- 6), where X and Y are real numbers, then find
the values of X and .

Solution We have
4X+1(3Xx—-y)=3+1i(-6) (1)
Equating the real and the imaginary parts of (1), we get
4x=3,3Xx-y=-06,
. o . 3 33
which, on solving simultaneously, give X= 1 and Y= e
5.3 Algebraof Complex Numbers

In this Section, we shall develop the algebra of complex numbers.

5.3.1 Addition of two complex numbers Let z = a+ib and z = ¢ + id be any two
complex numbers. Then, the sum z + Z is defined as follows:

z +z=(a+c)+i(b+d), which is again a complex number.
For example, 2 +i3) + (-6 +i5)=2-6)+i(3+5)=-4+i8

The addition of complex numbers satisfy the following properties:

(i) The closure law The sum of two complex numbers is a complex
number, i.e., Z, + Z, is a complex number for all complex numbers
z and z,.

(i) The commutative law For any two complex numbers z and z,
z,+2=2+7

(iii) The associative law For any three complex numbers 2, Z,, Z,,
(2+2)+2=2+(@2+2).

(iv) The existence of additive identity There exists the complex number
0 + i 0 (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, z+ 0 = z

(v) The existence of additive inverse To every complex number
z=a+ ib, we have the complex number — a + i(— b) (denoted as — 2,
called the additive inverse or negative of z. We observe that z+ (-2) = 0
(the additive identity).

5.3.2 Difference of two complex numbers Given any two complex numbers z, and
z,, the difference z -z, is defined as follows:
217%2214_(722)'
For example, 6+3)-2-)=(6+3)+(=2+i)=4+4i
and R-)-(06+3)=Q2-)+(-6-3)=—4-4i
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5.3.3 Multiplication of two complex numbersLet z =a+ iband z = ¢ + id be any
two complex numbers. Then, the product z, Z, is defined as follows:

z,z = (ac— bd) + i(ad + bc)
For example, 3 +i5) (2+16)=(3x2-5%x6)+i(3x6+5x2)=-24+i28

The multiplication of complex numbers possesses the following properties, which
we state without proofs.

(M)
(i1)
(iii)
(iv)

™)

(vi)

Theclosurelaw The product of two complex numbers is a complex number,

the product z, z, is a complex number for all complex numbers z and z,.

The commutative law For any two complex numbers z and z,
22,-27

The associative law For any three complex numbers z,, z, z,
(22)2=222).

Theexistenceof multiplicativeidentity There exists the complex number

1 +i 0 (denoted as 1), called the multiplicative identity such that z.1 =z

for every complex number z.

The existence of multiplicative inverse For every non-zero complex

number z=a+ ib or a + bi(a# 0, b # 0), we have the complex number

a . —b 1
i 1 . o
2t ZD (denoted by g z'), called the multiplicativeinverse

of z such that

1
z.E =1 (the multiplicative identity).

The distributive law For any three complex numbers z,, z, Z,

@ 7 (z+2)=22+27
b #+2)z=22+27

5.3.4 Division of two complex numbers Given any two complex numbers z and z,

Y 4 .
where z, #0, the quotient ~ - is defined by
>

Forexample,let z =6+3iand zZ =2 -1

Then

2 (o | 2 ()
Z_((6—i-3l)><2_iJ = (6+3i) [22+(_1)2 '22+(_1)2
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= (6+3i)(2T+i) = %[12—3+i(6+6)] =%(9+12i)

5.3.5 Power of i we know that

Al h |’1 1><|— I_—_| i’2 i—L—_l
so, we have T ) E— )
. 1 1 i i . . 1 1
-3 -4
| :—:—)(—:—:|’ | :—:—:1
R A | it 1
In general, for any integer k, i*= 1, %1 = j#*2=_] %3 =_]

5.3.6 The square roots of a negative real number
Note that i?=-1and (—i)=i*=-1
Therefore, the square roots of — 1 are i, —i. However, by the symbol ./_1, we would

mean i only.
Now, we can see that i and —i both are the solutions of the equation X* + 1 =0 or
X2 =-1.

Similarly (x/§i)2=(\/§)2 P=3(C1)=-3
(~3i) = (V3) 2==3

Therefore, the square roots of —3 are /3 | and —/3i .
Again, the symbol /_3 is meant to represent /3i only, i.e., /-3 = /3i.

Generally, if ais a positive real number, \/—a = \/a \/j = JE i,

We already know that /ax+/b = «/ab for all positive real number a and b. This

result also holds true when eithera>0,b<0 ora<0, b>0. Whatifa<0, b<0?
Let us examine.

Note that
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i2=+-1-1 =,/(—1) (—1) (by assuming fax+/b = /ab for all real numbers)
=1 = 1, which is a contradiction to the fact that i?=-1,
Therefore, \/a x /b #+/ab if both a and b are negative real numbers.

Further, if any of a and b is zero, then, clearly, \/a X \/B = \/% =0.
5.3.7 | dentities We prove the following identity

(z+2 )2 =7} +Z, +227,, for all complex numbers z, and z,.

Proof We have, (z,+2)=(z+2)(z +2),
=(z+2)z,+(z,+2)z,  (Distributive law)

=7 +22+22+2 (Distributive law)
=2 +22,+22,+2 (Commutative law of multiplication)
=7 +222,+7

Similarly, we can prove the following identities:
i) (z-2)=7-2z22+7

(i) (z+2) =7 +322+322+2

(i) (z-2) =2 -372+322 -2

i) z-z=(z2+2)(z-2)
In fact, many other identities which are true for all real numbers, can be proved

to be true for all complex numbers.

Example 2 Express the following in the form of a+ bi:
. (—Si ll . . . L. ’
i (5|3 (i) () (20) | -5

Solution (i) (—5i)(%i):?i :y(—l)zgzgﬂo

. . . 1. } 1 .5 1 N2 . 1 .
) () (20) 3 :2X8X8X8XI :E(l) =l
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Example 3 Express (5 — 3i)* in the form a + ib.

Solution We have, (5 — 3i)’ = 5° -3 x 52 x (3i) + 3 x 5 (3i)* - (3i)*
=125 2251 —135+27i =— 10— 198i.

Example 4 Express (—\/§+\/3)(2\/§—i)in the form of a+ ib

Solution We have, (—\/§+\/3) (2\/§—i) = (—\/5+\/5i) (2\/§—i)
= 6431 + 246 —V2i = (-6+2)+B(1+242);

5.4 TheModulusand the Conjugate of a Complex Number
Let z=a+ibbe a complex number. Then, the modulus of z, denoted by | z|, is defined

to be the non-negative real number /g% 4+ p? ,i.e.,|Z| = /a2 + b? and the conjugate

of z denoted as 7, is the complex number a— ib,i.e., 7 =a— ib.
For example, |3+41 =432 +12 =410, | 2-5i| =22 +(-5)* =29,

and 31i=3-i, 2-5i=2+5i, 3 _5=3i-5
Observe that the multiplicative inverse of the non-zero complex number Z is
given by

1 1 a i -b a—ib z
a+ib a’+b?> a’+b* a’+b? |z|2
— 2
or z2z=|z|

Furthermore, the following results can easily be derived.

For any two compex numbers Z and z, , we have

=
—|22| prov1ded| z, |¢O

NN

O |z z|=|z||z] G ‘

provided z, # 0.

N |

i) 25-27 () ZEi5-7+7() @:
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Example 5 Find the multiplicative inverse of 2 — 3i.
Solution  Letz=2- 3i

Then 7 =2+ 3iand |z|2:22+(—3)2=13
Therefore, the multiplicative inverse of 2 — 3j is given by

Z 243 2 3.

1z 13 13013

z' =

The above working can be reproduced in the following manner also,

1 243
2-3i (2-30)(2+30)

z'=

2431 _ 243 _2 3,

22-GiY 13 13 13

Example 6 Express the following in the form a + ib

54420 i) i
Q) 1_\/§i (i) i
Solution (i) We h 5+\/§i_5+\/5ixl+\/5i _5+52i+32i-2
ution (i) We have, 5 o= o 1 i 1—(\@)2
346320 _3(1+2420) _ 1+22i |
1+2 3
sy 1735 1 1 I !
== =—X%X7- =—5 =1
(i) ! i35 (iz)”i =i Xi i’
[EXERCISE 5.1]

Express each of the complex number given in the Exercises 1 to 10 in the
form a + ib.

(3
1, (5')(—5'] 2. {% 44 30
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4. 3(T+iN)+i(7+i7) 5. (1—i)—(-1+i6)

e (5Hed) + el )
S

Find the multiplicative inverse of each of the complex numbers given in the
Exercises 11 to 13.

11. 4 3i 12, 543 13, — |

14. Express the following expression in the form of a+ib:
(3+i35) (3-iV5)
(V3+42i)-(v3-iv2)

5.5 Argand Planeand Polar Representation

We already know that corresponding to
each ordered pair of real numbers
(X, y), we get a unique point in the XY-
plane and vice-versa with reference to a
set of mutually perpendicular lines known
as the x-axis and the y-axis. The complex

D(2,0)

number X+ iy which corresponds to the
ordered pair (X, Y) can be represented ® E (-5,-2) ®F(1,-2)
geometrically as the unique point P(X, Y)
in the XY-plane and vice-versa.

Some complex numbers such as
2+4i,-2+3i,0+1i,2+0i,—5-2iand
1 — 2i which correspond to the ordered
pairs (2, 4), (-2, 3), (0, 1), (2, 0), (=5, -2), and (1, — 2), respectively, have been
represented geometrically by the points A, B, C, D, E, and F, respectively in
the Fig 5.1.

The plane having a complex number assigned to each of its point is called the
complex plane or the Argand plane.

Y
Fig5.1
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Obviously, in the Argand plane, the modulus of the complex number

x+iy= \/x* +y* is the distance between the point P(X, y) and the origin O (0, 0)

(Fig 5.2). The points on the x-axis corresponds to the complex numbers of the form
a+i 0 and the points on the y-axis corresponds to the complex numbers of the form

Y
N
A P(x,»)
% xY
<
1 &
X € o) > X
(0,0)
A\ 4 )
Y Fig5.2

0 +1i b. The x-axis and y-axis in the Argand plane are called, respectively, the real axis
and the imaginary axis.
The representation of a complex number z = X + iy and its conjugate
z= X -y in the Argand plane are, respectively, the points P (X, y) and Q (X, —Y).
Geometrically, the point (X, —Y) is the mirror image of the point (X, y) on the real
axis (Fig 5.3).

Y
N P(x,y)
X' € 5 >X
v Q(x,-y)
Y

Fig5.3
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5.5.1 Polar representation of a complex Y

number Let the point P represent the non- A P(z)
zero complex number z = X + iy. Let the P\

directed line segment OP be of length r and )

0 be the angle which OP makes with the . 0 <
positive direction of X-axis (Fig 5.4). X< %) >X

We may note that the point P is
uniquely determined by the ordered pair of
real numbers (r, 0), called the polar
coordinates of the point P. We consider
the origin as the pole and the positive
direction of the X axis as the initial line. Fig5.4

We have, X=r cos 0, y =r sin 0 and therefore, z=r (cos 0 + i sin 0). The latter

v
Yl

is said to be the polar form of the complex number. Here r=1/x*+y> =| z| is the

modulus of zand 6 is called the argument (or amplitude) of zwhich is denoted by arg z

For any complex number z # 0, there corresponds only one value of 6 in
0 <0 <2m. However, any other interval of length 2m, for example — t < 6 <7, can be
such an interval.We shall take the value of 0 such that — t < 0 < m, called principal
argument of zand is denoted by arg z, unless specified otherwise. (Figs. 5.5 and 5.6)

Y Y Y
P P
0 0 0
X' X ! ' P
0 X 0 X X ) X X
P
Y’ Y’ Y’
()

(i) (iii) (@iv)
Fig5.5 (0<6<2m)

@) (ii) (iii) (iv)
Figh6(-nt<0<m)
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Example 7 Represent the complex number Z=1+ iv/3 in the polar form.
Solution Let 1 =r cos 6, ,/3 =T sin O
By squaring and adding, we get Y P(1,43)
9

r’ (cos2 0 + sin’ 0) =4
ie., r = /4 =2 (conventionally, r >0) X 0 X
. 3 L n
Therefore, €0s0=—_sin®=—— which gives 0= —
2 2 3 Y’
o Fig 5.7
Therefore, required polar formis 2= 2(0055 +ism g)

The complex number z =1+ iy/3 is represented as shown in Fig 5.7.

-16
Example 8 Convert the complex number 153 into polar form.

o The o | ) -16  -16 Xl—i\/§
ution eglvencompexnum cr 1+|\/§ — 1+|\/§ l—l\/§

_16(1-i —16(1-i3
) 116((1'\6\)/25) 16(11+3 3):4(1iﬁ):4+i4\@ (Fig 5.8).

Let —4=rcos0,4,3=rsinb P(-4, 443) Y
By squaring and adding, we get 0
16+48 = 1*(cos’0 +sin’0 X X

which gives rr=64, ie., r=38

1 V3 ,
Hence cosO=—-——, sin =— Y

2 2 Fig 5.8

gog_ o2
3 3

2 . . 2nm
Thus, the required polar form is 8 COS?"" sm?
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|[EXERCISE 5.2|

Find the modulus and the arguments of each of the complex numbers in
Exercises 1 to 2.

1 z=-1-1iJ3 2. z=-J3 +i

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

o 4, —1+i 5 —1-i

6. -3 7. 3 i 8. 1

5.6 Quadratic Equations
We are already familiar with the quadratic equations and have solved them in the set

of real numbers in the cases where discriminant is non-negative, i.e., = 0,
Let us consider the following quadratic equation:

ax® +bx+c =0 with real coefficients a, b, cand a # 0.

Also, let us assume that the b?> —4ac < 0.

Now, we know that we can find the square root of negative real numbers in the
set of complex numbers. Therefore, the solutions to the above equation are available in
the set of complex numbers which are given by

_ -b++b* -4ac P —-b++/4ac—-b* |

X =
2a 2a

At this point of time, some would be interested to know as to how many
roots does an equation have? In this regard, the following theorem known as the

Fundamental theorem of Algebra is stated below (without proof).

“A polynomial equation has at least one root.”

As a consequence of this theorem, the following result, which is of immense
importance, is arrived at:

“A polynomial equation of degree n has nroots.”
Example 9 Solve ¥ +2=0
Solution We have, ¥ +2 =0

or X¥=-2ie,x=+% -2 = +4/2i
Example 10 Solve X+ x+1=0

Solution Here, b’—4ac=1°-4x1x1=1-4=-3
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143 1443

2x1 2

Therefore, the solutions are given by X =

Example 11 Solve /5x% + x++/5=0
Solution Here, the discriminant of the equation is

12_4X\/§x\/§ =1-20=-19
Therefore, the solutions are

—1+/-19  —1%/19i

25 25
|EXERCISE 5.3|
Solve each of the following equations:
1. x¥+3=0 2. 2% +x+1=0 3. X¥+3x+9=0
4, —X+x-2=0 5 X+3x+5=0 6. X-Xx+2=0
7. 2 +x++2=0 8. 3x —2x+3/3=0
1 X
XX+ X+—==0 X +—=+1=0
9. N 10. NA

Miscellaneous Examples

(3-2i)(2+3i)
Example 12 Find the conjugate of (1+2)(2-i) -
_ (3-2i)(2+3i)
Solution We have , (1+2)(2—i)

6+9i—4i+6 12451 4-3i
2-i+4i+2  4+3i 4-3i

48-361+20i+15_63-16i _ 63 16,
16+9 25 25 25

(3-2i)(2+3i). 63 16.
Therefore, conjugate of m is E +E ‘
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Example 13 Find the modulus and argument of the complex numbers:
1+i 1

O O

I+ 140 140 1-142i

Solution (i) We have, —= ——x——= =i=0+i
I-1 1-i 1+i 1+1
Now, let us put 0 =r cos 6, 1=rsin®
Squaring and adding, r*=11i.e., r = 1 so that
cos0=0, sin06=1
s
Therefore, 0 =—
2
+i oom
Hence, the modulus of 1 s 1 and the argument is 5
} LSO ol B o DD S
(i) Wehave 7257 ha<i) 1+1 2 2
Let —= 0 L 0
e 2—rc0s ,—2—rsm
Proceeding as in part (i) above, we get r = L; cosO = L, sinf =_—1
V2 V2 V2
!’
Therefore 0 =—
4
Hence, the modulus of —— is == tis ——
ence, the modulus of 7= is \/E,argumen is =~
a+ib

Example 14 If x + iy = a_ip > brove that 3¢ +y* = 1.

Solution We have,

_ (a+ib)(a+ib) a’-b’+2abi az—b2+ 2ab
XTW= @-ib)a+ib) T al+b® | al+b’ al+b’
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So that yo L0 2ab
othat, X— Iy = 2+b: a+b
Therefore,
2+ - ) . . - (a2_b2)2 4a2b2 ~ (a2+b2)2 i 1
X+ Yy =(X+1y) (X—1y) = (a2+b2)2 (8.2+b2)2 = (az+b2)2 =
Example 15 Find real 6 such that
3Jr2iﬂis urely real
1-2isin0 Uy ’
Solution We have,
3+2isin®  (3+2isinf)(1+ 2isind)
1-2isin®  (1—2isin0)(1+ 2isind)
~ 3+6isinf+2isinf-4sin’0  3-4sin’0  8i sinf
1+4sin%0 1+4sin’0 1+ 4sin’0

We are given the complex number to be real. Therefore
8sinf
1+4sin’0

O6=nm,.ne Z.

=0,1.e.,sin0=0
Thus
i—1

Example 16 Convert the complex number Z= .
cos 3 +1sin 3

in the polar form.

i—1
Solution We have, z= 7.
— 4
2 2
_ 2(i—1)xl—ﬁi _2(i+\/§—1+\ﬁi) _ V31 Bt

14431 1-3i
V3-1 V3+1

———=rcos, ——=rsinf
2 2

1+3

Now, put

2
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Squaring and adding, we obtain

, (G- (Ba) 2[(WB) .
r—( 5 J+( 5 j: (( 4) ):244=2

H hich oi COSO_E sine—@
ence, r =4/ which gives ol N5

Therefore, =%+ % =% (Why?)
4 6 12

Hence, the polar form is

\/5 coss—n+i sins—7r
12 12

Miscellaneous Exercise on Chapter 5

257
. 1
1. Evaluate: {'IS’L[TJ } )

2. For any two complex numbers z and z, prove that
Re (z, z) = Re z, Re z, — Imz, Imz;

1 2 34
3. Reduce e — | to the standard form .
1-41 1+1 5+1

. a—ib 2 8.2+b2
—ijy= /_ X+y) ==
4. If X=1y c_ig Prove that( ) >

5. Convert the following in the polar form:

. L 143
Solve each of the equation in Exercises 6 to 9.
6. 3x2—4x+?=0 7. x2—2x+%=0

8. 27x* —10x+1=0



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
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21x* —28x+10=0

_ _ z+2z,+1

Ifz =2-1,z=1+I, find —21_22“.
2 132
o & s
Ifa+ib= 7l 17 Prove that & + b’ = (2X2+1) .

Letz =2—1i,z=-2+I.Find

“”“(ZJ’ “”m{az}

1+2i
Find the modulus and argument of the complex number 3
Find the real numbers X and y if (X — iy) (3 + 5i) is the conjugate of —6 — 24i.
_ Lei 1=
Find the modulus of =i 1+4i-

u v
If (X + iy)’ = u + iv, then show that ;+;=4(XZ -y’

B—a
1—ap

If o and [ are different complex numbers with | B | =1, then find

Find the number of non-zero integral solutions of the equation | 1—i |X =2%.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that
@+ 1) (C+ ) (€ +12) (¢ + ) = A+ B

1+i
If (:J =1, then find the least positive integral value of m.
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Summary

& A number of the form a + ib, where a and b are real numbers, is called a
complex number, a is called the real part and b is called the imaginary part
of the complex number.

¢ Letz =a+iband z = c+id. Then
i z+z=(@+c)+i(b+d
(i) z z, =(ac—bd) +i (ad + bc)
¢ For any non-zero complex number z=a + ib (a # 0, b # 0), there exists the

a . —b 1
+1 — 1
complex number 2+ @ +b’ denoted by . or z!, called the

2
a . -b
multiplicative inverse of z such that (a + ib) (az b2 +l 2 +szz 1+i0=1

¢ For any integer k, i*=1, %" 1= j%**2=_1] j%"3=_j

# The conjugate of the complex number z= a + ib, denoted by Z, is given by
Z =a-ib.

@ The polar form of the complex number z= X + iy is r (cos0 + i sin6), where

X
r=/x*+y? (the modulus of ) and cos6 = E sin@ = Ty . (8 is known as the
argument of z The value of 6, such that — w < 6 <, is called the principal
argument of z
# A polynomial equation of n degree has nroots.
@ The solutions of the quadratic equation &< + bx + ¢c= 0, where @, b, c € R,

~b+/4ac—b’i
az0,b?-4ac<0, are given by X = —
a
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Historical Note

The fact that square root of a negative number does not exist in the real number
system was recognised by the Greeks. But the credit goes to the Indian
mathematician Mahavira(850) who first stated this difficulty clearly. “He mentions
in his work ‘Ganitasara Sangraha’ as in the nature of things a negative (quantity)
is not a square (quantity)’, it has, therefore, no square root”. Bhaskara, another
Indian mathematician, also writes in his work Bijaganita, written in 1150. “There
is no square root of a negative quantity, for it is not a square.” Cardan (1545)
considered the problem of solving

X+y=10, xy =40.

He obtained x=5+ /_15 andy=5-\/_15 asthe solution of it, which
was discarded by him by saying that these numbers are ‘useless’. Albert Girard
(about 1625) accepted square root of negative numbers and said that this will
enable us to get as many roots as the degree of the polynomial equation. Euler
was the first to introduce the symbol i for \/—7 and W.R. Hamilton (about
1830) regarded the complex number a+ ibas an ordered pair of real numbers
(&, b) thus giving it a purely mathematical definition and avoiding use of the so
called ‘imaginary numbers’.

4

® —
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Chapter

( LINEAR INEQUALITIES )

& Mathematics is the art of saying many things in many
different ways. — MAXWELL**

6.1 Introduction

In earlier classes, we have studied equations in one variable and two variables and also
solved some statement problems by translating them in the form of equations. Now a
natural question arises: ‘Is it always possible to translate a statement problem in the
form of an equation? For example, the height of all the students in your class is less
than 160 cm. Your classroom can occupy atmost 60 tables or chairs or both. Here we
get certain statements involving a sign ‘<’ (less than), ‘>’ (greater than), ‘<’ (less than
or equal) and = (greater than or equal) which are known as inequalities .

In this Chapter, we will study linear inequalities in one and two variables. The
study of inequalities is very useful in solving problems in the field of science, mathematics,
statistics, optimisation problems, economics, psychology, etc.

6.2 Inequalities

Let us consider the following situations:

(i) Ravi goes to market with Rs 200 to buy rice, which is available in packets of 1kg.
The price of one packet of rice is Rs 30. If x denotes the number of packets of rice,
which he buys, then the total amount spent by him is Rs 30x. Since, he has to buy rice
in packets only, he may not be able to spend the entire amount of Rs 200. (Why?)
Hence

30x <200 . (D)

Clearly the statement (i) is not an equation as it does not involve the sign of equality.

(i1) Reshma has Rs 120 and wants to buy some registers and pens. The cost of one
register is Rs 40 and that of a pen is Rs 20. In this case, if x denotes the number of
registers and y, the number of pens which Reshma buys, then the total amount spent by
her is Rs (40x + 20y) and we have

40x + 20y < 120 . (2)

2015-16
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Since in this case the total amount spent may be upto Rs 120. Note that the statement
(2) consists of two statements

40x + 20y < 120 . (3)
and 40x + 20y = 120 o (4

Statement (3) is not an equation, i.e., it is an inequality while statement (4) is an equation.

Definition 1 Two real numbers or two algebraic expressions related by the symbol

‘<, >, < or ‘2’ form an inequality.

Statements such as (1), (2) and (3) above are inequalities.
3 <5; 7> 5 are the examples of numerical inequalities while
x<5;y>2;x 2 3, y< 4 are some examples of literal inequalities.

3 <5< 7 (read as 5 is greater than 3 and less than 7), 3 < x <5 (read as x is greater
than or equal to 3 and less than 5) and 2 <y <4 are the examples of double inequalities.

Some more examples of inequalities are:

ax+b<0 .. (5)
ax+b>0 ... (6)
ax+ b <0 .. (7
ax+b =0 .. (8)
ax + by <c .. (9)
ax + by >c ... (10)
ax + by <c .. (1D)
ax + by > ¢ .. (12)
ax? + bx + ¢ <0 .. (13)
ax? + bx + ¢ >0 .. (14)

Inequalities (5), (6), (9), (10) and (14) are strict inequalities while inequalities (7), (8),
(11), (12), and (13) are slack inequalities. Inequalities from (5) to (8) are linear
inequalities in one variable x when a #0, while inequalities from (9) to (12) are linear
inequalities in two variables x and y when a # 0, b # 0.

Inequalities (13) and (14) are not linear (in fact, these are quadratic inequalities
in one variable x when a # 0).

In this Chapter, we shall confine ourselves to the study of linear inequalities in one
and two variables only.

2015-16
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6.3 Algebraic Solutions of Linear Inequalities in One Variable and their
Graphical Representation

Let us consider the inequality (1) of Section 6.2, viz, 30x < 200
Note that here x denotes the number of packets of rice.

Obviously, x cannot be a negative integer or a fraction. Left hand side (L.H.S.) of this
inequality is 3Qx and right hand side (RHS) is 200. Therefore, we have

For x =0, L.H.S. =30 (0) =0 < 200 (R.H.S.), which is true.
Forx=1,L.H.S. =30 (1) =30 <200 (R.H.S.), which is true.
For x =2, L.H.S. =30 (2) = 60 < 200, which is true.

For x =3, L.H.S. =30 (3) =90 < 200, which is true.

For x =4, L.H.S. =30 (4) = 120 < 200, which is true.

For x =5, L.H.S. =30 (5) = 150 < 200, which is true.

For x =6, L.H.S. =30 (6) = 180 < 200, which is true.

Forx =7, L.H.S. =30 (7) = 210 < 200, which is false.

In the above situation, we find that the values of x, which makes the above
inequality a true statement, are 0,1,2,3,4,5,6. These values of x, which make above
inequality a true statement, are called solutions of inequality and the set {0,1,2,3,4,5,6}
is called its solution set.

Thus, any solution of an inequality in one variable is a value of the variable
which makes it a true statement.

We have found the solutions of the above inequality by trial and error method
which is not very efficient. Obviously, this method is time consuming and sometimes
not feasible. We must have some better or systematic techniques for solving inequalities.
Before that we should go through some more properties of numerical inequalities and
follow them as rules while solving the inequalities.

You will recall that while solving linear equations, we followed the following rules:

Rule 1 Equal numbers may be added to (or subtracted from) both sides of an equation.

Rule 2 Both sides of an equation may be multiplied (or divided) by the same non-zero
number.

In the case of solving inequalities, we again follow the same rules except with a
difference that in Rule 2, the sign of inequality is reversed (i.e., ‘<‘ becomes >’, <’
becomes ‘>’ and so on) whenever we multiply (or divide) both sides of an inequality by
a negative number. It is evident from the facts that

3>2while-3<-2,
—-8<—-T7while(-8)(-2)>(-7)(-2),ie., 16 > 14.
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Thus, we state the following rules for solving an inequality:

Rule 1 Equal numbers may be added to (or subtracted from) both sides of an inequality
without affecting the sign of inequality.

Rule 2 Both sides of an inequality can be multiplied (or divided) by the same positive
number. But when both sides are multiplied or divided by a negative number, then the
sign of inequality is reversed.

Now, let us consider some examples.

Example 1 Solve 30 x < 200 when

(1) x is a natural number, (ii) x is an integer.

Solution We are given 30 x < 200

30x 200 )
or ——<—— (Rule 2),i.e.,x<20/3.
30 30

(1) When x is a natural number, in this case the following values of x make the
statement true.
1,2,3,4,5,6.
The solution set of the inequality is {1,2,3,4,5,6}.
(i) When x is an integer, the solutions of the given inequality are
—3,-2,-1,0,1,2,3,4,5,6
The solution set of the inequality is {...,-3,-2,-1,0,1,2,3,4, 5, 6}

Example 2 Solve 5x — 3 < 3x +1 when

(i) xis an integer, (i) x 1is a real number.
Solution We have, 5x -3 <3x + 1
or 5x-3+3<3x+143 (Rule 1)
or S5x<3x+4
or 5Sx-3x<3x+4-3x (Rule 1)
or 2x<4
or x<?2 (Rule 2)

(i) When x is an integer, the solutions of the given inequality are
v —4,-3,-2,-1,0,1
(i) When x is a real number, the solutions of the inequality are given by x < 2,
1.e., all real numbers x which are less than 2. Therefore, the solution set of
the inequality is x € (— oo, 2).
We have considered solutions of inequalities in the set of natural numbers, set of
integers and in the set of real numbers. Henceforth, unless stated otherwise, we shall
solve the inequalities in this Chapter in the set of real numbers.
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Example 3 Solve 4x+ 3 < 6x +7.

Solution We have, dx+3<6x+7
or dx —6x< 6x +4 —6x
or —-2x<4 or x>-2

i.e., all the real numbers which are greater than —2, are the solutions of the given
inequality. Hence, the solution set is (-2, o).

5-2x _x
Example 4 Solve <=-5,
3 6
Solution We have
5-2x < X 5
3 6
or 2(5-2x) < x-30.
or 10 -4x < x-30
or —5x<-40, ie, x =2 8

Thus, all real numbers x which are greater than or equal to 8 are the solutions of the
given inequality, i.e., x € [8,00).

Example 5 Solve 7x + 3 < 5x + 9. Show the graph of the solutions on number line.

Solution We have 7x + 3 <5x + 9 or
2x<6orx<3
The graphical representation of the solutions are given in Fig 6.1.

B

1
-4 -3-2-1 0 1 2
Fig 6.1

?III>
3456

3x—4 _ x+1 . .
2 e —1. Show the graph of the solutions on number line.

Example 6 Solve

Solution We have

3x—-4 _ x+1
>—-1
2 4
3x—-4 -3
or TS0
2 4
or 20@Bx-4)2x-3)
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or bx—8>x-3
or 5x=25 or x2>1

The graphical representation of solutions is given in Fig 6.2.

>

T T T T T T T T
-4 -3-2-1 01 2 3 45 6
Fig 6.2

Example 7 The marks obtained by a student of Class XI in first and second terminal
examination are 62 and 48, respectively. Find the minimum marks he should get in the
annual examination to have an average of at least 60 marks.

Solution Let x be the marks obtained by student in the annual examination. Then

62+48+x > 60
or 110 + x 2 180
or x=>70

Thus, the student must obtain a minimum of 70 marks to get an average of at least
60 marks.

Example 8 Find all pairs of consecutive odd natural numbers, both of which are larger
than 10, such that their sum is less than 40.

Solution Let x be the smaller of the two consecutive odd natural number, so that the
other one is x +2. Then, we should have

x>10 . (1)
and x+ (x+2)<40 .. (2)
Solving (2), we get

2x+2<40
ie., x<19 .. 3
From (1) and (3), we get

10<x<19

Since x is an odd number, x can take the values 11, 13, 15, and 17. So, the required
possible pairs will be

(11,13),(13, 15), (15,17),(17,19)
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| EXERCISE 6.1 |

1. Solve 24x < 100, when

(1)  x1is a natural number. (i) x1is an integer.
2. Solve — 12x > 30, when

(1)  xis a natural number. (i) x is an integer.
3. Solve 5x -3 <7, when

(i) xis an integer. (i) x is a real number.
4. Solve 3x + 8 >2, when

(1) xis an integer. (i) x is a real number.

Solve the inequalities in Exercises 5 to 16 for real x.

5. dx+3<5x+7 6. 3x-7>5x-1
7. 3x-1)<2(x=3) 8. 32Q-x0=22(1-x
9. x+I+I<l 10. 220
2 3 3 2
3(x-2) _502-x) 1(3x J 1
< —| —+4 |>2—=(x-6
11. . 3 12.. 5|3 3( )
13. 2(2x+3)-10<6(x=2) 14. 37-Bx+5>9W%-8(x-3)
x (5x=2) (7x-3 2x—1 3x-2 2—x
e ) o 2xh G2 2w
4 3 5 3 4 5

Solve the inequalities in Exercises 17 to 20 and show the graph of the solution in each
case on number line

17. 3x-2<2x+1 18. 5x-3>3%x-5
x_(5x=-2) (7x-3)
19. 3(1-x)<2(x+4) 20. 52 3 s

21. Raviobtained 70 and 75 marks in first two unit test. Find the minimum marks he
should get in the third test to have an average of at least 60 marks.

22. To receive Grade ‘A’ in a course, one must obtain an average of 90 marks or
more in five examinations (each of 100 marks). If Sunita’s marks in first four
examinations are 87, 92, 94 and 95, find minimum marks that Sunita must obtain
in fifth examination to get grade ‘A’ in the course.

23. Find all pairs of consecutive odd positive integers both of which are smaller than
10 such that their sum is more than 11.

24. Find all pairs of consecutive even positive integers, both of which are larger than
5 such that their sum is less than 23.
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25. The longest side of a triangle is 3 times the shortest side and the third side is 2 cm
shorter than the longest side. If the perimeter of the triangle is at least 61 cm, find
the minimum length of the shortest side.

26. A man wants to cut three lengths from a single piece of board of length 91cm.
The second length is to be 3cm longer than the shortest and the third length is to
be twice as long as the shortest. What are the possible lengths of the shortest
board if the third piece is to be at least Scm longer than the second?

[Hint: If x is the length of the shortest board, then x , (x + 3) and 2x are the
lengths of the second and third piece, respectively. Thus, x + (x + 3) + 2x <91 and

2x > (x+3) + 5].

6.4 Graphical Solution of Linear Inequalities in Two Variables

In earlier section, we have seen that a graph of an inequality in one variable is a visual
representation and is a convenient way to represent the solutions of the inequality.
Now, we will discuss graph of a linear inequality in two variables.

We know that a line divides the Cartesian plane into two parts. Each part is
known as a half plane. A vertical line will divide the plane in left and right half planes
and a non-vertical line will divide the plane into lower and upper half planes

(Figs. 6.3 and 6.4).

Y
Y Upper half
0N N plane
1T
Left half | Right half Lower half
plane plane plane
I 11
X' € >X
0 X €5 / >X
I
7 A 1/\ A
Y, Y/
Fig 6.3 Fig 6.4

A point in the Cartesian plane will either lie on a line or will lie in either of the half
planes I or II. We shall now examine the relationship, if any, of the points in the plane
and the inequalities ax + by < cor ax + by > c.

Let us consider the line
ax+by =c,a# 0,b #0

- (1)
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There are three possibilities namely:
(i) ax+by = ¢ (i) ax+ by >c (i) ax+ by <c.
In case (i), clearly, all points (x, y) satisfying (i) lie on the line it represents and
conversely. Consider case (ii), let us first

assume that b > 0. Consider a point P (a.,3) Y
on the line ax + by = ¢, b > 0, so tt}at YN 0 Q (oY)
ao. + bB = c.Take an arbitrary point ‘\ '
Q (o, y) in the half plane II (Fig 6.5). . -

Now, from Fig 6.5, we interpret,

v>B  (Why?) :
or bY >bP or aoc+by>ac+bp '
(Why?) X' € ) ¢ >X
or ad+by>c 1 9.{,)(6
ie, Q(o,Y) satisfies the inequality Vv "’\\O
ax + by > c. Y’

Fig 6.5
Thus, all the points lying in the half

plane II above the line ax + by = ¢ satisfies
the inequality ax + by > c. Conversely, let (o, ) be a point on line ax + by = ¢ and an
arbitrary point Q(c, Y) satisfying

ax + by > ¢
so that ao + by> ¢
= ao + b y>ao + bp (Why?)
= v>B (as b > 0)

This means that the point (o, ¥) lies in the half plane II.

Thus, any point in the half plane II satisfies ax + by > ¢, and conversely any point
satisfying the inequality ax + by > c lies in half plane II.

In case b < 0, we can similarly prove that any point satisfying ax + by > ¢ lies in
the half plane I, and conversely.

Hence, we deduce that all points satisfying ax + by > ¢ lies in one of the half
planes II or I according as b > 0 or b < 0, and conversely.

Thus, graph of the inequality ax + by > ¢ will be one of the half plane (called
solution region) and represented by shading in the corresponding half plane.

| == Note |1 The region containing all the solutions of an inequality is called the
solution region.
2. Inorder to identify the half plane represented by an inequality, it is just sufficient
to take any point (@, b) (not online) and check whether it satisfies the inequality or
not. If it satisfies, then the inequality represents the half plane and shade the region
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which contains the point, otherwise, the inequality represents that half plane which
does not contain the point within it. For convenience, the point (0, 0) is preferred.
3. If an inequality is of the type ax + by = c or ax + by < c, then the points on the
line ax + by =c are also included in the solution region. So draw a dark line in the
solution region.

4. If an inequality is of the form ax + by > ¢ or ax + by < c, then the points on the
line ax + by = c are not to be included in the solution region. So draw a broken or
dotted line in the solution region.

In Section 6.2, we obtained the following linear inequalities in two variables
x and y: 40x + 20y < 120 .. (1)
while translating the word problem of purchasing of registers and pens by Reshma.

Let us now solve this inequality keeping in mind that x and y can be only whole
numbers, since the number of articles cannot be a fraction or a negative number. In
this case, we find the pairs of values of x and y, which make the statement (1) true. In
fact, the set of such pairs will be the solution set of the inequality (1).

To start with, let x = 0. Then L.H.S. of (1) is

40x + 20y =40 (0) + 20y = 20y.
Thus, we have

20y<120or y<6 .. (2)
For x = 0, the corresponding values of y can be 0, 1, 2, 3, 4, 5, 6 only. In this case, the
solutions of (1) are (0, 0), (0, 1),(0,2),(0,3),(0.4), _
(0, 5) and (0, 6). ?«X

Similarly, other solutions of (1), when f’g
x=1,2and 3 are: (1,0), (1,1),(1,2),(,3),
(1,4),(2,0),(2,1),(2,2),(3,0)

This is shown in Fig 6.6.

Let us now extend the domain of x and y
from whole numbers to real numbers, and see
what will be the solutions of (1) in this case.
You will see that the graphical method of solution
will be very convenient in this case. For this
purpose, let us consider the (corresponding)
equation and draw its graph.

40x + 20y = 120 .3 X

In order to draw the graph of the inequality
(1), we take one point say (0, 0), in half plane I
and check whether values of x and y satisfy the
inequality or not. Fig 6.6

—_ N W A S
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We observe that x = 0, y = 0 satisfy the ’%
inequality. Thus, we say that the half plane I is the
graph (Fig 6.7) of the inequality. Since the points on
the line also satisfy the inequality (1) above, the line
is also a part of the graph.

Thus, the graph of the given inequality is half
plane I including the line itself. Clearly half plane II
is not the part of the graph. Hence, solutions of
inequality (1) will consist of all the points of its graph
(half plane I including the line).

We shall now consider some examples to
explain the above procedure for solving a linear x’
inequality involving two variables.

- N W R g

Example 9 Solve 3x + 2y > 6 graphically. Y' Fig6.7

Solution Graph of 3x + 2y = 6 is given as dotted line in the Fig 6.8.

This line divides the xy-plane in two half
planes I and II. We select a point (not on the
line), say (0, 0), which lies in one of the half % ™,
planes (Fig 6.8) and determine if this point
satisfies the given inequality, we note that 3
3000+2(0)>6 2
or 0>6, which is false. 1

Y

1T

Hence, half plane I is not the solution region of
the given inequality. Clearly, any point on the
line does not satisfy the given strict inequality.
In other words, the shaded half plane II
excluding the points on the line is the solution
region of the inequality.

Y
A
Example 10 Solve 3x — 6 = 0 graphically in
two dimensional plane.
Solution  Graph of 3x — 6 = 0 is given in the

1 2°3 4 56 7

'y
Fig 6.8

Fig6.9.
We select a point, say (0, 0) and substituting it in
given inequality, we see that:

3(0)-62=0 or—6 =0 which is false. o
Thus, the solution region is the shaded region on
the right hand side of the line x = 2. Y’ Fig6.9

- N W A
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Example 11 Solve y < 2 graphically. Y
Solution Graph of y =2 is given in the Fig 6.10.
Let us select a point, (0, 0) in lower half 4 I
plane I and putting y = 0 in the given inequality, 3 -
we see that P A >
I x0<2or 0<2 whichis true. 1 I
Thus, the solution region is the shaded region ' & ; > X
below the line y = 2. Hence, every point below O\l, 12345
the line (excluding all the points on the line) Y’
determines the solution of the given inequality. Fig 6.10
EXERCISE 6.2 |
Solve the following inequalities graphically in two-dimensional plane:
1. x+y<5 2. 2Zx+y=26 3. 3x+4y<12
4. y+8=>2%« 5. x—-y<2 6. 2x-3y>6
7. =3x+2y>2-6 8. 3y-5x<30 9. y<-2
10. x>-3.

6.5 Solution of System of Linear Inequalities in Two Variables

In previous Section, you have learnt how to solve linear inequality in one or two variables
graphically. We will now illustrate the method for solving a system of linear inequalities
in two variables graphically through Y

some examples.

Example 12 Solve the following
system of linear inequalities graphically.
xX+y=5 .. (D)
x—-y<3 .. (2)

Solution The graph of linear equation
x+y=35

is drawn in Fig 6.11.

We note that solution of inequality
(1) is represented by the shaded region
above the line x +y =5, including the
points on the line.

On the same set of axes, we draw
the graph of the equation x —y =3 as v Fig 6.11
shown in Fig 6.11. Then we note that inequality (2) represents the shaded region above
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the line x — y = 3, including the points on the line.
Clearly, the double shaded region, common to the above two shaded regions is
the required solution region of the given system of inequalities.

Example 13 Solve the following system
of inequalities graphically

Sx+4y <40 .. (D)
x>2 .. (2
y=>3 .. 3

Solution We first draw the graph of
the line

Sx+4y=40, x=2andy=3
Then we note that the inequality (1)
represents shaded region below the line
5x + 4y =40 and inequality (2) represents
the shaded region right of line x = 2 but
inequality (3) represents the shaded region
above the line y = 3. Hence, shaded region
(Fig 6.12) including all the point on the lines
are also the solution of the given system
of the linear inequalities.

In many practical situations involving
system of inequalities the variable x and y
often represent quantities that cannot have
negative values, for example, number of
units produced, number of articles
purchased, number of hours worked, etc.
Clearly, in such cases, x > 0, y >0 and the
solution region lies only in the first quadrant.

Example 14 Solve the following system

of inequalities
& +3y<100 .. (1)
x=0 .. (2)
y=0 .. (3
Solution We draw the graph of the line
8x +3y=100

The inequality 8x + 3y <100 represents the
shaded region below the line, including the
points on the line 8x +3y =100 (Fig 6.13).

\\ A
1 ~

Y

A
0
9-
8
7T ‘):b
6
5
4

N

30 T

251

20 1

15 71

} } } } —>X
0 510 \15 20 25

Fig 6.13
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Since x>0, y >0, every point in the Y

shaded region in the first quadrant,
including the points on the line and
the axes, represents the solution of

the given system of inequalities. 8
7

Example 15 Solve the following 6
system of inequalities graphically 5
x+2y<8 .. (1) 4
2x+y<8 .. (2) 3
x>0 .. (3) 2
y>0 .. (@) 1

Solution We draw the graphs of
the lines x + 2y =8 and 2x + y = 8.
The inequality (1) and (2) represent

the region below the two lines,
including the point on the respective lines.
Since x> 0,y = 0, every point in the shaded region in the first quadrant represent
a solution of the given system of inequalities (Fig 6.14).
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123 45678059

Fig 6.14

| EXERCISE. 6

3]

Solve the following system of inequalities graphically:

1.

x23,y22 2.

2x+y=26,3x+4y<12

4
22x—y>l,x-2y<-1 6.
8

2x+ y=28, x+2y=>10
Sx+4y<20, x=21,y>2

3x+4y €60, x +3y<30,x>0, y=>0
2x+y=24, x+y<3, 2x-3y<6
x=2y<3,3%x+4y 212, x=20,y2>1

4x + 3y £60,y=22x, x=3, x,y=0

3x+2y<12, x21,y22
cox+y24, 2x-y<0
X+y<6, x+y=>4

. x+y<9, y>x, x20

3x+2y<150, x+4y <80, x<15, y=0,x=0

x+2<10,x4+y2>21,x-y<0,x>20,y>0
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Miscellaneous Examples
Example 16 Solve - 8<5x -3 < 7.

Solution In this case, we have two inequalities, — 8 < 5x — 3 and 5x — 3 < 7, which we
will solve simultaneously. We have —8 <5x-3<7

or -5<5x<10 or —-1<x<2
5-3x
Example 17 Solve — 5 < > <8.
5-3x
Solution We have —5 < > <8
or -10<5-3x<16 or —-15<-3x<11
11
or 52x2-—
3

-11
which can be written as T <x <5

Example 18 Solve the system of inequalities:
3x-7<5+x .. (D
11-5x<1 .. (2)
and represent the solutions on the number line.

Solution From inequality (1), we have
3x-7<5+x

or x<6 ... 3)
Also, from inequality (2), we have

11-5x<1
or -5x<-101e,x22 .. (@

If we draw the graph of inequalities (3) and (4) on the number line, we see that the
values of x, which are common to both, are shown by bold line in Fig 6.15.

L >

<€ o)

€— ————pp—O————>
-1 0123 456 789

Fig 6.15

Thus, solution of the system are real numbers x lying between 2 and 6 including 2, i.e.,
2<x<6
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Example 19 In an experiment, a solution of hydrochloric acid is to be kept between
30° and 35° Celsius. What is the range of temperature in degree Fahrenheit if conversion

formula is given by C = = (F —32), where C and F represent temperature in degree

9

Celsius and degree Fahrenheit, respectively.

Solution It is given that 30 < C < 35.

5
Putting C= 5 (F -32), we get

5
30<§ (F-132) <35,
9 9
or - xB0O)<(F-32)< = x (35
5 5
or 54<(F-32)<63
or 86 <F <95.

Thus, the required range of temperature is between 86° F and 95° F.

Example 20 A manufacturer has 600 litres of a 12% solution of acid. How many litres
of a 30% acid solution must be added to it so that acid content in the resulting mixture
will be more than 15% but less than 18%?

Solution Let x litres of 30% acid solution is required to be added. Then
Total mixture = (x + 600) litres

Therefore  30% x + 12% of 600 > 15% of (x + 600)

and 30% x + 12% of 600 < 18% of (x + 600)
30x 12 15

or — + — (600) > — (x + 600)
100 100 100
30x 12 18

and — + — (600) < — (x + 600)
100 100 100

or 30x + 7200 > 15x + 9000

and 30x + 7200 < 18x + 10800

or 15x > 1800 and 12x < 3600

or x> 120 and x < 300,

i.e. 120 < x <300
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Thus, the number of litres of the 30% solution of acid will have to be more than
120 litres but less than 300 litres.

Miscellaneous Exercise on Chapter 6

Solve the inequalities in Exercises 1 to 6.

1. 2<3x-4<5 2. 6<-3Qx-4)<12
5 —3<4-TEcpg 4 —15<5 2
2 5
3 3x+11
5, —12<4——;Csz 73(%)311,

Solve the inequalities in Exercises 7 to 10 and represent the solution graphically on
number line.

7. Sx+1>-24, 5x-1<24

8. 2(x-1)<x+5, 3(x+2)>2—x

9. 3x-7>2(x-6), 6—x>11 -2

100 52x-7) =3 (2x+3)<0, 2x+19 <6x+47.

11.  Asolution is to be kept between 68° F and 77° F. What is the range in temperature
in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by

F 9C 327
= - C+327
5

12. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to
it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have

640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

13. How many litres of water will have to be added to 1125 litres of the 45% solution
of acid so that the resulting mixture will contain more than 25% but less than 30% acid
content?

14. 1IQ of a person is given by the formula

MA
1Q = C_A x 100,

where MA is mental age and CA is chronological age. If 80 < 1Q < 140 for a group of
12 years old children, find the range of their mental age.
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Summary

@ Two real numbers or two algebraic expressions related by the symbols <, >, <
or > form an inequality.

# Equal numbers may be added to (or subtracted from ) both sides of an inequality.

# Both sides of an inequality can be multiplied (or divided ) by the same positive
number. But when both sides are multiplied (or divided) by a negative number,
then the inequality is reversed.

@ The values of x, which make an inequality a true statement, are called solutions
of the inequality.

@ To represent x <a (or x >a) on a number line, put a circle on the number a and
dark line to the left (or right) of the number a.

@ To represent x <a (orx >a) on a number line, put a dark circle on the number
a and dark the line to the left (or right) of the number x.

@ If an inequality is having < or > symbol, then the points on the line are also
included in the solutions of the inequality and the graph of the inequality lies left
(below) or right (above) of the graph of the equality represented by dark line
that satisfies an arbitrary point in that part.

@ If an inequality is having < or > symbol, then the points on the line are not
included in the solutions of the inequality and the graph of the inequality lies to
the left (below) or right (above) of the graph of the corresponding equality
represented by dotted line that satisfies an arbitrary point in that part.

@ The solution region of a system of inequalities is the region which satisfies all
the given inequalities in the system simultaneously.

)
— 0‘0 —
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Chapter 7

‘ PERMUTATIONSAND COMBINATI ONS’

**Every body of discovery is mathematical in form because there is no
other guidance we can have — DARWIN ¢

7.1 Introduction

Suppose you have a suitcase with anumber ock. The numbet
lock has 4 wheels each labelled with 10 digits from 0 to 9.
The lock can be opened if 4 specific digitsare arranged in ¢
particular sequence with no repetition. Some how, you have
forgotten this specific sequence of digits. You remember only
thefirst digit whichis7. Inorder to open thelock, how many
sequencesof 3-digitsyou may haveto check with? To answer
thisquestion, you may, immediately, start listing all possible
arrangements of 9 remaining digits taken 3 at atime. But,
this method will be tedious, because the number of possible
sequences may belarge. Here, in this Chapter, we shal learn
some basi ¢ counting techniques which will enable us to answer this question without
actudly listing 3-digit arrangements. In fact, thesetechniqueswill beuseful indetermining
thenumber of different ways of arranging and selecting objectswithout actually listing
them. As afirst step, we shall examine a principle which is most fundamental to the
learning of these techniques.

Jacob Bernoulli
(1654-1705)

7.2 Fundamental Principleof Counting

Let us consider the following problem. Mohan has 3 pants and 2 shirts. How many
different pairs of a pant and a shirt, can he dress up with? There are 3 waysin which
a pant can be chosen, because there are 3 pants available. Similarly, a shirt can be
chosenin 2 ways. For every choice of apant, there are 2 choices of ashirt. Therefore,
there are 3 x 2 = 6 pairs of a pant and a shirt.
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Let us name the three pants as P, P,, P, and the two shirtsas S, S,. Then,
these six possibilitiescan beillustrated inthe Fig. 7.1.

Let us consider another problem 6 Possibilities

of the same type. P,S,
Sabnam has 2 school bags, 3 tiffin boxes
and 2 water bottles. In how many ways
can she carry theseitems (choosing one
each).

A school bag can be chosenin 2
different ways. After a school bag is M P,S,
chosen, atiffin box can be chosenin 3
different ways. Hence, there are
2 x 3=6 pairsof school bag and atiffin
box. For each of these pairs a water
bottle can be chosenin 2 different ways. Fig7.1
Hence, there are 6 x 2 = 12 different ways in which, Sabnam can carry theseitemsto
school. If we name the 2 school bags as B,, B,, the threetiffinboxesasT,, T,, T, and
the two water bottles as W,, W,, these possibilities can beillustrated inthe Fig. 7.2.
12 Possibilities
BITIWI

B,T,W,
B, T,W,

B, T,W,
B, T,W,

B,T;W,

Fig7.2
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In fact, the problems of the above types are solved by applying the following
principle known asthe fundamental principle of counting, or, simply, the multiplication
principle, which states that

“If an event can occur in m different ways, following which another event
can occur in n different ways, then the total number of occurrence of the events
in the given order is mxn.”

The above principle can be generalised for any finite number of events. For
example, for 3 events, the principleisasfollows:

‘If an event can occur in m different ways, following which another event can
occur in ndifferent ways, following which athird event can occur in p different ways,
then the total number of occurrence to ‘the eventsin the given order ismx nx p.”

In thefirst problem, the required number of ways of wearing a pant and a shirt
wasthe number of different waysof the occurence of thefollowing eventsin succession:

(i) theevent of choosing a pant

(i) theevent of choosing ashirt.

In the second problem, the required number of wayswasthe number of different
ways of the occurence of the following events in succession:

() theevent of choosing a school bag

(i) theevent of choosing atiffin box

(i) the event of choosing awater bottle.

Here, in both the cases, the eventsin each problem could occur in various possible
orders. But, we have to choose any one of the possible orders and count the number of
different ways of the occurence of the events in this chosen order.

Example 1 Find the number of 4 letter words, with or without meaning, which can be
formed out of the letters of the word ROSE, where the repetition of the lettersis not
allowed.

Solution There are as many words as there are ways of filling in 4 vacant places

|:| |:| |:| |:| by the 4 |etters, keeping in mind that the repetition is not allowed. The

first place can befilled in 4 different ways by anyone of the 4 lettersR,0,S,E. Following
which, the second place can be filled in by anyone of the remaining 3 lettersin 3
different ways, followingwhichthethird place can befilled in 2 different ways; following
which, the fourth place can befilled in 1 way. Thus, the number of waysin which the
4 places can befilled, by the multiplication principle, is4 x 3 x 2 x 1 = 24. Hence, the
required number of wordsis 24.
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If the repetition of the | etterswas allowed, how many words can be formed?

One can easily understand that each of the 4 vacant places can befilled in succession
in 4 different ways. Hence, the required number of words = 4 x 4 x 4 x 4 = 256.

Example 2 Given 4 flags of different colours, how many different signals can be
generated, if asignal requires the use of 2 flags one below the other?

Solution Therewill be as many signals asthere are ways of filling in 2 vacant places

in succession by the 4 flags of different colours. The upper vacant place can

befilledin 4 different ways by anyone of the 4 flags; following which, thelower vacant
place can be filled in 3 different ways by anyone of the remaining 3 different flags.
Hence, by the multiplication principle, the required number of signals=4 x 3=12.

Example 3 How many 2 digit even numbers can be formed from the digits
1, 2, 3, 4, 5if the digits can be repeated?

Solution There will be as many ways as there are ways of filling 2 vacant places
I:Ij insuccession by thefive given digits. Here, inthiscase, we start fillingin unit’'s

place, because the options for this place are 2 and 4 only and this can be donein 2
ways, following which the ten’s place can befilled by any of the5 digitsin 5 different
waysasthedigitscan berepeated. Therefore, by the multiplication principle, therequired
number of two digits even numbersis2 x 5, i.e., 10.

Example 4 Find the number of different signalsthat can be generated by arranging at
least 2 flagsin order (one below the other) on avertical staff, if five different flagsare
available.

Solution A signal can consist of either 2 flags, 3 flags, 4 flags or 5 flags. Now, let us
count the possible number of signals consisting of 2 flags, 3 flags, 4 flags and 5 flags
separately and then add the respective numbers.

Therewill beasmany 2 flag signalsastherearewaysof fillingin 2 vacant places

in succession by the 5 flags available. By Multiplication rule, the number of

waysis5x 4 =20.
Similarly, there will be as many 3 flag signals as there are ways of filling in 3

vacant places in succession by the 5 flags.
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The number of waysis5 x 4 x 3= 60.
Continuing the same way, we find that
The number of 4 flag signals =5x 4 x 3 x 2=120
and the number of 5flagsignals =5x4x3x2x1=120
Therefore, therequired no of signals = 20 + 60 + 120 + 120 = 320.

|[EXERCISE7.1

1. How many 3-digit numbers can be formed from the digits 1, 2, 3, 4 and 5
assuming that
(i) repetition of thedigitsisallowed?
(i) repetition of thedigitsisnot allowed?

2. How many 3-digit even numberscan beformed fromthedigits1, 2, 3,4, 5, 6if the
digits can be repeated?

3. How many 4-letter code can be formed using the first 10 letters of the English
alphabet, if no letter can be repeated?

4. How many 5-digit telephone numbers can be constructed using the digits O to 9if
each number starts with 67 and no digit appears more than once?

5. A coin is tossed 3 times and the outcomes are recorded. How many possible
outcomes are there?

6. Given5flagsof different colours, how many different signalscan be generated if
each signal requires the use of 2 flags, one below the other?

7.3 Permutations

In Example 1 of the previous Section, we are actually counting the different possible
arrangements of the letters such as ROSE, REOS, ..., etc. Here, in this list, each
arrangement is different from other. In other words, the order of writing the lettersis
important. Each arrangement is called a permutation of 4 different letters taken all
at atime. Now, if we have to determine the number of 3-letter words, with or without
meaning, which can be formed out of the letters of the word NUMBER, where the
repetition of the letters is not allowed, we need to count the arrangements NUM,
NMU, MUN, NUB, ..., etc. Here, we are counting the permutations of 6 different
letters taken 3 at atime. The required number of words =6 x 5 x 4 =120 (by using
multiplication principle).

If the repetition of the letters was allowed, the required number of words would
be6 x 6 x 6 = 216.
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Definition 1 A permutation is an arrangement in a definite order of a number of
objects taken some or all at atime.

In thefollowing sub Section, we shall obtain the formulaneeded to answer these
guestionsimmediately.

7.3.1 Permutations when all the objects are distinct

Theorem 1 The number of permutations of n different objects taken r at a time,
where 0 <r <n and the objectsdo not repeat isn(n—-1)(n-2)...(n—r +1),
which is denoted by "P..

Proof There will be as many permutations as there are ways of filling in r vacant

places . by

« I vacant places —

then objects. Thefirst place can befilled in n ways; following which, the second place
can befilled in (n— 1) ways, following which the third place can befilled in (n—2)
ways,..., the rth place can be filled in (n— (r — 1)) ways. Therefore, the number of
ways of filling inr vacant placesin successionisn(n—-1) (n—-2)... (n—(r—=1))or
n(n-1)(n-2) ... (n—r +1)

Thisexpression for "P iscumbersome and we need anotation which will helpto
reduce the size of this expression. The symbol n! (read as factorial n or n factoria )
comes to our rescue. In the following text we will learn what actually n! means.

7.3.2 Factorial notation The notation n! represents the product of first n natural
numbers, i.e., theproduct 1 x 2x 3x ... x (n—1) X nisdenoted asn!. We read this
symbol as‘n factorial’. Thus, 1 x2x3x4 ... x(n—1) xn=n!

1=1!
1x2=2!
1x2x3=3!
1x2x3x4=41!andsoon.
Wedefine0! =1
Wecanwrite 5! =5x41=5x4x31=5x4x3x2!
=5%x4x3x2x1l
Clearly, for anatural numbern
n!=n(n — 1)!
=n(n-1(n - 2)! [provided (n> 2)]

nn-Lmn -2 (nh - 3)! [provided (n> 3)]
and so on.
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Example 5 Evaluate () 5! (ii) 7! (i) 71 5!

Solution (i) 5!'=1x2x3x4x5=120
(i) 7!=1x2x3x4x5x6x7=5040
and @iy 7! — 51 =5040 — 120 = 4920.

7 12!
Example 6 Compute () 5 (i) {301 (21

7! 7><6><5|
Solution (i) Wehaveg = 5 =7x6=42
. 12! _ 12><11><(10!) _ _
and 0 (100 (21)  (10)x(2) 611 =65
nl
Example 7 Evaluate m whenn=5,r = 2.

5!
Solution  We have to evaluate —2!(5_ 2)! (sincen=5,r=2)

5l 5! _4><5
We have 21(5-2) T 2Ax31 2

=10

1 1 X
Example 8 If §+§=ﬁ,findx.

| 2, 1. _X
Solution We have g/ ™ 9781~ 10x 9x 8l

Theref 1+1_ X 10 x
TEE 9T 10x9 " 9 10x9
So x = 100,
|EXERCISE 7.2

1. Evduae
(i) 8! (iiy4a1-3!
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8 1.1 _x
2. 1s31+41=717? 3.Compute6!X2! 4. 1f 6 7!—8!,f|ndx
n!
5.  Evauate m,when
iyn=6,r=2 (i)n=9,r=5.

7.3.3 Derivation of the formula for "P,
n!
"P=—— 0<r<
" (n-r) Osrs<n
Let us now go back to the stage where we had determined the following formula:
"P=n(n-1)(n-2)... (n—-r+1)
Multiplying numerator and denomirator by (n—r) (n—r—1)...3x 2 x 1, we get

_ n(n-1) (n—2)..(n-r+1)(n—r)(n—r-1)..3x2x1 nl

~ (n-r)’

"P
' (n—=r)(n-r-1)..3x2x1

"p _ n!
Thus r—_(n_r)|,where0<r <n

This isamuch more convenient expression for "P, than the previous one.
n!
o
Counting permutationsis merely counting the number of waysin which some or
all objects at atime are rearranged. Arranging no object at all is the same as leaving

behind all the objects and we know that there is only one way of doing so. Thus, we
can have

In particular, whenr =n, "B, = n!

nln
nPO: 1= E— (n_ 0)| (1)

Therefore, the formula (1) is applicable for r = 0 also.

Thus nPr:(n_r)!’OSrSn.
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Theorem 2 The number of permutations of n different objects taken r at a time,
whererepetitionisallowed, isn'.
Proof isvery similar to that of Theorem 1 and is left for the reader to arrive at.
Here, we are solving some of the problems of the pervious Section using the
formulafor "P, to illustrate its useful ness.
In Example 1, the required number of words = *P, = 4! = 24. Here repetition is
not allowed. If repetitionisallowed, the required number of wordswould be 4* = 256.
The number of 3-letter words which can be formed by the letters of the word

6!
NUMBER = “Ps =37 =4 x 5 x 6= 120. Here, in this case also, the repetition is not

alowed. If therepetition isallowed,the required number of wordswould be 6° = 216.
The number of ways in which a Chairman and a Vice-Chairman can be chosen
from amongst agroup of 12 persons assuming that one person can not hold more than

|
oneposition, clearly P, = % =11x12 =132.

7.3.4 Permutations when all the objects are not distinct objects Suppose we have
to find the number of ways of rearranging the letters of the word ROOT. In this case,
the letters of theword are not al different. Thereare 2 Os, which are of the samekind.
Let us treat, temporarily, the 2 Os as different, say, O, and O,. The number of
permutations of 4-different letters, in this case, taken all at a time
is 4!. Consider one of these permutations say, RO,O,T. Corresponding to this
permutation,we have 2 ! permutations RO,O,T and RO,0O, T which will be exactly the
same permutation if Ol and O2 are not treated as different, i.e., if O1 and O2 are the
same O at both places.

@
Therefore, the required number of permutations = 7 = 3x4=12

Permutations when O, O, are Permutations when O, O, are
different. the same O.
RO,0,T

TOlozR}

TO,0R > TOOR
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RO,T O,]

RO,T O, ROTO
TO,RO,]

TO,RO, > TORO
RTO,0, | R TOO
RTO,0; | >
TRO,O0, |

TRO,0, | > TROO
0,0, RT] SoRrT
0,0, TR] >
0,RO,T ]

0,RO,T | OROT
0, TO, R]

0, TO, R| > OTOR
O RTO, | ORTO
0, RTO, | >

0, TRO,]

0, TRO, | OTRO
0,0,TR coTR
0,0, TR >

Let us now find the number of ways of rearranging the letters of the word
INSTITUTE. Inthis casethere are 9 letters, in which | appears 2 timesand T appears
3times.

Temporarily, let ustreat these letters different and namethemasl| , 1, T, T,,T,
The number of permutations of 9 different letters, inthiscase, taken all at atimeis9!.
Consider one such permutation, say, I, NT, SI, T, U ET,. Hereif |, |, are not same
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adT, T, T, are not same, thenl, I, canbearranged in 2! waysand T, T, T, can
bearranged in 3! ways. Therefore, 2! x 3! permutationswill bejust the same permutation
corresponding to this chosen permutation | NT SI.T_ UET_. Hence, total number of

|
different permutationswill be 2|i3|

We can state (without proof) the following theorems:
Theorem 3 The number of permutations of n objects, where p objects are of the
n!
E'
In fact, we have a more genera theorem.

same kind and rest are dll different =

Theorem 4 The number of permutations of n objects, where p, objects are of one
kind, p, are of second kind, ..., p_are of k™ kind and the rest, if any, are of different

R n!
kindis ———.
p! pt.. pi!

Example9 Find the number of permutations of theletters of theword ALLAHABAD.

Solution Here, there are 9 objects (letters) of which there are 4A’s, 2 L's and rest are
all different.

ol 3 5x6x 7x8x9

= = 7560
4 2! 2

Therefore, the required number of arrangements =

Example 10 How many 4-digit numbers can be formed by using the digits 1 to 9 if
repetition of digitsisnot allowed?

Solution Here order matters for example 1234 and 1324 are two different numbers.
Therefore, therewill be asmany 4 digit numbers asthere are permutations of 9 different
digitstaken 4 at atime.

9l 9!

Therefore, the required 4 digit numbers =°P, = W =5 9x8x7x6=3024.

Example 11 How many numbers|ying between 100 and 1000 can be formed with the
digits0, 1, 2, 3,4, 5, if therepetition of the digitsisnot allowed?

Solution Every number between 100 and 1000 is a 3-digit number. We, first, have to
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count the permutations of 6 digits taken 3 at atime. This number would be °P_. But,
these permutations will include those also where O is at the 100's place. For example,
092, 042, . . ., etc are such numbers which are actually 2-digit numbers and hence the
number of such numbers has to be subtracted from °P_to get the required number. To
get the number of such numbers, wefix O at the 100's place and rearrangetheremaining
5 digitstaking 2 at atime. This number is°P,. So

The required number =%p,-°p==-=

=4x5%x6 — 4x5=100
Example 12 Find the value of n such that

n

P, _5
() "B,=42"R,, n>4 (ii) "ip, ~3.n>4

Solution (i) Giventhat

"B =42 "R
or nn-1)(n-2) (n-3)(n—-4)=42n(n-1) (n-2)
Since n>4 0 n(n—1) (n-2)#0

Therefore, by dividing both sides by n(n — 1) (n — 2), we get
(n-3(n—-4)=42

or " —7Mm-30=0
or n? —10n+ 3n — 30
or (n-10(n+3)=0
or n—-10=0or n+3=0
or n=10 o n=-3

Asn cannot be negative, so n = 10.

"p, 5
(i) Giventhat 75~ lP 5
Therefore 3n(n-1) (n—-2)(n-3)=5n-1) (n—-2) (n—-3) (n—4)
or ANn=5(n-4 [as(h—=1) (n—2) (n—3) #0,n > 4]

or n=10.
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Example 13 Findr, if 5P =6%P .

Solution We have 5 *P =6 °P

4 3

5 = Bx—————

or Gy (5or+)
3 _ 6x83

or (4=r)t (5-r+2)(5-r)(5-r -1)!
or ®6-nB-r=6
or rr— Nr+24=0
or r*—8r-3r+24=0
or r-8@—-3=0
or r=8 orr=3
Hence r=28, 3.

Example 14 Find the number of different 8-letter arrangements that can be made
from the letters of the word DAUGHTER so that
(i) al vowelsoccur together (i) all vowelsdo not occur together.

Solution (i) There are 8 different letters in the word DAUGHTER, in which there
are 3vowels, namely, A, U and E. Since the vowels have to occur together, we can for
the time being, assume them as asingle object (AUE). Thissingle object together with
5 remaining letters (objects) will be counted as 6 objects. Then we count permutations
of these 6 objectstaken al at atime. This number would be®P, = 6!. Corresponding to
each of these permutations, we shall have 3! permutations of the three vowelsA, U, E
taken al at atime . Hence, by the multiplication principle the required number of
permutations=6"! x 3! = 4320.

(i) If we have to count those permutations in which all vowels are never
together, we first haveto find al possible arrangments of 8 letterstaken al at atime,
which can bedonein 8! ways. Then, we haveto subtract from this number, the number
of permutations in which the vowels are always together.

6! (7x8 — 6)

2x6!(28-3)

50x 6! =50 x 720 = 36000
Example 15 In how many ways can 4 red, 3 yellow and 2 green discs be arranged in
arow if the discs of the same colour are indistinguishable ?

Therefore, the required number 8! —-61! x 3!

Solution Total number of discsare4 + 3 + 2 =29. Out of 9 discs, 4 are of thefirst kind
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(red), 3 are of the second kind (yellow) and 2 are of the third kind (green).

|
Therefore, the number of arrangements 2 ; > =1260.

Example 16 Find the number of arrangements of the letters of the word
INDEPENDENCE. In how many of these arrangements,

() dothewords start with P

(i) do all the vowels always occur together
(ii)y  do the vowels never occur together
(iv) dothewords beginwith | and end in P?

Solution There are 12 letters, of which N appears 3 times, E appears 4 times and D
appears 2 times and the rest are al different. Therefore

12!

The required number of arrangements =~ 3, — = 1663200
(i) Letusfix P at the extreme left position, we, then, count the arrangements of the
remaining 11 letters. Therefore, the required number of words starting with Pare

11

3204
(i)  Thereare5 vowelsinthe given word, which are4 Esand 1 1. Since, they have
to always occur together, we treat them as a single object for thetime

being. This single object together with 7 remaining objects will account for 8
objects. These 8 objects, in which there are 3Nsand 2 Ds, can berearranged in

8
311 Ways. Corresponding to each of these arrangements, the 5 vowelsE, E, E,

= 138600

5!
Eand| canberearrangedin 2 ways. Therefore, by multiplication principlethe

required number of arrangements

| |
-8 x 3 16800
3121 4
(i)  Therequired number of arrangements
= the total number of arrangements (without any restriction) — the number

of arrangements where all the vowels occur together.
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(iv)
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=1663200—-16800 = 1646400
Let us fix | and P at the extreme ends (I at the left end and P at the right end).
We are left with 10 letters.
Hence, the required number of arrangements

10!

=34 12600

|[EXERCISE 7.3|

How many 3-digit numbers can be formed by using thedigits 1to 9if no digitis
repeated?

How many 4-digit numbers are there with no digit repeated?

How many 3-digit even numbers can be made using the digits
1,2,3,4,6,7,if nodigit isrepeated?

Find the number of 4-digit numbersthat can be formed using the digits 1, 2, 3, 4,
5if no digit is repeated. How many of these will be even?

From a committee of 8 persons, in how many ways can we choose a chairman
and a vice chairman assuming one person can not hold more than one position?
Findnifr-tP,:"P =1:0.

Findrif (i) °p =2°pP_, (i) °P=°P, .
How many words, with or without meaning, can be formed using all theletters of

the word EQUATION, using each letter exactly once?

10.

11

How many words, with or without meaning can be made from the letters of the
word MONDAY, assuming that no letter is repeated, if.
(i) 4lettersareused at atime, (i) all lettersare used at atime,
(i) all lettersare used but first letter is avowel?
In how many of the distinct permutations of the letters in MISSISSIPPI do the
four I’s not come together?
In how many ways can the letters of theword PERMUTATIONS be arranged if the
() words start with P and end with S, (i) vowelsareall together,
(iii) there are always 4 letters between P and S?

7.4 Combinations

Let us now assume that there is a group of 3 lawn tennis players X, Y, Z. A team
consisting of 2 playersisto be formed. In how many ways can we do so? Is the team
of X and Y different from the team of Y and X ? Here, order is not important.
In fact, there are only 3 possible ways in which the team could be constructed.
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Fig.7.3
Theseare XY, YZ and ZX (Fig 7.3).
Here, each selection is called a combination of 3 different objects taken 2 at a time.
In acombination, the order is not important.

Now consider some moreillustrations.

Twelve persons meet in aroom and each shakes hand with al the others. How do
we determine the number of hand shakes. X shaking handswith Y and Y with X will
not be two different hand shakes. Here, order is not important. There will be as many
hand shakes as there are combinations of 12 different things taken 2 at atime.

Seven points lie on a circle. How many chords can be drawn by joining these
points pairwise? There will be as many chords as there are combinations of 7 different
thingstaken 2 at atime.

Now, we obtain theformulafor finding the number of combinations of n different
objectstakenr at atime, denoted by "C ..

Suppose we have 4 different objects A, B, C and D. Taking 2 at atime, if we have
to make combinations, these will beAB, AC, AD, BC, BD, CD. Here, AB and BA are
the same combination as order does not alter the combination. Thisiswhy we have not
included BA, CA, DA, CB, DB and DCinthislist. There are as many as6 combinations
of 4 different objectstaken 2 at atime, i.e., “C, = 6.

Corresponding to each combinationinthelist, wecan arrive at 2! permutationsas
2 objects in each combination can be rearranged in 2! ways. Hence, the number of
permutations = “C, x 2!.

On the other hand, the number of permutations of 4 different thingstaken 2 at a
time = “P,.

4l 4
Therefore ‘P,=4C,x 2! or —(4_ 2)1 2 =G

Now, let us suppose that we have 5 different objects A, B, C, D, E. Taking 3 at a
time, if we have to make combinations, these will be ABC, ABD, ABE, BCD, BCE,

CDE,ACE, ACD,ADE, BDE. Corresponding to each of these *C, combinations, there
are 3! permutations, because, the three objects in each combination can be
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rearranged in 3 ! ways. Therefore, the total of permutations = °C, x 3!

5 _se
Therefore  °P,= °C,x3 or —(5_3)! 3 3

These examples suggest the following theorem showing relationship between
permutai on and combination:
Theorem 5 "|:>r = ”(:r r,0<r<n.
Proof Corresponding to each combination of "C we have r ! permutations, because

r objects in every combination can berearranged inr ! ways.
Hence, the total number of permutations of n different thingstakenr at atime

is nCr x r!. On the other hand, itis» P. Thus

"P ="C xr!, 0<r<n.

n! n!
Remarks 1. From above _(n—r)!: "Coxrlje, "Ci= 1(n—r)! -

Inparticular,if r=n, "C, L .
n a
2. Wedefine"C, =1, i.e., the number of combinations of n different things taken
nothing at all isconsidered to be 1. Counting combinationsis merely counting the
number of ways in which some or al objects at a time are selected. Selecting
nothing at all isthe same asleaving behind all the objectsand we know that there
is only one way of doing so. Thisway we define"C = 1.

nl

|
_ W _q_n ne "' i - _
3 ASQ(n—O)! 1="C,, theformula " C, =) isapplicableforr =0 also
Hence
n!
nC = —
r r!(n_r)!,OSrSn.
! n!
4. "C., = L = ="c,

n-r (n—r)!(n—(n—r))! (n—r)tr! '
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i.e., selecting r objects out of n objectsis same as rejecting (n— r) objects.
5. "Ca=”Cb: a=b ora=n-b,i.e,n=a+b
Theorem 6 "C_+"C,_, ="™'C

r

Proof We have nCr+nC'_1=r!(n—.r)!+(r—1)!(n.—r+1)!
- rx(r—l).!(n—r)! * (r—l)!(n—r.+1)(n—r)!
n! 1 1
= (r=2i(n-r)! [F+ n—r+1}

~ n! y n-r+l+r  (n+1)!
C(r=)n=r)t r(n-r+1) " r(n+1-r)!

_n+lC
- r

Example 17 If ”C9 = ”CB, find "C,-

Solution We have "c:9 = ”(38

e, 9!(nn'_9)! “(n _r;)! 8

=—— o n-8=9 o n=17
n-8

Therefore "C, =''C, =1.

or

Ol

Example 18 A committee of 3 personsisto be constituted from a group of 2 men and
3 women. In how many ways can this be done? How many of these committees would
consist of 1 man and 2 women?

Solution Here, order does not matter. Therefore, we need to count combinations.

There will be as many committees as there are combinations of 5 different persons

_8 _4x5_,
32 2

Now, 1 man can be selected from 2 men in °C, ways and 2 women can be
selected from 3 women in °C, ways. Therefore, the required number of committees

taken 3 at atime. Hence, the required number of ways = 5C3
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— 2C1><3C2 = i><i=6

ry 2210 -
Example 19 What is the number of ways of choosing 4 cards from a pack of 52
playing cards? In how many of these

(i) four cards are of the same suit,

(i) four cardsbelong to four different suits,
(i) are face cards,
(iv) two arered cards and two are black cards,
(v) cardsare of the same colour?

Solution Therewill be as many ways of choosing 4 cards from 52 cards as there are
combinations of 52 different things, taken 4 at atime. Therefore

' 2c - 52 49x50x51x52
The required number of ways = 47 49 2% 3x 4

= 270725
(i) Therearefou suits: diamond, club, spade, heart and there are 13 cards of each
suit. Therefore, there are *C, ways of choosing 4 diamonds. Similarly, there are
3C, ways of choosing 4 clubs, *C, ways of choosing 4 spades and “*C, ways of
choosing 4 hearts. Therefore
The required number of ways

BC, + BC, + BC, + BC,.
13
41 9l

4x =2860

(i) There arel3 cards in each suit.

Therefore, there are 13Clways of choosing 1 card from 13 cards of diamond,
C, ways of choosing 1 card from 13 cards of hearts, “C ways of choosing 1
card from 13 cards of clubs, =C ways of choosing 1 card from 13 cards of
spades. Hence, by multiplication principle, the required number of ways

= BC XBC xBCxBC =13
(iii) There are 12 face cards and 4 are to be selected out of these 12 cards. This can be

12

—£ _495
48 :

done in 2C, ways. Therefore, the required number of ways =
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(iv) There are 26 red cards and 26 black cards. Therefore, the required number of
ways = *C, x *C,

2
261\ .2
= (—2! 24J = (325)" = 105625

(V) 4 red cards can be selected out of 26 red cards in 2¢C, ways.
4 black cards can be selected out of 26 black cardsin #C ways.

Therefore, the required number of ways = *C, + *C,

_ oy 28 = 29900
Y '

EXERCISE 7.4/

1. If "C4="C, find "C,.

2. Determinen if
(i)"C,:"C,=12:1 (i) nC,:"C,=11:1

3. How many chords can be drawn through 21 points on a circle?

4. Inhow many ways can ateam of 3 boysand 3 girls be selected from 5 boys and
4qirls?

5. Find the number of ways of selecting 9 ballsfrom 6 red balls, 5 white ballsand 5
blue ballsif each selection consists of 3 balls of each colour.

6.  Determine the number of 5 card combinations out of a deck of 52 cards if there
is exactly one ace in each combination.

7. In how many ways can one select a cricket team of eleven from 17 playersin
which only 5 players can bowl if each cricket team of 11 must include exactly 4
bowlers?

8. A bag contains 5 black and 6 red balls. Determine the number of waysin which
2 black and 3 red balls can be selected.

9.  In how many ways can a student choose a programme of 5 courses if 9 courses
are available and 2 specific courses are compulsory for every student?

Miscellaneous Examples

Example 20 How many words, with or without meaning, each of 3 vowels and 2
consonants can be formed from the letters of the word INVOLUTE ?

Solution In the word INVOLUTE, there are 4 vowels, namely, 1,0,E,Uand 4
consonants, namely, N,V, L and T.
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The number of ways of selecting 3 vowels out of 4 =“C_ = 4.

The number of ways of selecting 2 consonants out of 4 = “C, = 6.

Therefore, the number of combinations of 3 vowels and 2 consonants is
4x6=24

Now, each of these 24 combinations has 5 letters which can be arranged among
themselves in 5 | ways. Therefore, the required number of different words is
24 x 51 = 2880.

Example 21 A group consists of 4 girlsand 7 boys. In how many ways can ateam of
5 members be selected if the team has (i) no girl ? (ii) at least one boy and one girl ?
(iii) at least 3girls?

Solution (i) Since, the team will not include any girl, therefore, only boys are to be
selected. 5 boys out of 7 boys can be selected in 'C, ways. Therefore, the required

Ve 6x7
number of ways =7C%=ﬂ= > =21

(i)  Since, at least one boy and one girl areto be there in every team. Therefore, the
team can consist of

(a) 1boyand4 girls (b) 2boysand 3 girls
(c) 3boysand2girls (d) 4boysand 1girl.
1 boy and 4 girls can be selected in 'C, x “C, ways.
2 boys and 3 girls can be selected in ’C, x *C, ways.
3 boys and 2 girls can be selected in ’C, x “C, ways.
4 boys and 1 girl can be selected in "C, x “C ways.
Therefore, the required number of ways
=7C x*C,+7C, x*C,+7C, x 4C,+ 'C, X *C,
=7+84+210+140=441
(i) Since, the team hasto consist of at least 3 girls, the team can consist of
(@) 3girlsand 2 boys, or  (b) 4 girlsand 1 boy.
Note that the team cannot have all 5 girls, because, the group has only 4 girls.
3 girlsand 2 boys can be selected in *C, x 'C, ways.
4 girlsand 1 boy can be selected in “C, x 'C, ways.
Therefore, the required number of ways
=4C,x 'C,+4C, xC =84+ 7=01
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Example 22 Find the number of words with or without meaning which can be made
using al the letters of the word AGAIN. If these words are written asin a dictionary,
what will be the 50" word?

Solution Thereare5lettersin thewordAGAIN, inwhich A appears 2 times. Therefore,

_ 5
the required number of words = = = 60,

To get the number of words starting with A, wefix theletter A at the extreme left
position, wethen rearrange the remaining 4 |etterstaken all at atime. There will be as
many arrangements of these 4 |etters taken 4 at atime as there are permutations of 4
different things taken 4 at a time. Hence, the number of words starting with

4
A= 4! =24. Then, starting with G the number of words = o= 12 as after placing G

at the extreme left position, we are left with the letters A, A, | and N. Similarly, there
are 12 words starting with the next letter 1. Total number of words so far obtained
=24+ 12+ 12=48.

The 49" word is NAAGI. The 50" word is NAAIG.
Example 23 How many numbers greater than 1000000 can be formed by using the
digits1, 2,0, 2,4, 2,4?
Solution Since, 1000000isa7-digit number and the number of digitsto beusedisalso

7. Therefore, the numbersto be counted will be 7-digit only. Also, the numbershaveto
be greater than 1000000, so they can begin either with 1, 2 or 4.

6l 4x5x6

The number of numbers beginning with 1 = ﬁ T 5 =60, aswhen 1is

fixed at the extreme |l eft position, theremaining digitsto berearranged will beQ, 2, 2, 2,
4, 4, inwhichthereare 3, 2sand 2, 4s.

Total numbersbegining with 2

@ 3x4x5x6
22 2

=180

a
and total numbers begining with 4 =§ =4x5%x6 =120
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Therefore, the required number of numbers = 60 + 180 + 120 = 360.
Alternative Method

71
The number of 7-digit arrangements, clearly, 5 —; = 420 But, thiswill include those

numbers also, which have 0 at the extreme left position. The number of such

6!
arrangements 3121 (by fixing O at the extreme | eft position) = 60.

Therefore, the required number of numbers = 420 — 60 = 360.

If one or more than one digits given in the list is repeated, it will be
understood that in any number, the digits can be used as many timesasisgivenin
theligt, e.g., in the above example 1 and O can be used only once whereas 2 and 4
can be used 3 times and 2 times, respectively.

Example 24 In how many ways can 5 girls and 3 boys be seated in arow so that no
two boys are together?

Solution Let us first seat the 5 girls. This can be done in 5! ways. For each such

arrangement, the three boys can be seated only at the cross marked places.
xGxGxGxGxGx,

There are 6 cross marked places and the three boys can be seated in °P, ways.

Hence, by multiplication principle, thetotal number of ways

=5l x6p = Sl x o
3 3!

=4x5x2x3x4x%x5x%x6 =14400.

Miscellaneous Exercise on Chapter 7

1. How many words, with or without meaning, each of 2 vowels and 3 consonants
can be formed from the letters of the word DAUGHTER ?

2. How many words, with or without meaning, can beformed using all theletters of
theword EQUATION at atime so that the vowel sand consonants occur together?

3. A committee of 7 hasto be formed from 9 boys and 4 girls. In how many ways
can this be done when the committee consists of :

(i) exactly 3 girls? (ii) atleast 3girls?  (iii) atmost 3 girls?
4. If the different permutations of all the letter of the word EXAMINATION are
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listed as in a dictionary, how many words are there in this list before the first
word starting with E ?

How many 6-digit numbers can be formed from the digits 0, 1, 3, 5, 7 and 9
which aredivisible by 10 and no digit isrepeated ?

The English aphabet has 5 vowels and 21 consonants. How many words with
two different vowels and 2 different consonants can be formed from the
aphabet ?

In an examination, a question paper consists of 12 questions divided into two
partsi.e., Part 1 and Part 1, containing 5 and 7 questions, respectively. A student
isrequired to attempt 8 questionsin al, selecting at least 3 from each part. In
how many ways can a student select the questions ?

Determine the number of 5-card combinations out of a deck of 52 cardsif each
selection of 5 cards has exactly one king.

Itisrequired to seat 5 men and 4 women in arow so that the women occupy the
even places. How many such arrangements are possible ?

From a class of 25 students, 10 are to be chosen for an excursion party. There
are 3 students who decide that either all of them will join or none of them will
join. In how many ways can the excursion party be chosen ?

In how many ways can the letters of the word ASSASSINATION be arranged
so that al the S's are together ?

Summary

¢ Fundamental principle of counting If an event can occur in m different

ways, following which another event can occur in n different ways, then the
total number of occurrence of the eventsin the given order ism x n.

© The number of permutations of n different things takenr at a time, where

n!
repetition is not allowed, is denoted by "P and is given by "P = h—r)’

where0<r <n.

en =1x2x3x..xn
®n=nx(n-1)!
@ The number of permutations of n different things, takenr at atime, where

repeatitionisallowed, isn'.
@ The number of permutations of n objectstaken all at atime, wherep, objects
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are of first kind, p, objects are of the second kind, ..., p, objects are of the k™"

n!
kind and rest, if any, are all differentis Bl Pl pl

¢ Thenumber of combinations of n different thingstakenr at atime, denoted by

n!

nCr,lsglven by“Cr = =m,03rs n.

Historical Note

The concepts of permutations and combinations can be traced back to the advent
of Jainism in India and perhaps even earlier. The credit, however, goes to the
Jains who treated its subject matter as a self-contained topic in mathematics,
under the name Vikalpa

Among the Jains, Mahavira, (around 850) is perhaps the world's first
mathematician credited with providing the general formul ae for permutations and
combinations.

Inthe 6th century B.C., Sushruta, in hismedicinal work, Sushruta Samhita,
asserts that 63 combinations can be made out of 6 different tastes, taken one at a
time, two at atime, etc. Pingala, a Sanskrit scholar around third century B.C.,
givesthe method of determining the number of combinations of a given number
of letters, taken one at a time, two at a time, etc. in his work Chhanda Sutra
Bhaskaracharya (born 1114) treated the subject matter of permutations and
combinations under the nameAnka Pasha in hisfamouswork Lilavati. In addition
to the general formulae for "C_and "P already provided by Mahavira,
Bhaskaracharya gives several important theorems and results concerning the
subject.

Outside India, the subject matter of permutations and combinations had its
humble beginningsin Chinain the famous book |—-King (Book of changes). It is
difficult to give the approximate time of thiswork, sincein 213 B.C., theemperor
had ordered all books and manuscriptsin the country to be burnt which fortunately
was not completely carried out. Greeks and later Latin writers also did some
scattered work on the theory of permutations and combinations.

Some Arabic and Hebrew writers used the concepts of permutations and
combinations in studying astronomy. Rabbi ben Ezra, for instance, determined
the number of combinations of known planetstaken two at atime, three at atime
and so on. Thiswas around 1140. It appears that Rabbi ben Ezra did not know
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the formula for "C .. However, he was aware that "C.= "C_, for specific values
nandr. In 1321, Levi Ben Gerson, another Hebrew writer came up with the
formulae for "P , "P and the general formula for "C .

The first book which gives a complete treatment of the subject matter of
permutations and combinations is Ars Conjectandi written by a Swiss, Jacob
Bernoulli (1654 — 1705), posthumously published in 1713. This book contains
essentially the theory of permutations and combinations as is known today.

7
_Q.Q _—
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Chapter

‘ BINOMIAL THEOREM )

s*Mathematics is a most exact science and its conclusions are capable of
absolute proofs. — C.P. STEINMETZ %

8.1 Introduction

In earlier classes, we have learnt how to find the squares
and cubes of binomialslikea + b and a—b. Using them, we
could evaluate the numerical values of numbers like
(98)? = (100 — 2)2, (999)3 = (1000 — 1)3, etc. However, for
higher powerslike (98)3, (101)8, etc., the cal cul ations become
difficult by using repeated multiplication. Thisdifficulty was
overcome by atheorem known asbinomial theorem. It gives
an easier way to expand (a + b)", where nisan integer or a
rational number. In this Chapter, we study binomial theorem
for positiveintegral indicesonly.

Blaise Pascal
(1623-1662)

8.2 Binomial Theorem for Positivelntegral Indices

Let ushavealook at thefollowing identities done earlier:
(a+ bp =1 a+tb=0
(a+ br=a+b
(a+ b)y?=a?+ 2ab + b?
(a+ b)® =a®*+ 3a% + 3ab*+ b?
(a+ b)*=(a+b)®(a+b) =a*+ 4a’b + 6a’b? + 4ab® + b*
In these expansions, we observe that
() The total number of terms in the expansion is one more than the index. For
example, inthe expansion of (@+ b)?, number of termsis 3 whereas the index of
(a+b?is2.
(i) Powersof thefirst quantity ‘@ go on decreasing by 1 whereas the powers of the
second quantity ‘b’ increase by 1, in the successive terms.
(ii) In each term of the expansion, the sum of the indices of aand bisthe same and
isequal to theindex of a +b.
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We now arrange the coefficients in these expansions as follows (Fig 8.1):

Index Coefficients
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
Fig8.1

Do we observe any pattern in thistable that will help usto write the next row? Yeswe
do. It can be seen that the addition of 1'sintherow for index 1 givesriseto 2 intherow
for index 2. Theaddition of 1, 2and 2, 1intherow for index 2, givesriseto 3and 3in
therow for index 3 and so on. Also, 1 ispresent at the beginning and at the end of each
row. This can be continued till any index of our interest.

We can extend the pattern given in Fig 8.2 by writing afew more rows,

Index Coefficients

0 1

1 1 v 1

2 1 v 2 v 1
3 3

Pascal’sTriangle

ThestructuregiveninFig 8.2 lookslikeatrianglewith 1 at thetop vertex and running
down the two slanting sides. This array of numbers is known as Pascal’s triangle,
after the name of French mathematician Blaise Pascal. It is also known as Meru
Prastara by Pingla.

Expansionsfor the higher powers of abinomial are a so possible by using Pascal’ s
triangle. Let us expand (2x + 3y)® by using Pascal’s triangle. The row for index 5is

1 5 10 10 5 1
Using thisrow and our observations (i), (ii) and (iii), we get
(2x+3y)* = (29°+5(29* (3y) + 10(2¥)° (3y)* +10 (2¢)* (3y)* + 5(2x)(3y)* +(3y)°
= 32%5 + 240x% + 720x8y2 + 1080x2y3 + 810xy* + 243y5.
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Now, if we want to find the expansion of (2x + 3y)*, we are first required to get
the row for index 12. This can be done by writing all the rows of the Pascal’ s triangle
till index 12. Thisisadlightly lengthy process. The process, asyou observe, will become
moredifficult, if we need the expansionsinvolving still larger powers.

Wethustry to find arulethat will help usto find the expansion of the binomial for
any power without writing all the rows of the Pascal’ s triangle, that come before the
row of the desired index.

For this, we make use of the concept of combinations studied earlier to rewrite

n!
the numbers in the Pascal’s triangle. We know that nCr = m ,0<r<nand
nisanon-negative integer. Also, "C =1=rC
The Pascal’s triangle can now be rewritten as (Fig 8.3)
Index Coefficients
0 ’'c,
=D
1 'c, ¢
=) =
2 c, ¢ g
=1) (=2) =D
3 ‘c, ‘¢, ‘¢, ‘¢
) =3 =3 G
4 ‘¢, ‘¢ ¢, o, ¢
=D =4 (=6) =) =D
5 ‘c, ¢ ‘¢, ‘¢, ‘¢, ‘c
=1 =) E10)  =10) (=5) =D

Fig 8.3 Pascal’striangle
Observing this pattern, we can now write therow of the Pascal’striangle for any index
without writing the earlier rows. For example, for theindex 7 the row would be

7c:0 7Cl 702 7C3 7(:4 7C:S 7(:6 7(:7.
Thus, using thisrow and the observations (i), (ii) and (iii), we have
(a+b)'="C a + 7Cah + 'Cab? + 'Ca'®+ 7Ca’%h* + 'C.ah® + 'C ab® + 'C b’
An expansion of abinomial to any positive integral index say n can now be visualised

using these observations. We are now in aposition to write the expansion of abinomial
to any positiveintegral index.
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8.2.1 Binomial theorem for any positive integer n,
@+b)=r"Ca"+ "Ca'b+"Ca?b*+ .+ "'C _ab™+"Ch
Proof Theproof isobtained by applying principle of mathematical induction.
Let the given statement be
Pin): (@a+ b"="Ca' +"Ca b +"Ca d*+..+"C _ab"*+"ChH
For n=1, we have
P(Q:(@+b=Ca'+'Ch =a+b
Thus, P (1) istrue.
Suppose P (K) is true for some positive integer k, i.e.
(a+b}=*Ca+* Ca~h +'Ca %+ ..+ Cb - (1)
We shall prove that P(k + 1) isalso true, i.e.,
(@+byrt=F1Ca*t+ 1 1C db+ IC AP + L+ KIC Bt
Now, (@ + b)k** =(a+ b) (a+ bk
=(@a+b) (C,a+Ca-tb+*C a2 +.+<C _ ab-1+*C bY
[from ()]
=G ad t+C ab +*Ca 1 +.+C, _ &b 1+ C a +/C, b

+Ca P+ 'CaH+.+'C_ab +'Ch !
[by actua multiplication]

=kCak+1 + (C+C) ab + (xC, ++C)ak- 12+ ...
+ (*C+C_) ab“ +*Cp ** [grouping like terms]
= k+ 1C0a k+ 1 + k + lclakb + k+ 1C2ak‘1b2+...+ k + ]Ckabk+ k + 1Ck+1bk+l
(by using **'C =1, ‘C +*C_=**'C and ‘C =1="'C

Thus, it has been proved that P (k + 1) is true whenever P() is true. Therefore, by
principle of mathematical induction, P(n) istrue for every positive integer n.

1)

Weillustrate this theorem by expanding (x + 2)%
(X+2)° =°8Cx° +5Cx°.2 + °Cx*22 + °C 323 + °Cx22* + ®Cx2° + °C_.2°
= xX® + 12x° + 60x* + 160x° +240x + 192x + 64
Thus (x + 26 = X6+ 12x° + 60% + 160x3+240% + 192X + 64.
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Observations

n
1. Thenotation ., "Ci 8" “b* stands for
k=0

"Cat’ +"Ca™bt + ..+ "Cav'h + ..+"Ca™", where b°= 1 = a™".
Hence the theorem can also be stated as

(a+b)"=Y "C,a""b*
k=0

2. The coefficients "C. occuring in the binomial theorem are known as binomial
coefficients.

3.  Thereare (n+1) termsin the expansion of (a+b)", i.e., one more than the index.

4. In the successive terms of the expansion the index of a goes on decreasing by
unity. Itisninthefirst term, (n-1) in the second term, and so on ending with zero
in the last term. At the same time the index of b increases by unity, starting with
zero in thefirst term, 1 in the second and so on ending with nin the last term.

5. Inthe expansion of (a+b)", the sum of theindicesof aand bisn + 0 =ninthe
firstterm, (n—1) + 1 = ninthe second term and so on 0 + n = n in the last term.
Thus, it can be seen that the sum of theindicesof a and bisn in every term of the
expansion.

8.2.2 Some special cases In the expansion of (a + b)",
(i) Takinga = xand b = -y, we obtain
x=yr =[x+ )"
"C0 + 1T 3(y) + CxXEHY)? + CpO(=y) + .+ 7C ()"
CX' —"CX"ly +"CX' —"CX" Y + ..+ (-1)""C, Y
Thus (x—y)" ="CX"—"Cx""'y + "CX"~2y*+ ... + ()" "C y"
Using this, we have (x=2y)° = °CxX°> = *Cx'(2y) + CX° (2yf —°Cx* (2y) +
°C, X(2y)'— °C, ()
=x5 —10xy + 402 — 80x?y® + 80xy* — 32y°.
(i) Takinga=1, b =x weobtan
(1+X)"="C ()" +"C(D)" X + "C,(1) %% + ... +"CX"
="C,+"Cx+"CxX+"Cx+ .. +"CxX

Thus (L+x"=nC,+"Cx+"Cx2 +rCx3+ ... +C X"
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In particular, for x= 1, we have
2="C +"C + "C,+ .. +C.
(i) Teaking a=1, b=-x, weabtain
(I-x) = C,—"Cx+"Cx — ..+ (=1pnCx"
In particular, for x= 1, we get
0="C,-"C, +"C, — ... + (<1)" 'C,

2, 3)
Example 1 Expand X+; , X#0

Solution By using binomial theorem, we have

(X2+§J4—4C %2)4 + 4C (X2)3 (Ej + 4C () (§j2+ iC (2 (ET.}. iC (ET
= 4CL0) +1CL00° | |+ ICLP | | L) | T+ | S

9 27 81
=X +4X°. —+6xX. ZT+4X 3+ 7
X X X* X

108 81
=x8+ 12x° + 54%¥ + T+?'

Example 2 Compute (98)°.

Solution We express 98 as the sum or difference of two numbers whose powers are
easier to calculate, and then use Binomial Theorem.
Write 98 = 100 — 2
Therefore, (98)° = (100 — 2)°
=°C, (100)° —°C, (100)“2 +°C, (100)°2
— °C, (100)2(2)® + °C, (100) (2)* - °C, (2)°
= 10000000000 -5 x 100000000 x 2 + 10 x 1000000 x 4 —10 x10000
x8+5x100x 16—-32

= 10040008000 — 1000800032 = 9039207968.

Example 3 Which is larger (1.01)**®® or 10,000?

Solution Splitting 1.01 and using binomial theorem to write the first few terms we
have
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(1.01)10000 = (1 4 (011000000
= 10000C '+ 10%9°C (0.01) + other positive terms
=1+ 1000000 x 0.01 + other positive terms
=1+ 10000 + other positive terms
> 10000
Hence (1.01)© > 10000

Example 4 Using binomia theorem, prove that 6'-bn always leaves remainder
1whendivided by 25.

Solution For two numbers a and b if we can find numbers q and r such that
a=hq +r, then we say that b divides awith qas quotient and r asremainder. Thus, in
order to show that 6"— 5n leaves remainder 1 when divided by 25, we prove that
6'—5n = 25k + 1, where k is some natural number.

We have
(1+arn=rC +Ca+rCa+..+Ca
Fora =5, weget
(1+5"="C,+"C5+"C,5+..+"C5

i.e. 6)=1+5+5"C,+5"C, +..+5

e 6'-5n=1+5 ("C,+"C5 + ... + 5™)

or 6'—5n=1+25("C,+5."C, + ... + 573

or 6'—5n=25k+1 wherek= "C,+5."C_ + ... + 32

This shows that when divided by 25, 6"—5nleaves remainder 1.

| EXERCISE 8.1

Expand each of the expressions in Exercises 1to 5.

2 xY
1. (1-2x)° 2. (;—E) 3. (2x-23)°
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5 6
(_XAJ 5, (x+1j
3 X X

Using binomial theorem, eval uate each of thefollowing:

6.

9.
10.

1.

12.
13.

14.

(96)3 7. (102)° 8. (101)*

(99)°

Using Binomial Theorem, indicate which number islarger (1.1)**®or 1000.
Find (a + b)* — (a — b)*. Hence, evaluate (y3+y2)*~ (/3 —+/2)".

Find (x + 1)° + (x — 1)6. Hence or otherwise evaluate (.\/E + 1P + (ﬁ — 1)
Show that 9"**—8n—9isdivisible by 64, whenever nisapositive integer.

Prove that Z3r C.=4"

r=0
General and MiddleTerms

In the binomial expansion for (a + b)", we observe that the first term is
"C ", the second termis"C a™b, the third term is"C a1, and so on. Looking
at the pattern of the successive terms we can say that the (r + 1) term is
"Ca™b’. The (r + 1)"term is also called the general term of the expansion
(a+Db)" Itisdenoted by T .. ThusT  ="C a™b.
Regarding the middle term in the expansion (a + b)", we have

(i) If niseven, then the number of termsin the expansion will ben + 1. Since

n+1+1)
2

th

nisevenson + 1isodd. Therefore, the middle term is( ,i.e,

n th
—+1| term.
[2 j em

8 th
For example, inthe expansion of (x+ 2y)8, themiddleterm is(z +lj i.e,
5" term.

(i) If nisodd, thenn +1 is even, so there will be two middle terms in the
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, n+1)" n+1 " _ _
expansion, namely, T term and T+1 term. So in the expansion

_ 7+1)" 7+1 "
(2x —y)7, the middle terms are - ,i.e,4nand T+1 ,i.e, 5hterm.

2n+1+1Jth

2n
3. Intheexpansionof(x+;j ,Wherex;to,themiddletermis( 5

i.e, (n+ 1t term, as 2n is even.

1 n
It is given by *'C x" (;j = C, (constant).

Thisterm is called the term independent of x or the constant term.
Example 5 Find a if the 17" and 18™ terms of the expansion (2 + a)® are equal.
Solution The (r + 1)" term of the expansion (x +y)" isgivenby T = "Cx-y'.
For the 17t term, we have, r + 1 =17,i.e,r = 16

Therefore, T, =T,.,=%C, (Q*-*a®
=50C, 2% gt
1
Smilarly, T, =%C, 2% av

Giventha T, =T,
<0 SOC]_G (2)34 a6 = 50(:17 (2)33 ar’

50 34
Cws.27 a¥

Therefore w: F

PCy x 2 500 L 1n . 33
c, T 16134 50!

e, a= x 2=1

Example 6 Show that the middle term in the expansion of (1+x)*"is

135.(2n-1)

o 2n X", wheren is a positive integer.
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on th
Solution As 2n is even, the middle term of the expansion (1 +x)*"is (7 + 1) ,

i.e., (n+ 1)t term whichisgiven by,

(2)! n

T " :2nCn(1)2n—n(X)n - 2nCan = .

n

_2n(2n-1) (2n-2) ..4321 o

n! nl
_1234.(2n-2)(2n-1)(2n)
- nn X

[1.35...(2n-1)][2.4.6...(2n)]
= A X

_ [135.(2n-D]2"[1.23..n] _,
- nin! X

_ [L35.(2n-D]n! N
n! n!

1.35...(2n-1
_135.@n-9 .,
n

Example 7 Find the coefficient of x8y? in the expansion of (x + 2y)°.
Solution Suppose x%?® occurs in the (r + 1) term of the expansion (x + 2y)°.
Now T,=CxX""()=°%C2n.x".y".
Comparing theindices of x aswell asyinx%®andin T _ ,wegetr =3.
Thus, the coefficient of xéy3 is

9 ~9.87

oC 23=—2 = 2 =672,
3 36! 3.2

Example 8 The second, third and fourth termsin the binomial expansion (x + a)" are
240, 720 and 1080, respectively. Find x, aand n.

Solution Given that second term T, = 240
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We have T,="Cx""'. a

S "Cx". a=240 .. (1)
Smilarly "Cx2a =720 .. (2
and "Cxm3 a8 = 1080 . (3

Dividing (2) by (1), we get
"CX"%a’ 720 (-t a_.
"Cxta 240 "% (-2 x

a 6
o X (n-1) (@
Dividing (3) by (2), we have

a 9

x  2(n-2) . (5)
From (4) and (5),

6 9
n_1 20-2) Thus,n=5
a 3

Hence, from (1), 5x*a = 240, and from (4), ;=§

Solving these equations for a andx, weget x =2 and a= 3.

Example 9 The coefficients of three consecutive terms in the expansion of (1 + a)”
areintheratiol: 7:42. Find n.

Solution Suppose the three consecutive terms in the expansion of (1 + a)" are
(r=21™" r"and (r + 1)" terms.
The (r —1)"termis"C _,a 2 andits coefficientis"C, _,. Similarly, the coefficients
of r'"and (r + 1)" terms are"C,_, and"C_, respectively.

Since the coefficientsareintheratio1l: 7 : 42, so we have,

"C., 1

=—,ie,n=-8 +9=
nCr—l 7,|e,n 8 +9=0 @
nCr—l _ 7 .
and _"C = E ,ie,n=-77+1=0 .. (2

r

Solving equations(1) and (2), we get, n=55.
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EXERCISE 8.2

Find the coefficient of
1. x8in(x+ 3)8 2.a% in (a - 2b)2 .
Write the general term in the expansion of
3. (-y)° 4. (C—yx)* x £ 0.
5. Find the 4" term in the expansion of (x — 2y)™.

18
1
6. Find the 13" term in the expansion of (9X—m] , X = 0.

Find the middle termsin the expansions of

x2)’ X 10
3-2_ 2
7. [ 6) 8. (3+9y) .

9. Intheexpansion of (1 + a)™", prove that coefficients of a™ and a" are equal.

10. The coefficientsof the (r — 1)™, rthand (r + 1) termsin the expansion of (x + 1)
areintheratiol: 3:5. Find nandr.

11. Provethat the coefficient of X" inthe expansion of (1 + x)*"istwicethe coefficient
of X"in the expansion of (1 + x)*"~%.

12. Find a positive value of m for which the coefficient of x2 in the expansion
A+Xx)mis6.

Miscellaneous Examples

6
3 1
Example 10 Find the term independent of X in the expansion of (EXZ - —j .

o ($e) (3]
o (30 e (3(3)

Solution We have T,
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6 —2r
:(_Dr GCr ((:'-2‘2))6_r X12—3r

Thetermwill beindependent of x if theindex of xiszero, i.e., 12—3r =0. Thus,r =4

(3 _5
Hence 5" term is independent of x and is given by (- 1) ¢C, W: -

Example 11 If the coefficients of & =, a" and & ** in the expansion of (1 + a)"arein
arithmetic progression, prove that n’— n(4r + 1) + 4r>—2 =0.

Solution The (r + 1) terminthe expansionis "C &. Thusit can be seen that & occurs
inthe (r + 1)" term, and its coefficient is"C . Hence the coefficients of a1 ,a and
a*tae"C _,,"C and"C,,,, respectively. Slncetheﬁe coefficientsarein arlthmetlc

r—-1 r+1

progression, so we have, "C,_,+"C_,,=2."C. This gives
nl n! n

+ =2x
r-D'(n-r+1! (r+Y!(n—r -1)! r‘(n—r)!
_ 1 . 1
€. r=-Di(n-r+D(n-r)(n—-r=! (r+D () -DI(n—r-1)!
ST =D'(n-r)(n—-r-1)!
1 { 1 1 }
or +
r=9! (n-r=!' [ (n=r)(n-r+D) (r+1 (r)
=D (n-r=Dr(n-r)]
1 1 2
i.e + = ,
(n—r+H(n-=r) r(r+1) r(n-r)

r(r+H+(n-r)(n-r+1) 2
or (n=r)(n=r+)r(r+1) r(n-r)

or rr+)+Mn-r)(n-r+1)=2(r+1)(n-r+1)

or rr+r+nmn—nr+n—-nr+r2—r =2nr—r2+r+n-r +1)
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or P—4nr —n+4r>°-2=0
ie, P—-n@r+1)+4r2-2=0

Example 12 Show that the coefficient of the middle term in the expansion of (1 +Xx)" is
equal to the sum of the coefficients of two middle termsin the expansion of (1 +x)2-1,

Solution As 2nis even so the expansion (1 + x)*" has only one middle term which is

n th
[? +1j i.e, (n+ 1) term.

The (n + 1)" term is *'C x". The coefficient of x"is*'C_
Similarly, (2n—1) being odd, the other expansion hastwo middle terms,

2n-1+1)" 2n-1+1 " N
— and — +1] i.e, n" and (n + 1) terms. The coefficients of
these terms are "~ 'C__ and ™ ~'C , respectively.
Now
n-1C _ + 20-1C =2C [As"C _+nC =n+1C]. as required.

Example 13 Find the coefficient of a*in the product (1 + 2a)* (2 —a)® using binomial
theorem.

Solution We first expand each of the factors of the given product using Binomial
Theorem. We have

(1 +2a)* =4C +4C (2d) + “C, (29)* + “C, (29)*+ “C, (2a)*
=1+ 4(2a) + 6(4a°) + 4 (82°) + 16&".
=1+ 8a+ 24a*+ 32a’+ 16"
and (2-af =°C, (2°-°C, (2)' @) +°C,(2 @F-°C, (2%(a)°
+5C, (2) @) —°C, (a)°
=32 —-80a+ 80a2— 40a3+ 10&* — &
Thus (1 + 2a)* (2 — a)°
= (1 + 8a + 24&* + 32a%+ 16a*) (32 —80a + 80a°— 40a° + 10a'—a°)

The complete multiplication of the two brackets need not be carried out. Wewrite only
those terms which involve &. This can be done if we notethat a'. a*-'= a* Theterms
containing a‘are

1 (10a% + (8a) (—40a% + (24a?) (80&%) + (32a° (- 80a) + (16a”) (32) = — 438a*
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Thus, the coefficient of a*in the given product is— 438.
Example 14 Find ther™ term from the end in the expansion of (x + @".

Solution Thereare (n + 1) termsin the expansion of (x + a)". Observing the termswe
can say that the first term from the end is the last term, i.e., (n + 1)"" term of the
expansionand n+ 1 =(n + 1) — (1 —1). The second term from the end is the n" term
of theexpansion, and n=(n+ 1) —(2—1). Thethird term fromtheend isthe (n—1)"
term of the expansionand n—1 = (n+ 1) — (3—1) and so on. Thus r term from the
end will be term number (n+ 1) — (r —1) = (n—r + 2) of the expansion. And the
(n—r+2)"termisnC__ x-tar-r+i

r

18
1
Example 15 Find theterm independent of xin the expansion of (‘3& + 23—&] , x>0.

r
Solution We have T, , = *°C, (‘3/;)18 r [ : j

2¥fx

18-r

- 1

= BC x 3 _=18c, =
r or

2" x3

18-2r

Sincewe havetofind aterm independent of x, i.e., term not having x, so take 0.

1
We get r = 9. The required term is *C, ? .
Example 16 The sum of the coefficients of the first three terms in the expansion of

m
(X— 7) , X# 0, m being a natural number, is 559. Find the term of the expansion

containing x3.

3 m
Solution The coefficients of the first three terms of (X— Fj are "C,, (=3) "C,
and 9 "C... Therefore, by the given condition, we have

Im(m-1
mC0 -3 mC1+ 9 '“sz 559,i.e,1-3m+ % =559



BINOMIAL THEOREM 175

which gives m= 12 (mbeing anatural number).
3 r
Now T = 12CrX12—r (_F) = 12(:r (_ 3)r SxL2 -3

r+1

Since we need the term containing X3, so put 12 —-3r = 3i.e, r=3.

Thus, the required term is 2C_ (- 3)°), i.e., — 5940 x2.

Example 17 If the coefficients of (r — 5)™ and (2r — 1)™ terms in the expansion of
A+ x)*areequa, findr.

Solution The coefficients of (r — 5)" and (2r — 1)™ terms of the expansion (1 + x)*
ae*C __ and *C, , respectively. Since they are equal so*C _ = *C, _

Therefore, eitherr —6=2r -2 or r-6=34—(2r—-2)
[Using the fact that if "C ="C,, then eitherr =porr=n—p]

2

So, wegetr =—4orr =14.r being a natural number, r = — 4 is not possible.
So, r = 14.

Miscellaneous Exercise on Chapter 8
1. Finda,bandnintheexpansionof (a+ b)"if thefirst threetermsof the expansion
are 729, 7290 and 30375, respectively.
2. Find a if the coefficients of x? and x® in the expansion of (3 + ax)® are equal.
3. Findthe coefficient of x3inthe product (1 + 2x)¢ (1 —x)7 using binomial theorem.
4. If aand b are distinct integers, prove that a —b is afactor of a» — b, whenever
nisapositive integer.
[Hint writea” = (a — b + b)" and expand]

5. Evaluate (V3 ++Z) - (vB-+2) .

4 4
6. Findthe vaue of (a2+ az—l) +(a2—\/a2—1) ]

Find an approximation of (0.99)° using the first three terms of its expansion.
8. Findn, if theratio of thefifth term from the beginning to the fifth term from the

-

1 n
end in the expansion of (5/5+ %j is4/6:1.
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o AN
9. Expandusing Binomial Theorem 1+E_; X#0,

10. Find the expansion of (3x2—2ax + 3a?)?® using binomial theorem.

Summary

4 The expansion of abinomial for any positiveintegral n is given by Binomial
Theorem, which is (a + b)» = "Ca" + "Ca"-b + "C,a"-2b? + ...+
"C _abn-t+nC b

¢ The coefficients of the expansions are arranged in an array. This array is
called Pascal’s triangle.

¢ The general term of an expansion @ + b)"isT , ="Ca"~". b".

1

th
n
¢ Inthe expansion (a+ b)", if nis even, then the middle term is the (§+1J

n+1 n+1

th th
term.|f n is odd, then the middle terms are (Tj and (—2+1j terms.

Historical Note

The ancient Indian mathematicians knew about the coefficients in the
expansions of (X +y)", 0 < n < 7. The arrangement of these coefficients was in
the form of a diagram called Meru-Prastara, provided by Pingla in his book
Chhanda shastra (200B.C.). This triangular arrangement is also found in the
work of Chinese mathemeatician Chu-shi-kiein 1303. Theterm binomial coefficients
wasfirst introduced by the German mathematician, Michael Stipel (1486-1567) in
approximately 1544. Bombelli (1572) also gavethe coefficientsin the expansion of
(a+b)", forn=1,2...,7 and Oughtred (1631) gave them for n = 1, 2,..., 10. The
arithmetic triangle, popularly known asPascal’striangle and similar to the Meru-
Prastara of Pinglawas constructed by the French mathematician Blaise Pascal
(1623-1662) in 1665.

The present form of the binomial theorem for integral valuesof nappearedin
Trate du triange arithmetic, written by Pascal and published posthumously in
1665.

O/
— g —



Chapter

SEQUENCES AND SERIES

*®Natural numbers are the product of human spirit. - DEDEKIND

9.1 Introduction

In mathematics, the word, “sequence” is used in much the

same way as it is in ordinary English. When we say that a

collection of objects is listed in a sequence, we usually mean

that the collection is ordered in such a way that it has an

identified first member, second member, third member and

so on. For example, population of human beings or bacteria

at different times form a sequence. The amount of money

deposited in a bank, over a number of years form a sequence.

Depreciated values of certain commodity occur in a

sequence. Sequences have important applications in several Fibonacci

spheres of human activities. (1175-1250)
Sequences, following specific patterns are called progressions. In previous class,

we have studied about arithmetic progression (A.P). In this Chapter, besides discussing

more about A.P.; arithmetic mean, geometric mean, relationship between A.M.

and GM., special series in forms of sum to n terms of consecutive natural numbers,

sum to n terms of squares of natural numbers and sum to n terms of cubes of

natural numbers will also be studied.

9.2 Sequences

Let us consider the following examples:

Assume that there is a generation gap of 30 years, we are asked to find the
number of ancestors, i.e., parents, grandparents, great grandparents, etc. that a person
might have over 300 years.

Here, the total number of generations _ 300 =10
30

2015-16
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The number of person’s ancestors for the first, second, third, ..., tenth generations are
2,4,8,16, 32, ..., 1024. These numbers form what we call a sequence.

Consider the successive quotients that we obtain in the division of 10 by 3 at
different steps of division. In this process we get 3,3.3,3.33,3.333, ... and so on. These
quotients also form a sequence. The various numbers occurring in a sequence are
called its terms. We denote the terms of a sequence by a,, a,, a,, ..., a, ..., etc., the
subscripts denote the position of the term. The n™ term is the number at the n™ position
of the sequence and is denoted by a The n™ term is also called the generalterm of the
sequence. '

Thus, the terms of the sequence of person’s ancestors mentioned above are:
a=2a,=4a,=38, .., a,=1024
Similarly, in the example of successive quotients
a =3,a,=33,a,=333, ..., a,= 3.33333, etc.

A sequence containing finite number of terms is called a finite sequence. For
example, sequence of ancestors is a finite sequence since it contains 10 terms (a fixed
number).

A sequence is called infinite, if it is not a finite sequence. For example, the
sequence of successive quotients mentioned above is an infinite sequence, infinite in
the sense that it never ends.

Often, it is possible to express the rule, which yields the various terms of a sequence
in terms of algebraic formula. Consider for instance, the sequence of even natural
numbers 2, 4, 6, ...

Here a=2=2x1 a,=4=2x12

a3=6=2><3 a4=8=2><4

aB:46:2x23,a24:48:2x24,andsoon.

In fact, we see that the n™ term of this sequence can be written as a = 2n,
wheren is a natural number. Similarly, in the sequence of odd natural numbers 1,3,5, ...,
the n™ term is given by the formula, a, = 2n — 1, where n is a natural number.

In some cases, an arrangement of numbers such as 1, 1, 2, 3, 5, 8,.. has no visible
pattern, but the sequence is generated by the recurrence relation given by

a =a,= 1
a,=a, +a,

+a n>?2

n—-1°

a =da

n n-2

This sequence is called Fibonacci sequence.

2015-16
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In the sequence of primes 2,3,5,7,..., we find that there is no formula for the n®
prime. Such sequence can only be described by verbal description.

In every sequence, we should not expect that its terms will necessarily be given
by a specific formula. However, we expect a theoretical scheme or a rule for generating
the terms a, a,, a,,...,a,,... in succession.

In view of the above, a sequence can be regarded as a function whose domain
is the set of natural numbers or some subset of it of the type {1, 2, 3...k}. Sometimes,
we use the functional notation a(n) for a,.

9.3 Series
Leta, a, a,,...,a, be a given sequence. Then, the expression
a+a+a +,...+a +..
1 2 3 n

is called the series associated with the given sequence .The series is finite or infinite
according as the given sequence is finite or infinite. Series are often represented in

compact form, called sigma notation, using the Greek letter ¥ (sigma) as means of
indicating the summation involved. Thus, the series a, + a,+a,+ ...+ a, is abbreviated

n
as » a
k=1 :

Remark When the series is used, it refers to the indicated sum not to the sum itself.
For example, 1 + 3 + 5 + 7 is a finite series with four terms. When we use the phrase
“sum of a series,” we will mean the number that results from adding the terms, the
sum of the series is 16.

We now consider some examples.

Example 1 Write the first three terms in each of the following sequences defined by
the following:

n-3

i) a,=2n+5, @) a,= 4

Solution (i) Here a, =2n + 5
Substitutingn = 1, 2, 3, we get
a, =2(1)+5:7,a2:9,a3:11

Therefore, the required terms are 7, 9 and 11.

. n—3 — 1 1

(i) Here a, = T Thus, a, =T=—E, a, =—Z,a3 =0

2015-16
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Hence, the first three terms are _ 1 1 and 0.

>

2 4

Example 2 What is the 20" term of the sequence defined by
a,=(n-1)2-n)@B+n)?

Solution Putting n = 20 , we obtain
a, =(20-1)(2-20) 3 +20)
= 19 x (- 18) x (23) = — 7866.
Example 3 Let the sequence a,, be defined as follows:
a=1a =a  +2fornz2.

Find first five terms and write corresponding series.
Solution We have

a=la,=a +2=1+2=3,a,=a,+2=3+2=35,

a,=a,+2=5+2=T,a,=a,+2=T+2=09.

Hence, the first five terms of the sequence are 1,3,5,7 and 9. The corresponding series
iS1+3+5+7+9+...

| EXERCISE 9.1

Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth
terms are:

n
1. a,=n(n+2) 2. a,= 1 3. a,=2"
2n—3 n’ +5
4. a = 5. a,=CD"" 5" 6. a,=n

4

Find the indicated terms in each of the sequences in Exercises 7 to 10 whose n®"
terms are:

n2

7. a=4n-3;a,,a, 8. an=2_n;a7
s nn-2)
9. = (-1)y'm; 10. a,=———; .
a, = (=1y~'n’; a, 0 13 CT

2015-16
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Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the
corresponding series:

11. a =3,a,=3a_ +2foralln>1 12. a,=-1l,a=—"" n22

13. a, =a2=2, an=anfl—1,n>2
14. The Fibonacci sequence is defined by
l=a,=a,anda,=a, ,+a, ,,n>2.

an+l
Find a ,forn=1,2,3,4,5

n

9.4 Arithmetic Progression (A.P.)
Let us recall some formulae and properties studied earlier.

A sequence a, a,, a,..., a,... is called arithmetic sequence or arithmetic
progressionifa  =a +d, ne N,where a is called the first fermand the constant
term d is called the common difference of the A.P.

Let us consider an A.P. (in its standard form) with first term ¢ and common
difference d, i.e.,a,a+ d, a + 2d, ...

Then the n™ term (general term) of the A.P. is a=a+n-1)d

We can verify the following simple properties of an A.P. :
(i) If a constant is added to each term of an A.P., the resulting sequence is
also an A.P.
(i) If a constant is subtracted from each term of an A.P., the resulting
sequence is also an A.P.
(iii) If each term of an A.P. is multiplied by a constant, then the resulting
sequence is also an A.P.
(iv) If each term of an A.P. is divided by a non-zero constant then the
resulting sequence is also an A.P.
Here, we shall use the following notations for an arithmetic progression:
a = the first term, [ = the last term, d = common difference,

n = the number of terms.
S,= the sum to n terms of A.P.

Leta,a+d a+2d, ... a+ (n—1)dbe an A.P. Then
[ =a+(n-1)d

2015-16
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S, =g[2a+(n—1)d]

n
We can also write, S, :E [a +l]

Let us consider some examples.

Example 4 In an A.P. if m® term isn and the nt term is m, where m = n, find the pth
term.

Solution We have a,=a+(m—-1)d=n, .. (D)
and an:a+(n—1)d:m .. (2)
Solving (1) and (2), we get
(m-n)yd=n-m,or d=-1, .. (3
and a=n+m-1 e @

Therefore  a,=a+ (p-1d
=n+m-1+(p-1)()=n+m-p
Hence, the p™ term is n + m — p.

Example 5 If the sum of n terms of an A.P. is nP+%n(n —1)Q ., where Pand Q

are constants, find the common difference.

Solution Let a, a,, ... a,be the given A.P. Then

1
S, =a,+a,+a,+.+a,, +a =nP+ En(n_l)Q

Therefore S, =a =RS =a+a,=2P+Q
So that a,=S,-S =P+Q
Hence, the common difference is given by d = a-a =P+Q-P=Q.

Example 6 The sum of n terms of two arithmetic progressions are in the ratio
(Bn + 8) : (7n + 15). Find the ratio of their 12" terms.

Solution Let a,a, and dl, d2 be the first terms and common difference of the first
and second arithmetic progression, respectively. According to the given condition, we
have

Sumtontermsof firstA.P.  3n+48

Sumto ntermsof secondA.P. 7n+15
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n
5[2a1+(n—1)d1] 3048

o S[2a,+(n=1)d, ] Tn+13
2a,+(n—Dd, 3n+8

or 2a,+(n—)d, Tn+15 - (D)

12" termof first A.P.  a,+11d,

Now T =
127 termof secondA.P  a,+11d,
2a,+22d;  3x23+8 ' .
2a,+22d, T 7%23+15 [By putting n=23 in (1)]
a,+11d, 12" term of first A.P. 7

Therefore = =Tz

a,+11d, 12" term of second A.P. 16
Hence, the required ratio is 7 : 16.

Example 7 The income of a person is Rs. 3,00,000, in the first year and he receives an
increase of Rs.10,000 to his income per year for the next 19 years. Find the total
amount, he received in 20 years.

Solution Here, we have an A.P. with a = 3,00,000, d = 10,000, and n = 20.
Using the sum formula, we get,

20
2 = = 1600000+ 19 10000] = 10 (790000) =79,00.000.

Hence, the person received Rs. 79,00,000 as the total amount at the end of 20 years.

9.4.1 Arithmetic mean Given two numbers a and b. We can insert a number A
between them so that a, A, b is an A.P. Such a number A is called the arithmetic mean
(A.M.) of the numbers a and b. Note that, in this case, we have

a+b

2

We may also interpret the A.M. between two numbers a and b as their

A-a=b-A, ie,A =

a+b

average . For example, the A.M. of two numbers 4 and 16 is 10. We have, thus

constructed an A.P. 4, 10, 16 by inserting a number 10 between 4 and 16. The natural
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question now arises : Can we insert two or more numbers between given two numbers
so that the resulting sequence comes out to be an A.P. ? Observe that two numbers 8
and 12 can be inserted between 4 and 16 so that the resulting sequence 4, 8, 12, 16
becomes an A.P.

More generally, given any two numbers a and b, we can insert as many numbers
as we like between them such that the resulting sequence is an A.P.

LetA, A,A, ..., A ben numbers between a and b such that a, A, A, A, ...,
A, b is an A.P.

Here, b is the (n +2) " term, i.e., b =a+[(n+2)—-1]d =a+n + 1)d.
b—

d="2
n+l

This gives

Thus, n numbers between a and b are as follows:

b—a
A1=a+d:a+m
2(b—a)
A =a+2d=a+ i1
3(b—-a)
A,=a+3d=a+ 41
nb—a)
A =a+nd=a+ n+1

Example 8 Insert 6 numbers between 3 and 24 such that the resulting sequence is

an AP

Solution Let A, A,, A;, A,, A, and A be six numbers between 3 and 24 such that

3,ALALAALAL A 24 arein AP. Here,a=3, b=24,n=238.

Therefore, 24 =3 + (8 —1) d, so that d = 3.

Thus A =a+d=3+3=6; A, =a+2d=3+2x3=09;
Aj=a+3d=3+3x3=12; A, =a+4d=3+4x3=15;
Aj=a+5d=3+5%x3=18;, Aj=a+6d=3+6x3=21

Hence, six numbers between 3 and 24 are 6, 9, 12, 15, 18 and 21.
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| EXERCISE 9.2 |

Find the sum of odd integers from 1 to 2001.

Find the sum of all natural numbers lying between 100 and 1000, which are
multiples of 5.

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of
the next five terms. Show that 20" term is —112.

How many terms of the A.P. — 6, _E ,—35, ... are needed to give the sum —25?

2

. 1 1 .
In an AP, if p™ term is — and ¢" term is —, prove that the sum of first pg
q p

terms is l(pq +1), where p #gq.

If the sumzof a certain number of terms of the A.P. 25,22, 19, ... is 116. Find the
last term.

Find the sum to n terms of the A.P., whose k"term is 5k + 1.

If the sum of n terms of an A.P. is (pn + gn?), where p and g are constants,
find the common difference.

The sums of n terms of two arithmetic progressions are in the ratio
5n + 4 : 9n + 6. Find the ratio of their 18" terms.

If the sum of first p terms of an A.P. is equal to the sum of the firstg terms, then
find the sum of the first (p + ¢) terms.

Sum of the first p, ¢ and r terms of an A.P. are @, b and c, respectively.

a b c
Prove that —(@—r)+—(r=p)+—=(p—q)=0
P q r

The ratio of the sums of m and n terms of an A.P. is m?: n. Show that the ratio
of m" and n™ term is 2m —1) : 2n —1).

If the sum of n terms of an A.P. is 3n% + 5n and its m™ term is 164, find the value
of m.

Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

If al;zl is the A.M. between a and b, then find the value of n.

a +b"
Between 1 and 31, m numbers have been inserted in such a way that the resulting
sequence is an A. P. and the ratio of 7" and (m — 1)" numbers is 5 : 9. Find the

value of m.
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17. A man starts repaying a loan as first instalment of Rs. 100. If he increases the
instalment by Rs 5 every month, what amount he will pay in the 30 instalment?

18. The difference between any two consecutive interior angles of a polygon is 5°.
If the smallest angle is 120°, find the number of the sides of the polygon.

9.5 Geometric Progression (G. P.)

Let us consider the following sequences:
1 -1 1 -1

(1) 2,4,8,16,..., (ii) 5 Ea% (1ii) .01,.0001,.000001,. ..

In each of these sequences, how their terms progress? We note that each term, except
the first progresses in a definite order.

In (i), we have and so on.

In (ii), we observe, q, = l, & :__1’ N __1, %o Zh\ahd s0 on.
aq 3 a 3 a 3
Similarly, state how do the terms in (iii) progress? It is observed that in each case,

a a
every term except the first term bears a constapﬁitig%o#%, tefnrizhmedialy preceding
a a, as
it. In (i), this constant ratio is 2; in (ii), it is _l and in (iii), the constant ratio is 0.01.

Such sequences are called geometric sequence or geometric progression abbreviated
as GP.

A sequence a, a., Ay ooy Ay is called geometric progression, if each term is
ak +1
non-zero and = r (constant), for k > 1.
a
By letting a, = a, we obtain a geometric progression, a, ar, ar’,ar’,....,where a

is called the first term and r is called the common ratio of the GP. Common ratio in
1
geometric progression (i), (ii) and (iii) above are 2, —5 and 0.01, respectively.

As in case of arithmetic progression, the problem of finding the n™ term or sum of n
terms of a geometric progression containing a large number of terms would be difficult
without the use of the formulae which we shall develop in the next Section. We shall
use the following notations with these formulae:

a = the first term, r = the common ratio, [/ = the last term,
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n = the numbers of terms,
Sn = the sum of first n terms.

9.5.1 General term of a G.P. Let us consider a G.P. with first non-zero term ‘a’ and
common ratio ‘7. Write a few terms of it. The second term is obtained by multiplying
a by r, thus a, = ar. Similarly, third term is obtained by multiplying a, by r. Thus,
a, =a,r = ar’, and so on.

We write below these and few more terms.
1 term = a=a= ar'-!, 2" term = a,=ar= ar*!, 39 term = a,= ar? = ar-!
4t term = a, = ar’ = ar*!, 5% term = a, = ar* = ar>!
Do you see a pattern? What will be 16" term?

a,,=ar'"" =ar®

Therefore, the pattern suggests that the ™ term of a G.P. is given by
a,=ar"™".
Thus, a, G.P. can be written as a, ar, ar?, ar’, ... ar'~'; a, ar, ar’,...,ar" ... ;jaccording
as GP. is finite or infinite, respectively.

The series a + ar + ar* + ... + ar™ ora +ar + ar* + ... + ar +...are called
finite or infinite geometric series, respectively.

9.5.2. Sum to n terms of a G .P. Let the first term of a GP. be a¢ and the common
ratio be r. Let us denote by S the sum to first n terms of G.P. Then

S,=a+ ar+ar +.+ ar*’ . (D
Case 1 If r=1,wehave S;;=a+a+a+..+ a(nterms) = na

Case 2 If r# 1, multiplying (1) by r, we have
rS, =ar+ar*+ari+..+ar .. (2)
Subtracting (2) from (1), we get (1 -1 S =a—ar =a(l —r)

a(l—r") n_

This gives S, =———— or S, _er =)
I-r r—1

Example 9 Find the 10" and n* terms of the G.P. 5, 25,125,... .
Solution Here @ = 5 and r = 5. Thus, a = 5(5)'%" = 5(5)’ = 5"
and a,=ar' =505y"=5".
Example10 Which term of the G.P,, 2,8,32, ... up to n terms is 1310727
Solution Let 131072 be the n™ term of the given G.P. Here a =2 and r = 4.
Therefore 131072 =a =2(4y-' or 65536 =471
This gives 48 =4n-1.
Sothatn—1=28,1ie., n=9. Hence, 131072 is the 9" term of the G.P
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Examplell In a G.P, the 3“term is 24 and the 6" term is 192.Find the 10" term.
Solution Here, a,= ar’ =24 . (D

and ag= ar’ =192 .. (2)
Dividing (2) by (1), we get r = 2. Substituting =2 in (1), we get a = 6.
Hence a, =6 (2y =3072.

Examplel2 Find the sum of first n terms and the sum of first 5 terms of the geometric

s 1+ 2434
Series 309

Solution Herea =1 and r = 3 . Therefore
n — - — 3
1-r 1_2
3

I.t . — —_— — 3 — = —

33
Example 13 How many terms of the GP. 352, are needed to give the
3069
sum 512 .
1 3069

Solution Let nbe the number of terms needed. Given thata =3, r = E and S, ZST
Since Sn :M

1-r

3(1——1)

Therefore 3069 = 2" :6(1_Lj

512 -1 2"

2
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3069 1
or — =1
3072 2
1 3069 3 1
or a = = =
2 3072 3072 1024
or 2" = 1024 = 2'°, which givesn = 10.
Example 14 The sum of first three terms of a G.P. is == and their product is — 1.

12
Find the common ratio and the terms.

a
Solution Let —, a, ar be the first three terms of the G.P. Then
r

a 13
—+tar+a= — (D)
r 12
a
and [7] (a) (@r)=~1 - @)
From (2), we get a® = -1, i.e., a=— 1 (considering only real roots)

Substituting a =—1in (1), we have

1 13
—==l-r=—or 12”7 +25r + 12 =0.
r 12
.. .. . 3 4
This is a quadratic in r, solving, we get r = — —or — —.
3

[l

4 3 3 3 4 4
Thus, the three terms of GP. are : —,—1,— forr = — and —,-1, — forr = —
37 4 44 73 3

Examplel5 Find the sum of the sequence 7, 77, 777, 7777, ... to n terms.

Solution This is not a GP, however, we can relate it to a GP. by writing the terms as

S T+ 77+ 777+ 7777 + ... ton terms

n

7
5 [9+99+999+9999 + ...to nterm]

%[(10—1)+(102 —D+(10°-D)+(10" =) +...nterms]
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% [(10 +10% +10° +...nterms) — (1+1+1 +.. n terms)]

7 10(10"—1)_n 7 10(10"—1)_n
9| 10-1 9 9 '

Example 16 A person has 2 parents, 4 grandparents, 8 great grandparents, and so on.
Find the number of his ancestors during the ten generations preceding his own.

Solution Herea=2, r=2and n= 10

: a@"-1)
Using the sum formula S, = T
We have S, =22" -1)=2046

Hence, the number of ancestors preceding the person is 2046.

9.5.3 Geometric Mean (G.M.) The geometric mean of two positive numbers a

and b is the number , [, . Therefore, the geometric mean of 2 and 8 is 4. We
observe that the three numbers 2,4,8 are consecutive terms of a G.P. This leads to a
generalisation of the concept of geometric means of two numbers.

Given any two positive numbers a and b, we can insert as many numbers as
we like between them to make the resulting sequence in a G.P.

Let G1 s G2,..., Gn be n numbers between positive numbers a and b such that
a,G,G,,G,,...,G b is a GP. Thus, b being the (n + 2)* term,we have

1

b n+1,
b=ar"t', or r=|—
a

1

b Yart = =
Hence Gl < ; ’ (}2 =al"2 :a(é]’“’l ) (}3 =Cll"3 =a(éjn+l s
a

G,=ar"= a(EJM
a

Examplel7 Insert three numbers between 1 and 256 so that the resulting sequence

isaGP

Solution Let G, G,,G, be three numbers between 1 and 256 such that
1,G,G,G, 256 is a GP.
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Therefore 256 = * giving r= + 4 (Taking real roots only)

For r=4, we have G = ar=4,G,=ar’ =16, G, = ar’ = 64

Similarly, for r = — 4, numbers are — 4,16 and — 64.

Hence, we can insert 4, 16, 64 between 1 and 256 so that the resulting sequences are
in GP.

9.6 Relationship Between A.M. and GM.

Let Aand G be A.M. and G.M. of two given positive real numbersa and b, respectively.
Then

A= a;b and G :\/E

Thus, we have

a+b_m _ a+b—22Ja_b

A-G=—
2

()

= —=20
> - (1)

From (1), we obtain the relationship A>G.

Example 18 If A.M. and GM. of two positive numbers a and b are 10 and 8,
respectively, find the numbers.

_a+b

Solution Given that AM.= 5 =10 .. (D

and GM.=+ab =8 - (2)
From (1) and (2), we get

a+b=20 .. (3)

ab = 64 ()

Putting the value of a and b from (3), (4) in the identity (a — b)?> = (a + b)*— 4ab,
we get
(a—b)*>=400-256 = 144
or a-b=%12
. (5
Solving (3) and (5), we obtain
a=4,b=160ora=16,b =4
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Thus, the numbers a and b are 4l 16 or 16, 4 respeciively.

6.

EXERCISE 9.3

Find the 20" and n" terms of the G.P. %, 2,
Find the 12% term of a GP. whose 8" term is 192 and the common ratio is 2.
The 5" 8" and 11™ terms of a G.P. are p, ¢ and s, respectively. Show
that ¢* = ps.

The 4™ term of a GP. is square of its second term, and the first term is — 3.
Determine its 7% term.

Which term of the following sequences:

(@) 2,2J2.,4,..is128? ®) 3,333,...is729 2
11

11
- =, —,..1
39 27 19683

5
g

(c)

For what values of x, the numbers — % X, — % are in GP.?

Find the sum to indicated number of terms in each of the geometric progressions in
Exercises 7 to 10:

7.

8.

9.
10.

11.

12.

13.
14.

15.
16.

0.15,0.015, 0.0015, ... 20 terms.

ﬁ, \/ﬁ,?a\ﬁ,...nterms.

1,—a,d —ad, ..nterms (if a # - 1).
X3, x5, x7, ... n terms (if x # £ 1).

1
Evaluate Z (2+3%)

k=1

The sum of first three terms of a G.P. is 2 and their product is 1. Find the
common ratio and the terms. 10

How many terms of G.P. 3, 32, 33, ... are needed to give the sum 120?

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is
128. Determine the first term, the common ratio and the sum to »n terms of the G.P.
Given a G.P. with a = 729 and 7" term 64, determine S7.

Find a G.P. for which sum of the first two terms is — 4 and the fifth term is
4 times the third term.
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18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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If the 4", 10" and 16" terms of a GP. are x, y and z, respectively. Prove that x,
y, z are in G.P.

Find the sum to n terms of the sequence, 8, 88, 888, 8888... .

Find the sum of the products of the corresponding terms of the sequences 2, 4, 8,

16,32 and 128, 32,8, 2, %

Show that the products of the corresponding terms of the sequences a, ar, ar’,
...ar~"and A, AR, AR?, ... AR""! form a G.P, and find the common ratio.
Find four numbers forming a geometric progression in which the third term is
greater than the first term by 9, and the second term is greater than the 4% by 18.
If the p™, ¢"™ and r™ terms of a GP. are a, b and c, respectively. Prove that
al~" b rcP-1=1.

If the first and the n™ term of a G.P. are a and b, respectively, and if P is the
product of n terms, prove that P2 = (ab)".

Show that the ratio of the sum of first n terms of a GP. to the sum of terms from

(n+ 1" to 2n)"™ term is in y
r
If a, b, ¢ and d are in G.P. show that
(@+ b+ B>+ + d°) = (ab + be + cd)* .

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

n+1 n+l

Find the value of n so that ———— may be the geometric mean between
a"+b"

a and b.

The sum of two numbers is 6 times their geometric mean, show that numbers

are in the ratio (3+2+/2):(3-242).
If A and G be A.M. and G.M., respectively between two positive numbers,

prove that the numbers are A + \/( A+G)(A-G)-

The number of bacteria in a certain culture doubles every hour. If there were 30
bacteria present in the culture originally, how many bacteria will be present at the
end of 2" hour, 4" hour and n™ hour ?

What will Rs 500 amounts to in 10 years after its deposit in a bank which pays
annual interest rate of 10% compounded annually?
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32. If AM. and GM. of roots of a quadratic equation are 8 and 5, respectively, then
obtain the quadratic equation.
9.7 Sum to n Terms of Special Series
We shall now find the sum of first n terms of some special series, namely;
i) 1+2+3+... +n(sum of first n natural numbers)
() 1%+ 2%+ 3%+... + n*(sum of squares of the first n natural numbers)

(i) 1P+ 2%+ 3*+... + n’(sum of cubes of the first n natural numbers).
Let us take them one by one.

nn+1)

i) S=1+2+3+...+nthen§ = (See Section 9.4)

(i) Here S=17+22+3+...+n?
We consider the identity k* — (k — 1) = 3k* - 3k + 1
Putting k=1,2...,n  successively, we obtain
P-0=317%-31)+1
23-13=312)2-312)+1
33-23=33)2-33)+1

mw—-n-1»=3m?>-3n +1
Adding both sides, we get
n-0=30"+22+3*+..+n)-30+2+3+..+n+n

nS:SZn:kZ —SZn:k +n
k=1 k=1

y +1
By (i), we know that Zk=1+2+3+...+n="(” )
k=1
N 1 3n(n+1
8 k=1 3 2 6
B 6

(iii) Here S, = 1° + 2° + ...4+n°
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We consider the identity, (k + 1)* — k* = 4k + 6> + 4k + 1
Putting k=1, 2, 3... n, we get

24 14=4(1) + 6(10 + 4(1) + 1
34— 24=4(2P + 620 +4(2) + 1
43 =43 + 637 +4(3) + 1

-1 -n-2y=4n-2Y+6(m -2 +4n-2) + 1
n—m-1)Y=4n -1 +6(mn-1"+4n-1)+1
(n+ D*=n*=4dn*+6n +4n+ 1
Adding both sides, we get
(m+ 1) =14 =413+ 22+ 33+..4+n%) + 6(12+ 224+ 32+ ..+ n?) +

41 +2+3+.+n+n

=4Zn:k3+6zn:k2 +4Zn:k+n
k=1 k=1 k=1

(1)

From parts (i) and (ii), we know that

Z":kzn(n+1) andZn:k2=n(n+1)(2n+D
k=1 2 k=1 6

Putting these values in equation (1), we obtain

6n(n+1)(2n+1) _4n n+1 .

421(3 =n*+dn’+6n° +4n—
k=1

6 2
or 4S =n*+4n’ + 6" +4n—n Q2w +3n+1)-2n(n+1)-n
=n*+ 2 + 2
= nn + 1)
2 2 +p]°
Hence, S, = n” (n+l) :[n (n )]
4 4

Example 19 Find the sum to n terms of the series: 5 + 11 + 19 + 29 + 41...

Solution Let us write
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S, =5+11+19+29+...4+a_, +a,
or S = 5+11+19 +..+a  +a _ +a,
On subtraction, we get
0=5+[6+8+10+12+..(n—1) terms] —a,
_s. n-D[2+(n—-2)x2]
! 2
=5+m-1Dm+4)=r+3n+1

Y =Y K3k =Y K43N kot
k=1 k=1 k=1 1

~ n(n+1)(2n+1)+3n(n+ 1)+n _nn+2)(n+4)
B 6 2 3 '

or a

Hence g

Example 20 Find the sum to n terms of the series whose n™ term is n (n+3).
Solution Giventhat a,=n (n +3) =n’*+3n

Thus, the sum to n terms is given by

S Zn:akzzn:k2+32n:k
"= k=1 k=1

n (n+1) Qn + ) 3warEh—ner 1) (1+5)
= [t = ] .
6 2 3
EXERCISE 94

Find the sum to n terms of each of the series in Exercises 1 to 7.

1. I x2+2x3+3x4+4x5+... 2. 1x2x3+2%x3x4+3%x4x%x5+...

1 1 1
: : +
3. 3x124+5%x224+7x3%+ ... 4. X2 23 3xd -
5. 24+6*+7"+...4+20° 6. 3x8+6x114+9x%x14+ ...

7. P+ (P+2)+ (1P +22+3%) +...

Find the sum ton terms of the series in Exercises 8 to 10 whose n™ terms is given by
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8. n(n+l) (n+4). 9. n2+2"
10. (2n -1y’

Miscellaneous Examples

Example2l If p®, ¢™, r™ and s™ terms of an A.P. are in G.P, then show that
(p—q), (g —r), (r —s) are also in G.P.

Solution Here

a,=a+(p-1)d .. (1)
aq:a+(q—1)d .. 2)
a=a+(r-1)d .3
a=a+(s-1)d e (4)

Given that a,a,a, and a are in GP

So 49 _a, 94474 _q-—r .. (5
a a—_a —da _p (Why ‘7) ( )
p Y

Similarly a,_ a-4a r=s ... (6)

Hence, by (5) and (6)

g-—r _r—s e, p—q,q—rand r—sarein G.P.

—

p-q q-r

1 ! 1
Example 22 If a, b, ¢ are in GP. and ar = b; — ¢z > brove that x, y, z are in A.P.

1 I 1
Solution Let a*= b” =c? =k Then

a=k",b =k and c = k% - (D
Since a, b, c are in G.P., therefore,
b?>=ac .. (2)

Using (1) in (2), we get
k¥ =k**¢, which gives 2y =x + z.
Hence, x, y and z are in A.P.

Example 23 If a, b, ¢, d and p are different real numbers such that
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(@ + D +*p* —2ab + be + cd) p + (*+ ¢*+ d*) <0, then show that a, b, cand d
are in G.P.

Solution Given that
(@+b+&pP-2@ +bc+cdp+ B+ cc+d*)<0 .. (1)
But L.H.S.
= (d’p? — 2abp + b*) + (b*p* — 2bcp + ¢*) + (¢*p* — 2cdp + dP),
which gives (ap — b)* + (bp —¢)* + (cp —d)* =20
(2)
Since the sum of squares of real numbers is non negative, therefore, from (1) and (2),
we have, (ap —-bY +bp —c)*+(cp —d =0

or ap-b=0bp-c=0,cp-d=0
This implies th b 2 p
that —=—=—=
is implies that — ==

Hence a, b, ¢ and d are in GP.

Example 24 If p,q,r are in G.P. and the equations, px> + 2gx + r = 0 and

d e

dx* + 2ex + f=0 have a common root, then show that —, — ,i are in A.P.
pqr

Solution  The equation px* + 2gx + r = 0 has roots given by

-2 i,[4 * 4
oo 2aEN4g 4

2p

Since p ,q, r are in G.P. ¢*> = pr. Thus x==2 vut 4 is also root of

p p
dx* + 2ex + f = 0 (Why ?). Therefore

2
d(ﬁj +26(1j+f =0,
p p
or dq* —2eqp +fp* =0 .. (1)
Dividing (1) by pg? and using ¢* = pr, we get
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10.
11.

12.

13.
14.

15.
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1—£+£=0, or

p oq pr
f

,— are in A.P.
r

26_
q

S |~

d
—+
p

B Y

Miscellaneous Exercise On Chapter 9

Show that the sum of (m + n)™ and (m — n)™ terms of an A.P. is equal to twice
the m™ term.

If the sum of three numbers in A.P, is 24 and their product is 440, find the
numbers.

Let the sum of n, 2n, 3n terms of an A.P. be S,, S,and S ., respectively, show that
S.=3@,-5)

Find the sum of all numbers between 200 and 400 which are divisible by 7.
Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

Find the sum of all two digit numbers which when divided by 4, yields 1 as
remainder.

If fis a function satistying f (x +y) = fix) f(y) for all x, y € N such that

f(1) =3 and Z f(x)=120, find the value of n.
x=1

The sum of some terms of GP. is 315 whose first term and the common ratio are
5 and 2, respectively. Find the last term and the number of terms.

The first term of a G.P. is 1. The sum of the third term and fifth term is 90.
Find the common ratio of G.P.

The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers
in that order, we obtain an arithmetic progression. Find the numbers.

A G.P. consists of an even number of terms. If the sum of all the terms is 5 times
the sum of terms occupying odd places, then find its common ratio.

The sum of the first four terms of an A.P. is 56. The sum of the last four terms is
112. If its first term is 11, then find the number of terms.

a+bx b+cx c+dx

If (x#0), then show that a, b, ¢ and d are in GP.

a-bx b—cx c—dx
Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P.
Prove that P’R" = S".

The p®, ¢™ and ™ terms of an A.P. are a, b, ¢, respectively. Show that
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16.

17.
18.

19.

20.

21.

22.
23.
24.

25.

26.

27.

28.

29.

MATHEMATICS
(g—r)a+@r-p)b+@p-q)=0

1 1 1 1 1 1
If a (— + —], b (— + —j, c [— + —) are in A.P, prove that a, b, ¢ are in A.P.
b ¢ c a a b

If a, b, ¢, dare in G.P, prove that (a" + "), (b" + "), (c" + d") are in GP.

If a and b are the roots of x> — 3x+ p = 0 and ¢, d are roots of x*— 12x + ¢ =0,
where a, b, ¢, d form a G.P. Prove that (¢ + p) : (¢ —p) = 17:15.

The ratio of the A.M. and G.M. of two positive numbers a and b, is m : n. Show

that a:bz(m+«]m2—n2):(m— mz—nz) .

Ifa, b, c are in A.P.; b, ¢, dare in G.P. and ll—l are in A.P. prove thata, ¢, e

are in G.P. cde
Find the sum of the following series up to n terms:
(i) 5+55+555+... (i1) .6 +. 66 +. 666+. ..

Find the 20™ term of the series 2 x4 +4 X 6 + 6 X 8 + ... + n terms.
Find the sum of the firstn terms of the series: 3+ 7 +13 +21 +31 +...
IfS, S, S, are the sum of first n natural numbers, their squares and their

cubes, respectively, show that 9 S% =S, (1 +8S).
Find the sum of the following series up to # terms:

P 1P+2° P+23+33

1 1+3 1+3+5

1X2% +2x3% +..+nx(m+1)> 3n+5
Px2+2°X3+..+n*x(n+1) 3n+l1.

A farmer buys a used tractor for Rs 12000. He pays Rs 6000 cash and agrees to
pay the balance in annual instalments of Rs 500 plus 12% interest on the unpaid
amount. How much will the tractor cost him?

Shamshad Ali buys a scooter for Rs 22000. He pays Rs 4000 cash and agrees to
pay the balance in annual instalment of Rs 1000 plus 10% interest on the unpaid
amount. How much will the scooter cost him?

A person writes a letter to four of his friends. He asks each one of them to copy
the letter and mail to four different persons with instruction that they move the
chain similarly. Assuming that the chain is not broken and that it costs 50 paise to
mail one letter. Find the amount spent on the postage when 8" set of letter is
mailed.

Show that
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30. A man deposited Rs 10000 in a bank at the rate of 5% simple interest annually.
Find the amount in 15" year since he deposited the amount and also calculate the
total amount after 20 years.

31. A manufacturer reckons that the value of a machine, which costs him Rs. 15625,
will depreciate each year by 20%. Find the estimated value at the end of 5 years.

32. 150 workers were engaged to finish a job in a certain number of days. 4 workers
dropped out on second day, 4 more workers dropped out on third day and so on.
It took 8 more days to finish the work. Find the number of days in which the work
was completed.

Summary

# By a sequence, we mean an arrangement of number in definite order according
to some rule. Also, we define a sequence as a function whose domain is the
set of natural numbers or some subsets of the type {1, 2, 3, ....k}. A sequence
containing a finite number of terms is called a finite sequence. A sequence is
called infinite if it is not a finite sequence.

¢ Let Ty Tp T con be the sequence, then the sum expressed as a+a,+a,+..
is called series. A series is called finite series if it has got finite number of
terms.

# An arithmetic progression (A.P) is a sequence in which terms increase or
decrease regularly by the same constant. This constant is called common
difference of the A.P. Usually, we denote the first term of A.P. by a, the
common difference by d and the last term by /. The general term or the n’
term of the A.P.is givenby a =a + (n—-1) d.

The sum S of the first 7 terms of an A.P. is given by

Sn:§[2a+(n—1)d]:§(a+l).

a+b

@ The arithmetic mean A of any two numbers a and b is given by i.e., the

2015-16
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sequence a, A, b is in A.P.

# A sequence is said to be a geometric progression or GP., if the ratio of any
term to its preceding term is same throughout. This constant factor is called
the common ratio. Usually, we denote the first term of a G.P. by a and its
common ratio by r. The general or the n" term of G.P. is given by a = ar"~".
The sum S of the first n terms of G.P. is given by

s =a(r” —1) - a(l_rn),ifril
r—1 1-r

@ The geometric mean (G.M.) of any two positive numbers a and b is given by

Jab ie., the sequencea, G bis G.P.

Historical Note

Evidence is found that Babylonians, some 4000 years ago, knew of arithmetic and
geometric sequences. According to Boethius (510), arithmetic and geometric
sequences were known to early Greek writers. Among the Indian mathematician,
Aryabhatta (476) was the first to give the formula for the sum of squares and cubes
of natural numbers in his famous work Aryabhatiyam, written around
499. He also gave the formula for finding the sum to n terms of an arithmetic
sequence starting with p™ term. Noted Indian mathematicians Brahmgupta
(598), Mahavira (850) and Bhaskara (1114-1185) also considered the sum of squares
and cubes. Another specific type of sequence having important applications in
mathematics, called Fibonacci sequence, was discovered by Italian mathematician
Leonardo Fibonacci (1170-1250). Seventeenth century witnessed the classification
of series into specific forms. In 1671 James Gregory used the term infinite series in
connection with infinite sequence. It was only through the rigorous development of
algebraic and set theoretic tools that the concepts related to sequence and series
could be formulated suitably. — S —

2015-16



Chapter 10

(STRAIGHT LINES )

«»» Geometry, as a logical system, is a means and even the most powerful
means to make children fed the strength of the human spirit that is
of their own spirit. —H. FREUDENTHAL **

10.1 Introduction

We are familiar with two-dimensional coordinate geometry
from earlier classes. Mainly, it is a combination of algebra
and geometry. A systematic study of geometry by the use
of algebra was first carried out by celebrated French
philosopher and mathematician René Descartes, in his book
‘La Géométry, published in 1637. This book introduced the
notion of the equation of a curve and related analytical
methods into the study of geometry. The resulting
combination of analysis and geometry is referred now as
analytical geometry. In the earlier classes, we initiated
the study of coordinate geometry, where we studied about
coordinate axes, coordinate plane, plotting of points in a

René Descartes
(1596 -1650)

plane, distance between two points, section formulae, etc. All these concepts are the

basics of coordinate geometry.

Let us have a brief recall of coordinate geometry done in earlier classes. To

recapitulate, the location of the points (6, — 4) and
(3, 0) in the XY-plane is shown in Fig 10.1.

(3,0)

We may note that the point (6, —4) is at 6 units o

distance from the y-axis measured along the positive
x-axis and at 4 units distance from the Xx-axis
measured along the negative y-axis. Similarly, the
point (3, 0) is at 3 units distance from the y-axis
measured along the positive X-axis and has zero |,
distance from the X-axis. Y’
We also studied there following important
formulae:

Fig 10.1
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| Distance between the points P (X, y,) and Q (X,, y,) is

PQ=ﬂ&—xY+(n—mY

For example, distance between the points (6, — 4) and (3, 0) is

J(3=6)"+ (0+4) =/ 9416 =5 units.
I The coordinates of a point dividing the line segment joining the points (X, Y,)

mx, + Ny, my2+ny1
m+n = m+n )

and (X,, y,) internally, in the ratio m: nare (

For example, the coordinates of the point which divides the line segment joining

) ) . . 1(-3)+3.1
A (1,-3) and B (-3, 9) internally, in the ratio 1: 3 are given by X:T =0
Ly= 1.9+3.(-3)
an 1+3
[11. In particular, if m= n, the coordinates of the mid-point of the line segment
+ +
joining the points (x, ¥,) and (x,, y,) are [%%}

IV. " Area of the triangle whose vertices are (X, Y,), (X,, ¥,) and (X,, Y,) is

1
E| XI(Yz_Y3)+X2(y3_y1)+X3(yl_y2)| .

For example, the area of the triangle, whose vertices are (4, 4), (3, —2) and (- 3, 16) is
1 |- 54
E' 4(-2-16)+3(16—4) +(-3)(4+2)| = = 27.

Remark If the area of the triangle ABC is zero, then three points A, B and C lie on
aline, i.e., they are collinear.

In the this Chapter, we shall continue the study of coordinate geometry to study
properties of the simplest geometric figure — straight line. Despite its simplicity, the
line is a vital concept of geometry and enters into our daily experiences in numerous
interesting and useful ways. Main focus is on representing the line algebraically, for
which slope is most essential.

10.2 Slopeof aLine
Aline in a coordinate plane forms two angles with the x-axis, which are supplementary.
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The angle (say) 6 made by the line | with positive
direction of x-axis and measured anti clockwise
is called the inclination of the line. Obviously
0° <0< 180° (Fig 10.2).

We observe that lines parallel to x-axis, or
coinciding with x-axis, have inclination of 0°. The
inclination of a vertical line (parallel to or
coinciding with y-axis) is 90°.

Definition 1 If 0 is the inclination of a line
[, then tan 0 is called the slope or gradient of
the line . ¥ Fig 10.2

The slope of a line whose inclination is 90° is not

defined.

The slope of a line is denoted by m.

Thus, m=tan 0, 6 # 90°

It may be observed that the slope of x-axis is zero and slope of y-axis is not defined.

10.2.1 Slope of a line when coordinates of any two points on the line are given
We know that a line is completely determined when we are given two points on it.
Hence, we proceed to find the slope of a
line in terms of the coordinates of two points Y
on the line. A l

Let P(x,, ¥,) and Q(X,, y,) be two
points on non-vertical line | whose inclination
is 0. Obviously, X, # X, otherwise the line
will become perpendicular to x-axis and its
slope will not be defined. The inclination of
the line | may be acute or obtuse. Let us
take these two cases.

Draw perpendicular QR to x-axis and
PM perpendicular to RQ as shown in
Figs. 10.3 (i) and (i1).

Q(x,, ,)

Fig 10. 3 (i)

Case 1 When angle 0 is acute:
In Fig 10.3 (i), LZMPQ = 6. (1)

Therefore, slope of line | = m=tan 6.

MQ_¥,—¥

But in AMPQ, we have tan0= .
MP X, —X

. )
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From equations (1) and (2), we have X

Y% N
m=———-. \ Q(x,, »,)

X=X
Case |l When angle 0 is obtuse: !
In Fig 10.3 (ii), we have o
/MPQ = 180° — 6. ML 180- 0\ P(x,y,)
Therefore, 6 =180° — LMPQ. B 0

> X
Now, slope of the line | ol r N
Fig 10. 3 (ii)
m = tan 0

=tan ( 180° — ZMPQ) = — tan £LMPQ
MQ y,-y, YW

MP X—% %X
Consequently, we see that in both the cases the slope m of the line through the points
Y= W

(x,y)and (x,Yy,)is given by M=-———,
I XY, X, — X,

10.2.2 Conditions for parallelism and perpendicularity of lines in terms of their
slopes In a coordinate plane, suppose that non-vertical lines| and |, have slopes m
and m,, respectively. Let their inclinations be o: and %

B, respectively. A
!f tlheli.ne |, is para;llgl to |, (Fig 10.4), then their W
inclinations are equal, 1.e., \

o = B, and hence, tan o, = tan 3
Therefore m =m,, i.e., their slopes are equal.
Conversely, if the slope of two lines | and |,

is same, i.€., o)

m =m.,.
=M Fig 10. 4
Then tan o = tan f.

By the property of tangent function (between 0° and 180°), o = 3.
Therefore, the lines are parallel.
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Hence, two non vertical lines| and |, are parallel if and only if their slopes
are equal.

If thelines | and |, are perpendicular (Fig 10.5), then B = o + 90°.

Therefore,tan B = tan (o0 + 90°) v
1 N
:_COta:_tana ‘E I
1
ie., mZI_E or m m =-1
/ o B
Conversely, if m m, = — 1, i.e., tan o tan B = — 1. 70 \>X

Then tan o= — cot B = tan (B + 90°) or tan (f — 90°)
Therefore, o and B differ by 90°.
Thus, lines |, and |, are perpendicular to each other.

Hence, two non-vertical lines are perpendicular to each other if and only if
their slopes are negative reciprocals of each other,

Fig10.5

1
ie., = ——or, M =—1.
m, m P m,
Let us consider the following example.

Example 1 Find the slope of the lines:
(a) Passing through the points (3, —2) and (-1, 4),
(b) Passing through the points (3, —2) and (7, — 2),
(c) Passing through the points (3, —2) and (3, 4),

(d) Making inclination of 60° with the positive direction of X-axis.

Solution (a) The slope of the line through (3, —2) and (- 1, 4) is

o426 3

-1-3 -4 2
(b) The slope of the line through the points (3, —2) and (7, — 2) is
—2-(=2)_0_

7-3 4

(¢) The slope of the line through the points (3, —2) and (3, 4) is
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3.3 o » Whic is not defined.

(d) Here inclination of the line o.=60°. Therefore, slope of the line is
m=tan 60° = /3.

10.2.3 Angle between two lines When we think about more than one line in a plane,
then we find that these lines are either intersecting or parallel. Here we will discuss the
angle between two lines in terms of their slopes.

Let L, and L, be two non-vertical lines with slopes m and m,, respectively. If o,
and 0, are the inclinations of lines L, and L,, respectively. Then

m = tana, and M, = tana, .

We know that when two lines intersect each other, they make two pairs of
vertically opposite angles such that sum of any two adjacent angles is 180°. Let 6 and
¢ be the adjacent angles between the lines L, and L, (Fig10.6). Then

0=o,—0 and o, o, #90°.
_tano, —tangy  mM,—M

Therefore tan 6 = tan (o, — o) =
I+tang, tana, 1+mm,

(as 1+ mm,#0)

and ¢ = 180° — 0 so that

tan ¢ = tan (180° — 0 ) = — tan O = _%,asl+mlmz¢0
Y L,
A L,

Fig10.6
Now, there arise two cases:
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b — My . . . : :
Casel If 1s positive, then tan O will be positive and tan ¢ will be negative,
I+ mm,

which means 6 will be acute and ¢ will be obtuse.

h — Iy
Casell If 77— isnegative, then tan 6 will be negative and tan ¢ will be positive,
I+ mm,
which means that 6 will be obtuse and ¢ will be acute.
Thus, the acute angle (say 0) between lines L, and L, with slopes m and m,,
respectively, is given by

m, —m,
1+ mm,

tan 6 = ,as 1+mm,=0 (D)

The obtuse angle (say ¢) can be found by using ¢ =180°— 0.

i 1
Example2 Ifthe angle between two lines is 7 and slope of one of the lines is Ix find

the slope of the other line.
Solution We know that the acute angle 0 between two lines with slopes m, and m,

m,—-m
1+mm,

(D)

is given by tan 6 =

1
LetmIIE,mz=mand9=%.

Now, putting these values in (1), we get

1 1
T ) m=
tan—= 12 or 1= 12 ,
4 I+—m I+—m
1 1
m—E m—g
—=—=1 or =-1
hich gi
which gives l+l m l+; m

Therefore m=3 or mMm=-——.
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Hence, slope of the other line is
1

3or 3 Fig 10.7 explains the [, .pp=_1 Lem

reason of two answers.

y >X
(0} J 8 \
Fig10.7

Example 3 Line through the points (2, 6) and (4, 8) is perpendicular to the line
through the points (8, 12) and (x, 24). Find the value of x.

Solution Slope of the line through the points (- 2, 6) and (4, 8) is

m = 8-6 2 1
4-(-2) 6 3
Slope of the line through the points (8, 12) and (X, 24) is
24-12 12
- X—8 =x_—8

Since two lines are perpendicular,
m, m, = -1, which gives
1 12

—X =-1 or x=4,
3 x-8 Y

10.2.4 Collinearity of three points We
know that slopes of two parallel lines are
equal. If two lines having the same slope

pass through a common point, then two Slope of AB = slope of BC
lines will coincide. Hence, if A, B and C
are three points in the XY-plane, then they >X
will lie on a line, i.e., three points are A

collinear (Fig 10.8) if and only if slope of |Z

AB = slope of BC. Fig10.8

=
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Example 4 Three points P (h, k), Q (X, ¥,) and R (X,, y,) lie on a line. Show that
(h - X]) (yz - yl) = (k - yl) (Xz - Xl)'

Solution Since points P, Q and R are collinear, we have

Slone of PO — Slone of OR. 1o I = Y27
ope of PQ = Slope of QR, i.e., x-h  x-x
k_y1: Y.~ Y,
or h—x X -X°
or (h—Xl) (yz_yl) :(k_yl) (Xz_xl)'
Example 5 In Fig 10.9, time and }{

distance graph of a linear motion is given.
Two positions of time and distance are
recorded as, when T =0, D=2 and when
T =3, D=8. Using the concept of slope,
find law of motion, i.e., how distance
depends upon time.

Distance (D)

Solution Let (T, D) be any point on the
line, where D denotes the distance at time

oIX,

T. Therefore, points (0, 2), (3, 8) and Time (T)
(T, D) are collinear so that Fig 10.9
8-2 D-8
——=—— or 6(T-3)=3(D-8
3-0 T-3 ( )=3( )
or D=2(T+1),

which is the required relation.

|EXERCISE 10.1

1. Draw a quadrilateral in the Cartesian plane, whose vertices are (— 4, 5), (0, 7),
(5,—5) and (- 4, -2). Also, find its area.

2. The base of an equilateral triangle with side 2a lies along the y-axis such that the
mid-point of the base is at the origin. Find vertices of the triangle.

3. Find the distance between P (X, y,) and Q (X,, ¥,) when : (i) PQ is parallel to the

y-axis, (i1) PQ is parallel to the x-axis.

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).

5. Find the slope of a line, which passes through the origin, and the mid-point of the
line segment joining the points P (0, —4) and B (8, 0).

»
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10.

1.

12.

13.
14.

MATHEMATICS

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and

(-1, —1) are the vertices of a right angled triangle.

Find the slope of the line, which makes an angle of 30" with the positive direction

of y-axis measured anticlockwise.

Find the value of X for which the points (X, — 1), (2,1) and (4, 5) are collinear.

Without using distance formula, show that points (-2, —1), (4, 0), (3, 3) and (-3, 2)

are the vertices of a parallelogram.

Find the angle between the x-axis and the line joining the points (3,—1) and (4,—-2).
The slope of a line is double of the slope of another line. If tangent of the angle

between them is —, find the slopes of the lines.

3
A line passes through (X, y,) and (h, k). If slope of the line is m, show that
kK—y,=m(h-x).

a b
If three points (h, 0), (a, b) and (0, K) lie on a line, show that F +E =1

Consider the following population and year graph (Fig 10.10), find the slope of the
line AB and using it, find what will be the population in the year 2010?

N

(1995, 97)

(1985, 92)

< o o o ' —> X
(0] 1985 1990 1995 2000 2005 2010
I«
Fig 10.10

10.3 VariousFormsof theEquationof aLine

We know that every line in a plane contains infinitely many points on it. This relationship
between line and points leads us to find the solution of the following problem:
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How can we say that a given point lies on the given line? Its answer may be that
for a given line we should have a definite condition on the points lying on the line.
Suppose P (X, y) is an arbitrary point in the XY-plane and L is the given line. For the
equation of L, we wish to construct a statement or condition for the point P that is
true, when P is on L, otherwise false. Of course the statement is merely an algebraic
equation involving the variables X and y. Now, we will discuss the equation of a line
under different conditions.

10.3.1 Horizontal and vertical linesIf a horizontal line L is at a distance a from the
x-axis then ordinate of every point lying on the line is either a or — a [Fig 10.11 (a)].
Therefore, equation of the line L is either y= aory = — a. Choice of sign will depend
upon the position of the line according as the line is above or below the y-axis. Similarly,
the equation of a vertical line at a distance b from the y-axis is either X = b or
x= —b [Fig 10.11(b)].

Y
Y L A L
() y=a A A
< A > L
x==b . b >
‘ PRUIN x=b
X 1% >X X'€ 5 >X
a:
: y=—a
< Y > L
v v
v _ v
Y’ (a) Fig 10.11 (b) y
Y
Example 6 Find the equations of the lines A 1
parallel to axes and passing through P x=-2 -
-2,3). S 12,3 y=3 "~
Solution Position of the lines is shown in the
Fig 10.12. The y-coordinate of every point on
the line parallel to x-axis is 3, therefore, equation X'€ >X
of'the line parallel tox-axis and passing through v o
(=2, 3) is y=3. Similarly, equation of the line }l,

parallel to y-axis and passing through (- 2, 3)
isX=—2. Fig 10.12
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10.3.2 Point-slope form Suppose that
P, (X, Y,) is a fixed point on a non-vertical
line L, whose slope is m. Let P (X, y) be an
arbitrary point on L (Fig 10.13).

Then, by the definition, the slope of L is
given by

:y_yo

m )
X=X,

ie., y—y,=m(x-x)

(1)

Since the point P (X, , y,) along with
all points (X, y) on L satisfies (1) and no
other point in the plane satisfies (1). Equation

P(x, )

Po(xo’ yo) Slope m

(1) is indeed the equation for the given line L.

Fig 10.13

Thus, the point (X, y) lies on the line with slope mthrough the fixed point (X, Y,),

if and only if, its coordinates satisfy the equation

y_y(): m(X_X())

Example 7 Find the equation of the line through (— 2, 3) with slope — 4.

Solution Here m= — 4 and given point (X, y,) is (- 2, 3).

By slope-intercept form formula
(1) above, equation of the given
line is

y—-3=—-4(XxX+2)or
4x +y + 5 = 0, which is the
required equation.

10.3.3 Two-point form Let the

line L passes through two given Q&

points P (X, y,) and P, (X, Y,).

N

Y

/

N\

L

PZ (xZ’ y2)

P(x,»)

Let P (X, ¥) be a general point

onL (Fig 10.14).

The three points P, P, and P are

collinear, therefore, we have

slope of P P = slope of PP,
Y-y _ Y.~ Y

ie. :
’ X=X X2 — X1

Fig 10.14

or y—yl=%(><—xl)-
o~

1



STRAIGHT LINES 215

Thus, equation of the line passing through the points (X, ¥,) and (X,, y,) is given by

Y—YFM(X—XJ . (2)
X2 = X1

Example 8 Write the equation of the line through the points (1, —1) and (3, 5).

Solution Here X, = 1,y, =—1,X, = 3 and y, = 5. Using two-point form (2) above
for the equation of the line, we have

y—1)= 2D

or —3X+ Y +4 =0, which is the required equation.

10.3.4 Slope-intercept form Sometimes a line is known to us with its slope and an
intercept on one of the axes. We will now find equations of such lines.

Case | Suppose a line L with slope m cuts the y-axis at a distance ¢ from the origin
(Fig10.15). The distance C is called the y-

intercept of the line L. Obviously, 4
coordinates of the point where the line meet L
the y-axis are (0, €). Thus, L has slope m
and passes through a fixed point (0, C).
w 0,0

Therefore, by point-slope form, the equation
of Lis

y—c=m(x-0) or y=nX+cC
Thus, the point (X, y) on the line with slope

$\0Qe

X!/

N 0 >X

m and y-intercept C lies on the line if and Fig 10.15
only if
y =MX+C ..(3)

Note that the value of ¢ will be positive or negative according as the intercept is made
on the positive or negative side of the y-axis, respectively.

Case |l Suppose line L with slope mmakes X-intercept d. Then equation of L is
y=m(x-d) o (@)
Students may derive this equation themselves by the same method as in Case 1.

1
Example 9 Write the equation of the lines for which tan 6 = b where 6 is the

3
inclination of the line and (i) y-intercept is — 5 (i1) x-intercept is 4.
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1
Solution (i) Here, slope of the line is m=tan 6 = 3 and y - intercept C=— 5

Therefore, by slope-intercept form (3) above, the equation of the line is
1 3
=—X——or 2y-X+3=0
y D) y ,

which is the required equation.

1
(ii) Here, we have m=tan 6 = E and d = 4.
Therefore, by slope-intercept form (4) above, the equation of the line is
1
y= E(x—4) or2y—-x+4=0,

which is the required equation.

10.3.5 Intercept - form Suppose a line L makes X-intercept a and y-intercept b on the
axes. Obviously L meets x-axis at the point L Y

(& 0) and y-axis at the point (0, b) (Fig .10.16). ‘\/ \(0 )
By two-point form of the equation of the line, ANY,

we have

y—0=%(x—a) or ay=-bx+ab, b

ie., §+X=1.

a b

(‘;-: ------- A === >\ 2 X

Fig 10.16

Thus, equation of the line making intercepts
aand b on x-and y-axis, respectively, is

X

Zido .. (5)

a b
Example 10 Find the equation of the line, which makes intercepts —3 and 2 on the
x- and y-axes respectively.

Solution Here a= -3 and b = 2. By intercept form (5) above, equation of the line is

1+X=1

or 2X-3y+6=0.
-3 2
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10.3.6 Normal form Suppose a non-vertical line is known to us with following data:

(1) Length of the perpendicular (normal) from origin to the line.
(i) Angle which normal makes with the positive direction of X-axis.
Let L be the line, whose perpendicular distance from origin O be OA = p and the
angle between the positive x-axis and OA be ZXOA = ®. The possible positions of line
L in the Cartesian plane are shown in the Fig 10.17. Now, our purpose is to find slope

of L and a point on it. Draw perpendicular AM on the X-axis in each case.

Y
N\

N

L

A
v v
Y’ . Y’
(iii) Fig 10.17 (iv)

In each case, we have OM = p cos ® and MA = psin ®, so that the coordinates of the
point A are (p cos ®, p sin M).
Further, line L is perpendicular to OA. Therefore
1 1 _Cos®

The slope of the line L = — = - ‘
e slope of the line slope of OA tan ® sin ®

Thus, the line L has slope — cos® and point A(pcosm, psin m)on it. Therefore, by

sin®

point-slope form, the equation of the line L is
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. CoS® . o, )
y— psin@=-———(X—-pcos®) or Xcos®+ ysin ®= P(sin’® + cos’®)
sin
or X Ccos W+ Ysinw=p.

Hence, the equation of the line having normal distance p from the origin and angle ®
which the normal makes with the positive direction of x-axis is given by
Xcosw+ysinm=p ... (6)

Example 11 Find the equation of the line whose perpendicular distance from the
origin is 4 units and the angle which the normal makes with positive direction of x-axis
is 15°.

Y

Solution Here, we are given p = 4 and 1

o= 15°(Fig10.18). '\

Now cos 15°= V3+1

22
O
in15°= ——= hy?
and sin 15 2 (Why?) 4
15'

N
X
By the normal form (6) above, the equation of the O . \‘ i’
line is Fig 10.18

B+1 fB-1
Xcos15°+ysin15°=4or X+ =4 or (3+1)x+(+3-1 =82
Y 2z (V31 (3 -1)y

This is the required equation.

Example 12 The Fahrenheit temperature F and absolute temperature K satisfy a
linear equation. Given that K = 273 when F = 32 and that K = 373 when F = 212.
Express K in terms of F and find the value of F, when K = 0.

Solution Assuming F along X-axis and K along y-axis, we have two points (32, 273)
and (212, 373) in XY -plane. By two-point form, the point (F, K) satisfies the equation

K—273=M(F—32) or K—273=@(F—32)
212-32 180

or K=§(F—32)+273 (D)

which is the required relation.
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When K = 0, Equation (1) gives

5 273x9

0=§(F—32)+273 or F-32 =- =— 4914 or F= -4594

Alternate method We know that simplest form of the equation of a line is y = mx + C.
Again assuming F along X-axisand K along y-axis, we can take equation in the form
K=mF +c (1)

Equation (1) is satisfied by (32, 273) and (212, 373). Therefore
273=32m+c .. (2)
and 373=212m+c .. (3)
Solving (2) and (3), we get
5 2297

m= gandCI T

Putting the values of mand cin (1), we get

K=§F+ 2297 . (@)
9 9

which is the required relation. When K =0, (4) gives F =—459.4.

We know, that the equation y = mX + C, contains two constants, namely,

m and c. For finding these two constants, we need two conditions satisfied by the
equation of line. In all the examples above, we are given two conditions to determine
the equation of the line.

|[EXERCI SE 10.2]

In Exercises 1 to 8, find the equation of the line which satisfy the given conditions:

1. Write the equations for the X-and y-axes.

1
Passing through the point (— 4, 3) with slope 5

Passing through (0, 0) with slope m.
Passing through (2, 23 )and inclined with the x-axis at an angle of 75°.

Intersecting the X-axis at a distance of 3 units to the left of origin with slope —2.
Intersecting the y-axis at a distance of 2 units above the origin and making an
angle of 30° with positive direction of the X-axis.

7. Passing through the points (-1, 1) and (2, — 4).

o0k~ W N
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Perpendicular distance from the origin is 5 units and the angle made by the
perpendicular with the positive x-axis is 30°.

The vertices of APQR are P (2, 1), Q (-2, 3) and R (4, 5). Find equation of the
median through the vertex R.

Find the equation of the line passing through (-3, 5) and perpendicular to the line
through the points (2, 5) and (-3, 6).

A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides
it in the ratio 1: n. Find the equation of the line.

Find the equation of a line that cuts off equal intercepts on the coordinate axes
and passes through the point (2, 3).

Find equation of the line passing through the point (2, 2) and cutting off intercepts
on the axes whose sum is 9.

2n
Find equation of the line through the point (0, 2) making an angle ?With the

positive x-axis. Also, find the equation of line parallel to it and crossing the y-axis
at a distance of 2 units below the origin.

The perpendicular from the origin to a line meets it at the point (-2, 9), find the
equation of the line.

The length L (in centimetre) of a copper rod is a linear function of its Celsius
temperature C. In an experiment, if L = 124.942 when C = 20 and L= 125.134
when C = 110, express L in terms of C.

The owner of a milk store finds that, he can sell 980 litres of milk each week at
Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear
relationship between selling price and demand, how many litres could he sell
weekly at Rs 17/litre?

P (&, b) is the mid-point of a line segment between axes. Show that equation

y

X
of the lineis —+—==2,
a b

Point R (h, k) divides a line segment between the axes in the ratio 1: 2. Find
equation of the line.

By using the concept of equation of a line, prove that the three points (3, 0),
(=2,-2)and (8, 2) are collinear.

10.4 General Equation of aLine

In earlier classes, we have studied general equation of first degree in two variables,
AXx+ By + C = 0, where A, B and C are real constants such that A and B are not zero
simultaneously. Graph of the equation Ax + By + C = 0 is always a straight line.
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Therefore, any equation of the form Ax + By + C = 0, where A and B are not zero
simultaneously is called general linear equation or general equation of a line.

10.4.1 Different forms of Ax + By + C = 0 The general equation of a line can be
reduced into various forms of the equation of a line, by the following procedures:

(a) Slope-intercept form If B # 0, then AX + By + C = 0 can be written as

y——AX—C or y=mMX+c¢C 1
BB .. (D
h m=— A and c=- ¢
where B B
We know that Equation (1) is the slope-intercept form of the equation of a line
hose slope i A dvi . C
whose slope 1s B’ and y-1ntercept 1s B
c N :
If B =0, then x= N ,which is a vertical line whose slope is undefined and
: __C
X-1nt tis ——.
intercept is ~
(b) Intercept form If C # 0, then AX + By + C = 0 can be written as
X y Xy
—+——=1 or —+==1
¢ C a b - (2)
A B
C
where a= —Xande—E.
We know that equation (2) is intercept form of the equation of a line whose
: . dvi __C
X-1nt tis —— -1nt t1s —— .
intercept is ~~ - an y-intercept is B

If C =0, then Ax + By + C = 0 can be written as AX + By = 0, which is a line
passing through the origin and, therefore, has zero intercepts on the axes.
(c) Normal form Let X cos ® + Y Sin ® = p be the normal form of the line represented
by the equation AX + By + C = 0 or AX + By = — C. Thus, both the equations are

A B C

same and therefore -
’ cCos® SIN® p
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Ap . Bp
hich gi cosw=———and sin ® = ———
which gives C C
ap\° ( Bp\
N in‘o+cos’o={-——] +{—] =1
ow sin cos ( C ) ( C )
2 C? C
= or ==t
or p A2+B2 p ,A2+B2

) B
and sin® = +

A
Therefore cos® =F+—— _
VA’+B’ JAY+ B2

Thus, the normal form of the equation Ax+ By + C = 0 is
X cos @+ Yy Sin =P,

here coso== A sino=+ B and p=% ¢

Av% =r—, =T =T —
JA*+B’ JA*+B’ A’+B’

Proper choice of signs is made so that p should be positive.

Example 13 Equation of a line is 3x — 4y + 10 = 0. Find its (i) slope, (ii) X - and
y-intercepts.

Solution(i)  Given equation 3X— 4y + 10 = 0 can be written as

y=2x+2 I
4 ) (1)
: o 3
Comparing (1) with y = mx + ¢, we have slope of the given line as m= Z .
(i) Equation 3Xx—4y + 10 = 0 can be written as
dy=— X (Y_ -2
3x—4y=-10 or _Q+§_1 (2)
3 2
. . Xy . 10
Comparing (2) with _+B =1, we have x-intercept as a = —? and
a

y-intercept as b = %
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Example 14 Reduce the equation ﬁ X+ y— 8 = 0into normal form. Find the values
of pand w.

Solution Given equation is

B3x+y-8=0 - (D)
Dividing (1) by ,/(\/5)2+(1)2 =2, we get
§X+%y=4 or cos30°X+sin30°y=4 .. (2)

Comparing (2) with X cos @ +y sin ® = p, we get p=4 and ®» = 30°.
Examplels Find the angle between the lines y— \/gx —5=0and \/gy —X+6=0.

Solution Given lines are

y—3x=5=00r y=1/3x+5 - (1)
1
and \/gy—x+6:00r yzﬁ)(—z\/5 - (2)
1

Slope of line (1) is m, = ﬁ and slope of line (2) is m, = ﬁ
The acute angle (say) 0 between two lines is given by

mz_ml
1+mm,

tan 6 =

. (3)

Putting the values of m and m, in (3), we get

1
ﬁ_‘g 1-3] 1
tan0 = T |= =—
1+\/§x$ 2\3 V3

which gives 6 =30°. Hence, angle between two lines is either 30° or 180° —30° = 150°.

Example 16 Show that two lines gyX+b,Y+c¢, =0and a,X+h,yY+¢c, =0,
where b, b, # 0 are:
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() Parallel it 2 = 2 and (ii) Perpendicular if a1a2 +bib, = 0.
1 2

Solution Given lines can be written as

a Ci

y=-"—"X-- . (1
b by M
az C
d y=—"X=-— (2
o b b @
Slopes of the lines (1) and (2) are m = —& and m = — & , respectively. Now

I 2
(i) Lines are parallel, if m = m,, which gives
a
b b b b
(i) Lines are perpendicular, if m.m, = — 1, which gives

a
Hl'_z_l oraa +bhb =0

ax a _ 54}
——O0r

Example 17 Find the equation of a line perpendicular to the line X—2y+3 =0 and
passing through the point (1, —2).
Solution Given line X—2Y + 3 = 0 can be written as

1 3

y:EX+E (1)

1
Slope of the line (1) is m, = 5 Therefore, slope of the line perpendicular to line (1) is

m2 == _2
m
Equation of the line with slope — 2 and passing through the point (1, —2) is

y—(-2)=-2(x-1) or y= —2x,

which is the required equation.



STRAIGHT LINES 225

10.5 Distanceof aPoint From alLine

The distance of a point from a line is the length of the perpendicular drawn from the
point to the line. Let L : AX+ By + C = 0 be a line, whose distance from the point

P (X, y,) is d. Draw a perpendicular PM from the point P to the line L (Fig10.19). If

Y

N
L:Ax+By+C=0

o \
Figl0.19
the line meets the x-and y-axes at the points Q and R, respectively. Then, coordinates

C C
of the points are Q(‘Xa Oj and R (0’ _Ej . Thus, the area of the triangle PQR

is given by

1 _ 2 area (APQR)
area (APQR) = EPM.QR , which gives PM _Q—R .. (1)

1
Also, area (APQR) ZE‘ X (0"‘%] ‘{‘%)(—%_ YJ + 0(Y1 _0)‘

C C
+Y,— C

2

or Zarea(APQR)z‘é‘. |Ax,+By,+C|, and

o for(§ - o) il

Substituting the values of area (APQR) and QR in (1), we get
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M=| Axi+By,+C|
\/A2+B2

P

d=|Am+B%+C|

\/ A+RB2
Thus, the perpendicular distance (d) of a line Ax + By+ C = 0 from a point (X, y,)
is given by

or

d=|Am+B%+C|
JA+B? Y
10.5.1 Distance between two

parallel lines We know that slopes
of two parallel lines are equal.

Therefore, two parallel lines can be
taken in the form

y=mx+c, (D)
and y=mx+c, ..(2)
Line (1) will intersect X-axis at the point X'<€ 7 o > X
Al——0)
Cl 0 . . "
A [ m’ jas shown in Fig10.20. Fig10.20

Distance between two lines is equal to the length of the perpendicular from point
A to line (2). Therefore, distance between the lines (1) and (2) is

(e[ -E )

Al or d=—| 66 |
\/1+m2 J 1+t

Thus, the distance d between two parallel lines y = mx+ ¢ and y = mx+ C, is given by

466G |

N 1+m:

If lines are given in general form, i.e., AX+ By + C, =0and AXx+ By +C, =0,
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| C-C, |
then above formula will take the form 9= oS

Students can derive it themselves.
Example 18 Find the distance of the point (3, — 5) from the line 3x — 4y —26 = 0.

Solution Givenlineis  3x—4y-26=10 .. (D)

Comparing (1) with general equation of line Ax+ By + C =0, we get
A=3,B=—-4and C=-26.

Given point is (X, y,) = (3, =5). The distance of the given point from given line is

L Ax By +q P3(H)(5)-29 3

J AR J3+(—4) 5
Example 19 Find the distance between the parallel lines 3Xx — 4y +7 = 0 and
3Xx—4y+5=0
Solution Here A= 3, B =-4, C, =7 and C, = 5. Therefore, the required distance is
de = ‘
3+ (—4)2 S

|[EXERCI SE 10.3|

1. Reduce the following equations into slope - intercept form and find their slopes
and the y - intercepts.

(i) x+7y=0, (i) 6x+3y—-5=0, (iii) y =0.
2. Reduce the following equations into intercept form and find their intercepts on
the axes.
(i) 3x+2y—12=0, (i) 4x-3y=6, (iii) 3y+2=0.

3. Reduce the following equations into normal form. Find their perpendicular distances
from the origin and angle between perpendicular and the positive X-axis.

(i) x—~By+8=0, (i) y-2=0, (iii) x-y=4.
4. Find the distance of the point (-1, 1) from the line 12(x + 6) = 5(y — 2).
y

. . . . . X .
5. Find the points on the x-axis, whose distances from the line 3 + e 1 are 4 units.

6. Find the distance between parallel lines
(i) 15x+8y—34=0and 15x+8y+31=0 (i) | (x+y)+p=0andl (Xx+y) —r =0.
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Find equation of the line parallel to the line 3X—4y+2 =0 and passing through
the point (-2, 3).

Find equation of the line perpendicular to the line X — 7y + 5 = 0 and having
X intercept 3.

Find angles between the lines \/gx +y =1land X+ \/gy =1.

The line through the points (h, 3) and (4, 1) intersects the line 7Xx—-9y—19 =0.

at right angle. Find the value of h.

Prove that the line through the point (X, y,) and parallel to the line AX+ By + C=01is
AX=x)+B(y-y)=0.

Two lines passing through the point (2, 3) intersects each other at an angle of 60°.

If slope of one line is 2, find equation of the other line.

Find the equation of the right bisector of the line segment joining the points (3, 4)

and (-1, 2).

Find the coordinates of the foot of perpendicular from the point (-1, 3) to the

line 3x—4y—16=0.

The perpendicular from the origin to the line y = mx + ¢ meets it at the point

(=1, 2). Find the values of mand c.

If p and g are the lengths of perpendiculars from the origin to the

lines XcosO — ysin® = Kcos20 and x sec 6 +y cosec 0 =k, respectively, prove

that p? + 4¢ = K2

In the triangle ABC with vertices A (2, 3), B (4,—1) and C (1, 2), find the equation

and length of altitude from the vertex A.

If p is the length of perpendicular from the origin to the line whose intercepts on

1 1

1
the axes are a and b, then show that ? = ; Tt

b

Miscellaneous Examples

Example 20 If the lines 2X+Yy-3=0, 5Xx+ky—3=0 and 3x—-y—-2=0are
concurrent, find the value of k.

Solution Three lines are said to be concurrent, if they pass through a common point,
i.e., point of intersection of any two lines lies on the third line. Here given lines are

2X+y-3=0 . (1)
5x+ky-3=0 - (2)
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IX-y-2=0 .. (3)
Solving (1) and (3) by cross-multiplication method, we get
X y or X=1,y=1,

—2-3 -9+4 -2-3
Therefore, the point of intersection of two lines is (1, 1). Since above three lines are
concurrent, the point (1, 1) will satisfy equation (2) so that

51+k.1-3=0o0rk=-2.

Example 21 Find the distance of the line 4X —y = 0 from the point P (4, 1) measured
along the line making an angle of 135° with the positive x-axis.

Solution Given line is 4X—y =0 .. (1)
In order to find the distance of the Y

line (1) from the point P (4, 1) along N

another line, we have to find the point ‘\
of intersection of both the lines. For
this purpose, we will first find the
equation of the second line Q(1,4)
(Fig 10.21). Slope of second line is
tan 135° = —1. Equation of the line

y=4x

with slqpe — 1 through the point P4, 1)
P#4,1)is
P 135°
) \ >X
Fig 10.21
y—l=—1(X-4)orx+y—5=0 - (2)

Solving (1) and (2), we get Xx=1 and y = 4 so that point of intersection of the two lines
is Q (1, 4). Now, distance of line (1) from the point P (4, 1) along the line (2)
= the distance between the points P (4, 1) and Q (1, 4).

=\/(1 —4)? 4+ (4-1) =342 units.
Example 22 Assuming that straight lines work as the plane mirror for a point, find
the image of the point (1, 2) in the line X—3y+4 =0 .

Solution Let Q (h, K) is the image of the point P (1, 2) in the line
X-3y+4=0 .. (1)
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N
7z

X’</

4
Y’ Fig10.22
Therefore, the line (1) is the perpendicular bisector of line segment PQ (Fig 10.22).

-1
Slope of line Xx-3y+4=0"

Hence Slope of line PQ =

so that ﬂz__l or 3h+k=5 .. (2
h-1 1
3
h+1 k+2
and the mid-point of PQ), i.e., point 5 T, will satisfy the equation (1) so that
h;1—3(k;2j+4:00rh—3k:—3 )

6 7
Solving (2) and (3), we get h =5 and k= 5

6 7
Hence, the image of the point (1, 2) in the line (1) is (ga gj .

Example 23 Show that the area of the triangle formed by the lines

(c-e)

y=mX+C,Y=m,X+c, and Xx=01is .
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Solution Given lines are Y
y=myx+c, A
y=mX+c, - (1)
y=mx+c, .. (2) '} ©,c,) y=mx+c,
x=0 .. 3)

We know that line y = mx + ¢ meets
the line X = 0 (y-axis) at the point

(0, ). Therefore, two vertices of the
triangle formed by lines (1) to (3) are

P (0,c)) and Q (0, c)) (Fig 10. 23). P o, ¢c)
Third vertex can be obtained by /
solving equations (1) and (2). Solving > X
(1) and (2), we get ‘/ 0 \l

(c.-¢c) (me, -mg) Fig 10.23

Xz—(m —n’g) and y= (m —n'E)

(c,-c) (mcz—mﬁ)]

Therefore, third vertex of the triangle is R ( (”1 _ mz) ’ (m _ mz)

Now, the area of the triangle is

2
1 _ _ _ Cc,—C
iy (mcz_nrac] _Cz]+ &% (¢ ¢)+0 [q_m.cz_rmq]‘:g - )
m-m, m-m, m-m, [y —my|
Example 24 A line is such that its segment x
between the lines
5X—y+4=0and 3x+4y—4=0is bisected at the (0 B)

point (1, 5). Obtain its equation.
Solution Given lines are
5x—-y+4=0 .. (D)
3x+4y—-4=0 .. (2)
Let the required line intersects the lines (1) and (2)
at the points, (o, B,) and (o, B,), respectively
(Fig10.24). Therefore

5o, — B, +4=0and

3a,+4B,-4=0

» (1,5)

Sx-y+4=0 Y 3x+4y-4=0

Fig 10.24
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4_30,2
4 .

We are given that the mid point of the segment of the required line between (o, BB,
and (o, B,) is (1, 5). Therefore

or B,=50+4andB,=

Gty angBth s
2
5()L1+4+4_30L2
or 0,1+0,2:2and 2 4 :5,
or o,+a,=2and20q,—3a,=20 .. (3
Solving equations in (3) for o, and o.,, we get
26 ) 20 ih B 526_'_4 222
o=— =— =5—+4=—
1755 and @, 53 and hence, P, 3 3

Equation of the required line passing through (1, 5) and (o, B,) is

222 5
—5 -
)’—5:Bl (X=Dor y-5= 23 (x=1)
Oh_1 é—l
23
or 107x— 3y — 92 =0,

which is the equation of required line.

Example 25 Show that the path of a moving point such that its distances from two
lines 3x— 2y = 5 and 3x + 2y = 5 are equal is a straight line.

Solution Given lines are
3x-2y=5 .. (D
and 3X+2y=35 .. (2
Let (h, K) is any point, whose distances from the lines (1) and (2) are equal. Therefore
3h—2k—35| [3h+2k-5|
Jo+4  Jo+4
which gives 3h— 2k —5=3h+2k—-5 or — (3h -2k - 5)=3h + 2k - 5.

or [3h—2k -5 =[3h+2k-5|,
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5
Solving these two relations we get K= 0 or h= . Thus, the point (h, K) satisfies the

3

equations y = 0 or X = 7, which represent straight lines. Hence, path of the point

3

equidistant from the lines (1) and (2) is a straight line.

10.

11.

12.

Miscellaneous Exercise on Chapter 10

Find the values of k for which the line (k=3) x— (4 - k) y+ k> -7Tk+6=10is
(a) Parallel to the x-axis,

(b) Parallel to the y-axis,

(c) Passing through the origin.

Find the values of 6 and p, if the equation X cos 0 + y sin@ = p is the normal form

of the line \/3x+y+2=0.
Find the equations of the lines, which cut-off intercepts on the axes whose sum
and product are 1 and — 6, respectively.

+==1 is

w | x
A<

What are the points on the y-axis whose distance from the line

4 units.

Find perpendicular distance from the origin to the line joining the points (cos0, sin 8)
and (cos 0, sin ).

Find the equation of the line parallel to y-axis and drawn through the point of
intersection of the lines x—7y+5=0 and 3x+y=0.

X
Find the equation of a line drawn perpendicular to the line n + % =1through the

point, where it meets the y-axis.

Find the area of the triangle formed by the linesy—x= 0, X+ y= 0 and x—k= 0.
Find the value of p so that the three lines 3x+ y—2=0, px+ 2y—3 =0 and
2x —y —3 = 0 may intersect at one point.

If three lines whose equations are y = mX+ ¢, y=mXx+c, and y = mX+ c, are
concurrent, then show that m(c,—c¢,) + m,(c, —¢) +m, (¢, —¢c,) = 0.

Find the equation of the lines through the point (3, 2) which make an angle of 45°
with the line x — 2y = 3.

Find the equation of the line passing through the point of intersection of the lines
4x+ 7y —3 =0 and 2x — 3y + 1 = 0 that has equal intercepts on the axes.
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Show that the equation of the line passing through the origin and making an angle

0 with the line y=mx+cCis Y. M.

X 1¥mtan 0
In what ratio, the line joining (—1, 1) and (5, 7) is divided by the line X + y=4?
Find the distance of the line 4x + 7y + 5 = 0 from the point (1, 2) along the line
2x—-y=0.
Find the direction in which a straight line must be drawn through the point (-1, 2)
so that its point of intersection with the line X + y = 4 may be at a distance of
3 units from this point.
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and
(=4, 1). Find an equation of the legs (perpendicular sides) of the triangle.
Find the image of the point (3, 8) with respect to the line X +3y = 7 assuming the
line to be a plane mirror.
Ifthe lines y=3x+1 and 2y =X+ 3 are equally inclined to the line y = mx+4, find
the value of m.
If sum of the perpendicular distances of a variable point P (X, y) from the lines
X+Yy—5=0and 3x—2y+7=0is always 10. Show that P must move on a line.
Find equation of the line which is equidistant from parallel lines 9x+ 6y—7 =0
and 3x+2y+6=0.
Aray of light passing through the point (1, 2) reflects on the x-axis at point A and the
reflected ray passes through the point (5, 3). Find the coordinates of A.
Prove that the product of the lengths of the perpendiculars drawn from the

points ( a’—b’ ,0) and (— a’—b’ ,O)to the line 20089 +%sin9 =1lis b’

A person standing at the junction (crossing) of two straight paths represented by
the equations 2x— 3y +4 =0 and 3x + 4y — 5 = 0 wants to reach the path whose
equation is 6X — 7y + 8 = 0 in the least time. Find equation of the path that he
should follow.

Summary

¢ Sope (M) of a non-vertical line passing through the points (X, y,) and (X,, ,)

yz_y1= Yi— Y,
Xo=X X=X,

is given by m=

] Xli X2-

¢ If a line makes an angle a with the positive direction of x-axis, then the slope

of the line is given by m= tan o, o # 90°.

# Slope of horizontal line is zero and slope of vertical line is undefined.
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@ An acute angle (say 0) between lines L, and L, with slopes m and m,is

m-m
1+mm,
@ Two lines are parallel if and only if their slopes are equal.

@ Two lines are perpendicular if and only if product of their slopes is —1.

@ Three points A, B and C are collinear, if and only if slope of AB = slope of BC.

@ Equation of the horizontal line having distance a from the x-axis is either
y=aory=-a

@ Equation of the vertical line having distance b from the y-axis is either
X=Dborx=-h.

4 The point (X, Y) lies on the line with slope mand through the fixed point (X , y,),
if and only if its coordinates satisfy the equation y —y = m (X — X ).

¢ Equation of the line passing through the points (X, y,) and (X,, ¥,) is given by

Yo~

_y =YV g
y y1 X2—X1( 1)'

given by tanf = Jd+mm, =0

@ The point (X, Y) on the line with slope mand y-intercept C lies on the line if and
only if y=mxX+cC.
¢ If a line with slope m makes x-intercept d. Then equation of the line is

y=m(X-d).
@ Equation of a line making intercepts a and b on the X-and y-axis,
y
tively, is — +> = 1.
respectively, is = ¥

@ The equation of the line having normal distance from origin pand angle between
normal and the positive x-axis ® is given by Xcos®+ ysin® = p.

@ Any equation of the form Ax + By + C = 0, with A and B are not zero,
simultaneously, is called the general linear equation or general equation of
a line.

@ The perpendicular distance (d) of a line AX+ By+ C = 0 from a point (X,, Y,)

| Ax1+By1+C|

# Distance between the parallel lines AX+ By + C, =0 and Ax+ By + C, =0,

is given by d=

is given by d =M.



Chapter 11

CONIC SECTIONS

+«»*Let the relation of knowledge to real life be very visible to your pupils
and let them understand how by knowledge the world could be
transformed. — BERTRAND RUSSELL ¢

11.1 Introduction

In the preceding Chapter 10, we have studied various forms
of the equations of a line. In this Chapter, we shall study
about some other curves, viz., circles, ellipses, parabolas
and hyperbolas. The names parabola and hyperbola are
given by Apollonius. These curves are in fact, known as
conic sections or more commonly cOnics because they
can be obtained as intersections of a plane with a double
napped right circular cone. These curves have a very wide

range of applications in fields such as planetary motion, Apollonius
design of telescopes and antennas, reflectors in flashlights (262B.C.-190B.C.)
and automobile headlights, etc. Now, in the subsequent sections we will see how the
intersection of a plane with a double napped right circular cone

results in different types of curves. Al o
11.2 Sectionsof a Cone S
Let | be a fixed vertical line and mbe another line intersecting it at \%
a fixed point V and inclined to it at an angle o (Figl1.1).
Suppose we rotate the line maround the line | in such a way
that the angle o remains constant. Then the surface generated is N\

a double-napped right circular hollow cone herein after referred as Figl1l.1
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Plane
Upper 'm Generator 3
nappe \
Lower
nappe Cone
Fig1L. 2 Fig1l. 3

cone and extending indefinitely far in both directions (Figl1.2).

The point V is called the vertex; the line | is the axisof the cone. The rotating line
m is called a generator of the cone. The vertex separates the cone into two parts
called nappes.

If we take the intersection of a plane with a cone, the section so obtained is called
a conic section. Thus, conic sections are the curves obtained by intersecting a right
circular cone by a plane.

We obtain different kinds of conic sections depending on the position of the
intersecting plane with respect to the cone and by the angle made by it with the vertical
axis of the cone. Let B be the angle made by the intersecting plane with the vertical
axis of the cone (Figl1.3).

The intersection of the plane with the cone can take place either at the vertex of
the cone or at any other part of the nappe either below or above the vertex.

11.2.1 Circle, ellipse, parabola and hyperbola When the plane cuts the nappe (other
than the vertex) of the cone, we have the following situations:

(2) When B=90°, the section is a circle (Figl1.4).

(b) When o < < 90°, the section is an elipse (Figl1.5).

(c) When B = o the section is a parabola (Figl1.6).

(In each of the above three situations, the plane cuts entirely across one nappe of
the cone).

(d) When 0 < B < «; the plane cuts through both the nappes and the curves of
intersection is a hyperbola (Figl1.7).



238  MATHEMATICS

. Fig1l.7
Fig1l1.6
11.2.2 Degenerated conic sections

When the plane cuts at the vertex of the cone, we have the following different cases:
(2) When o <3 £90°, then the section is a point (Figl1.8).

(b) When B = o, the plane contains a generator of the cone and the section is a
straight line (Figl1.9).

It is the degenerated case of a parabola.

(c) When0 <P <a,the section is a pair of intersecting straight lines (Fig11.10). Itis
the degenerated case of a hyperbola.
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In the following sections, we shall obtain the equations of each of these conic
sections in standard form by defining them based on geometric properties.

(a) Fig11. 10 (b)

11.3 Circle

Definition 1 A circle is the set of all points in a plane that are equidistant from a fixed
point in the plane.

The fixed point is called the centre of the circle and the distance from the centre
to a point on the circle is called the radius of the circle (Fig 11.11).
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Radius Y
N
.P‘ P (x, y)
P,
P,
OP =0P,=0P, = >xX
Fig11. 11 Fig 11. 12

The equation of the circle is simplest if the centre of the circle is at the origin.
However, we derive below the equation of the circle with a given centre and radius
(Fig 11.12).

Given C (h, k) be the centre and r the radius of circle. Let P(X, y) be any point on
the circle (Figl1.12). Then, by the definition, | CP | = r . By the distance formula,
we have

Jx=hy> +(y—k)*> =r
ie. (X —hy? + (y—k?=r?
This is the required equation of the circle with centre at (h,K) and radius r .
Example 1 Find an equation of the circle with centre at (0,0) and radius r.
Solution Here h= k= 0. Therefore, the equation of the circle is X* + y* = r2.
Example 2 Find the equation of the circle with centre (-3, 2) and radius 4.
Solution Here h=-3, k=2 and r = 4. Therefore, the equation of the required circle is

(x+3)+(y-2y=16
Example 3 Find the centre and the radius of the circle X2+ y*+ 8X + 10y — 8 =0
Solution The given equation is
(X +8x) + (Y +10y) =38
Now, completing the squares within the parenthesis, we get
¢ +8x+16) + (y*+10y+25) =8+ 16 +25

ie. (X+4)y2+(y+5?2=49

ie. X—(HP2+{y—(H)p2=7
Therefore, the given circle has centre at (— 4, —5) and radius 7.
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Example4 Find the equation of the circle which passes through the points (2, —2), and
(3,4) and whose centre lies on the line X+ y = 2.
Solution Let the equation of the circle be (X — h)* + (y — k)* = r2.
Since the circle passes through (2, — 2) and (3,4), we have

2-h?+(2-k?=r? .. (D)

and (3-hy?+ 4 -Kk?=r? .. (2)

Also since the centre lies on the line X + y =2, we have
h+k=2 .. (3

Solving the equations (1), (2) and (3), we get
h=0.7, k=1.3 andr?>=12.58
Hence, the equation of the required circle is
X—-0.7)* +(y—1.3)>=12.58.

|[EXERCISE 11.1]

In each of the following Exercises 1 to 5, find the equation of the circle with

1. centre (0,2) and radius 2 2. centre (—2,3) and radius 4

I 1 1
3. centre (5, Z) and radius E 4. centre (1,1) and radius ﬁ

5. centre (—a, —b) and radius ,/a®> — b? .

In each of the following Exercises 6 to 9, find the centre and radius of the circles.
6. (x+5)2+(y—3)>=36 7. X+YyY —4x-8y—-45=0
8. X+yY -8+ 10y—12=0 9. 2% +2y2—-x=0

10. Find the equation of the circle passing through the points (4,1) and (6,5) and
whose centre is on the line 4X +y = 16.

11. Find the equation of the circle passing through the points (2,3) and (-1,1) and
whose centre is on the line X — 3y — 11 = 0.

12. Find the equation of the circle with radius 5 whose centre lies on X-axis and
passes through the point (2,3).

13. Find the equation of the circle passing through (0,0) and making intercepts a and
b on the coordinate axes.

14. Find the equation of a circle with centre (2,2) and passes through the point (4,5).

15. Does the point (2.5, 3.5) lie inside, outside or on the circle X* + y? = 25?
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11.4 Parabola

Definition 2 A parabola is the set of all points
in a plane that are equidistant from a fixed line
and a fixed point (not on the line) in the plane.
The fixed line is called the directrix of
the parabola and the fixed point F is called the
focus (Fig 11.13). (‘Para’ means ‘for’ and
‘bola’ means ‘throwing’, i.e., the shape
described when you throw a ball in the air).

If the fixed point lies on the fixed

line, then the set of points in the plane, which
are equidistant from the fixed point and the
fixed line is the straight line through the fixed
point and perpendicular to the fixed line. We
call this straight line as degenerate case of
the parabola.

A line through the focus and perpendicular
to the directrix is called the axis of the
parabola. The point of intersection of parabola
with the axis is called the vertex of the parabola
(Figl1.14).

11.4.1 Sandard equationsof parabola The
equation of a parabolais simplest if the vertex

Directrix

I
i e

®

Directrix

Fig 11. 13

A
7
Focus Axis
AV

pa
~

/
Vertex
v

Fig 11.14

is at the origin and the axis of symmetry is along the X-axis or y-axis. The four possible
such orientations of parabola are shown below in Figl1.15 (a) to (d).

Y
N
1~
|
I
%
Xv/ \X
N ol F(a,0) -
v
y'=d4ax Y
(@)

X

A

Y
N\ A
S
+
1
®
N
X
F(-a,0) O i’
\

Y y'=—dax

~

(b)
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Y Y
N A
~ T
0 X
F(0, a)
F(Oa_a)
) X
Z N
~ y=_a 7
\Z v
x’=4ay x’=—4ay
© Fig11.15 (a) to (d) (@)

We will derive the equation for the parabola shown above in Fig 11.15 (a) with
focus at (a, 0) a> 0; and directricx X = — a as below:

Let F be the focus and | the directrix. Let Y
FM be perpendicular to the directrix and bisect In 4
FM at the point O. Produce MO to X. By the (=4,»)B /\P(x,y)

definition of parabola, the mid-point O is on the
parabola and is called the vertex of the parabola.
Take O as origin, OX the x-axis and OY ~ M| O\ F(a,0)
perpendicular to it as the y-axis. Let the distance 3
from the directrix to the focus be 2a. Then, the |I
coordinates of the focus are (a, 0), and the RV N
equation of the directrixis x+a=0as in Figl1.16. .
Let P(X, y) be any point on the parabola such that Fig 11.16

PF = PB, (D
where PB is perpendicular to |. The coordinates of B are (— a, y). By the distance
formula, we have

PF = /(X_a)z 4y and PB = /(X+ a)’

Since PF = PB, we have

\/(x—a)z +y? =\/(x+ a)’
ie. (X—ay}+y =X+ a)
or X -2axt+a+y=x+2ax+a
or y=4dax(a>0).
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Hence, any point on the parabola satisfies
y? = 4ax. .. (2)

Conversely, let P(X, y) satisfy the equation (2)

PF = Jx—a)l+y> =.(x—a) +4ax
= J(x+a)’ =PB .. (3)

and so P(x,y) lies on the parabola.

Thus, from (2) and (3) we have proved that the equation to the parabola with
vertex at the origin, focus at (a,0) and directrix X = — ais y* = 4ax.

Discussion In equation (2), since @ > 0, X can assume any positive value or zero but
no negative value and the curve extends indefinitely far into the first and the fourth
quadrants. The axis of the parabola is the positive X-axis.

Similarly, we can derive the equations of the parabolasin:

Fig 11.15 (b) as y* = — 4ax,
Fig 11.15 (c) as X2 = 4ay,
Fig 11.15 (d) as x> = — 4ay,
These four equations are known as standard equations of parabolas.

The standard equations of parabolas have focus on one of the coordinate
axis; vertex at the origin and thereby the directrix is parallel to the other coordinate
axis. However, the study of the equations of parabolas with focus at any point and
any line as directrix is beyond the scope here.

From the standard equations of the parabolas, Figl1.15, we have the following
observations:

1. Parabolais symmetric with respect to the axis of the parabola.If the equation
has a y? term, then the axis of symmetry is along the X-axis and if the
equation has an X?term, then the axis of symmetry is along the y-axis.

2. When the axis of symmetry is along the X-axis the parabola opens to the
(a) rightifthe coefficient of X is positive,

(b) left if the coefficient of X is negative.

3. When the axis of symmetry is along the y-axis the parabola opens

(c) upwards if the coefficient of y is positive.
(d) downwards if the coefficient of y is negative.
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11.4.2 Latus rectum

Definition 3 Latus rectum of a parabola is a line segment perpendicular to the axis of
the parabola, through the focus and whose end points lie on the parabola (Figl1.17).
To find the Length of the latus rectum of the parabola y? = 4ax (Fig 11.18).
By the definition of the parabola, AF = AC.

But AC=FM=2a

Hence AF = 2a.

And since the parabola is symmetric with respect to X-axis AF = FB and so

AB = Length of the latus rectum = 4a.
Y
N /P

-~ c

. Latus rectum

Focus

Y
< ()K >X < >X

\ v oV \

Fig11.17 Fig 11.18
Y
N N

Example5 Find the coordinates of the focus, axis,
the equation of the directrix and latus rectum of
the parabola y* = 8X.

pd

&
Solution The given equation involves Y2, so the ~ 0
axis of symmetry is along the X-axis. [
The coefficient of X is positive so the parabola opens

to the right. Comparing with the given equation

y? = 4ax, we find that a = 2. Fig 11.19

(2,0)

~

v \

Thus, the focus of the parabola is (2, 0) and the equation of the directrix of the parabola
isx=-2 (Fig 11.19).

Length of the latus rectum is 4a=4 x 2 =8.
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Example 6 Find the equation of the parabola with focus (2,0) and directrix X=— 2.

Solution Since the focus (2,0) lies on the x-axis, the X-axis itself is the axis of the

parabola. Hence the equation of the parabola is of the form either

y*=4axor y*=—4ax. Since the directrix is X=— 2 and the focus is (2,0), the parabola

is to be of the form y?> = 4ax with a = 2. Hence the required equation is
V2 =4(2)x = 8X

Example 7 Find the equation of the parabola with vertex at (0, 0) and focus at (0, 2).

Solution Since the vertex is at (0,0) and the focus is at (0,2) which lies on y-axis, the
y-axis is the axis of the parabola. Therefore, equation of the parabola is of the form
x* = 4ay. thus, we have

X2 =4(Q2)y, i.e., X2 = 8y.

Example 8 Find the equation of the parabola which is symmetric about the y-axis, and
passes through the point (2,-3).

Solution Since the parabola is symmetric about y-axis and has its vertex at the origin,
the equation is of the form X* = 4ay or X* = — 4ay, where the sign depends on whether
the parabola opens upwards or downwards. But the parabola passes through (2,-3)
which lies in the fourth quadrant, it must open downwards. Thus the equation is of
the form X* = — 4ay.

Since the parabola passes through ( 2,-3), we have

1
22 =—4a(-3),ie,a = <

W

Therefore, the equation of the parabola is

X2 = —4(%) y, ie., 3xX*=—4y.

[EXERCISE 11.2

In each of the following Exercises 1 to 6, find the coordinates of the focus, axis of the
parabola, the equation of the directrix and the length of the latus rectum.

1. y¥*=12x 2. X=6y 3. Yy =-8x
4. X =-16y 5. y?*=10x 6. XX=-9y

In each of the Exercises 7 to 12, find the equation of the parabola that satisfies the
given conditions:
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Focus (6,0); directrix X=—6 8. Focus (0,-3); directrix y=3

9. Vertex (0,0); focus (3,0) 10. Vertex (0,0); focus (-2,0)
11. Vertex (0,0) passing through (2,3) and axis is along x-axis.
12. Vertex (0,0), passing through (5,2) and symmetric with respect to y-axis.
11.5 Ellipse P, P,
Definition 4 An ellipse s the set of all points in P, '
a plane, the sum of whose distances from two ‘.
fixed points in the plane is a constant. V’ \

The two fixed points are called the foci (plural
of ‘focus’) of the ellipse (Fig11.20).

The constant which is the sum of
the distances of a point on the ellipse from the P.F,+PF,=PF +PF,=PF+PF,
two fixed points is always greater than the Fig 11.20

distance between the two fixed points.

The mid point of the line segment joining the foci is called the centre of the
ellipse. The line segment through the foci of the ellipse is called the major axisand the
line segment through the centre and perpendicular to the major axis is called the minor
axis. The end points of the major axis are called the vertices of the ellipse(Fig 11.21).

c c
pa - () Gl a(- - - >:
E\ Major axis ,E ' '
: mecoee - A E Lk A
: : : b
. é K . o
A o o B N F b’.‘
( F, O|Centre F, \ S :
= v
s | T~
Vertex — . _V_el_'tf”_‘ R
p CTTttTUTYTLLLD O Keee----
Fig11.21 Fig11.22

We denote the length of the major axis by 2a, the length of the minor axis by 2b
and the distance between the foci by 2¢. Thus, the length of the semi major axis is a
and semi-minor axis is b (Fig11.22).
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11.5.1 Relationship between semi-major /b2+c2 /b2+c2

axis, semi-minor axis and the distance of Q a—c
the focus from the centre of the ellipse
(Fig 11.23). b

Take a point P at one end of the major axis. R
Sum of the distances of the point P to the
fociis F, P+FP=FO+OP+F/P
(Since, F P =F O+ OP)
=ctata-c=2a

Take a point Q at one end of the minor axis.
Sum of the distances from the point Q to the foci is

FQ+FQ=b + & + b7 +¢ = 207 +¢

Since both P and Q lies on the ellipse.

By the definition of ellipse, we have

2,/b* +¢* = 2aie, a=,/b* + ¢

or al=p+c,ie, c=.a> - b

11.5.2 Special cases of an ellipse In the equation
¢’ = & — b? obtained above, if we keep a fixed and

vary C from 0 to a, the resulting ellipses will vary in
shape. b
a

Case (1) When ¢ = 0, both foci merge together with

the centre of the ellipse and & = b, i.e., a=b, and so Fi=F,
the ellipse becomes circle (Figl1.24). Thus, circle is a
special case of an ellipse which is dealt in Section 11.3. Fiq 1124
ig 11.
Case (i1) When ¢ = a, then b= 0. The ellipse reduces J
to the line segment F F, joining the two foci (Fig11.25). a . a .
11.5.3 Eccentricity F, Fig11.25 F,

Definition 5 The eccentricity of an ellipse is the ratio of the distances from the centre
of the ellipse to one of the foci and to one of the vertices of the ellipse (eccentricity is

. C
denoted by e) i.e., e=—.
a
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Then since the focus is at a distance of C from the centre, in terms of the eccentricity
the focus is at a distance of ae from the centre.

11.5.4 Standard equations of an ellipse The equation of an ellipse is simplest if the

centre of the ellipse is at the origin and the foci are x
0,a)
Y
N
0,01
€l Py (
A B 5x NEPO) (T ®0)
Fl (_ &) 0) o Fz (C’, 0)
(0,-c)
D
, A\ 4 ) Oa)
—a
Lo v
a b 2 2
i + L = 1
@ b &
Fig 11.26 (b)

on the x-axis or y-axis. The two such possible orientations are shown in Fig 11.26.

We will derive the equation for the ellipse shown above in Fig 11.26 (a) with foci
on the x-axis. Y

Let F, and F, be the foci and O be the mid- CA
point of the line segment F F,. Let O be the origin LX)
and the line from O through F, be the positive
x-axis and that through F as the negative X-axis. A B
Let, the line through O perpendicular to the F (¢, 0) O  F,(c,0)
X-axis be the y-axis. Let the coordinates of F be
(—c¢,0) and F, be (c, 0) (Fig 11.27).

D
Let P(X, y) be any point on the ellipse such v
that the sum of the distances from P to the two Xy -1
foci be 2aso given a2 + B
PF, + PF, = 2a. (1)
Using the distance formula, we have Fig11.27

\/(x+c)2 +y o+ \/(x—c)2+y2 = 2a

e, \J(X+0C) +y =2a- . J(x—c)’ +V
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Squaring both sides, we get

(X+cC)P+y =4a2—4am + (Xx=C)* + Yy’

which on simplification gives

Squaring again and simplifying, we get
2 2
X
L A
a a —¢C

2 y?
PO
a b

Hence any point on the ellipse satisfies

ie., =1 (Since ¢ = & — b?)

X2 2
;Jré =1 )

Conversely, let P (X, y) satisfy the equation (2) with 0 <c <a. Then

XZ
" [ 1?}

Therefore, PF, = J(X+ C)2 + y2

\/(x+ c)’ + b’ (Lﬁj
a

2 2 2 az_xz .
(X+c)"+(a —-c’) 2 (since b? = @ — ¢?)

Il
T~
Q
+

|2
~—
S}
Il
Q
1
x

Similarly PF, _ a——X
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Cc Cc 3
Hence PF +PF = a+—X+a-—Xx=2a - (3)
1 2 a a
2 2
So, any point that satisfies ? + F = 1, satisfies the geometric condition and so

P(X, y) lies on the ellipse.
Hence from (2) and (3), we proved that the equation of an ellipse with centre of
the origin and major axis along the X-axis is
2 2
— t z— =1.
Discussion From the equation of the ellipse obtained above, it follows that for every
point P (X, y) on the ellipse, we have

Q

— =1--"= <1, ie, ¥< & so-a< x< a

Therefore, the ellipse lies between the lines X =— a and X = a and touches these lines.
Similarly, the ellipse lies between the lines y =— b and y = b and touches these
lines.

2 2
Y

Similarly, we can derive the equation of the ellipse in Fig 11.26 (b) as F+¥ =

These two equations are known as standard equations of the ellipses.

The standard equations of ellipses have centre at the origin and the

major and minor axis are coordinate axes. However, the study of the ellipses with
centre at any other point, and any line through the centre as major and the minor
axes passing through the centre and perpendicular to major axis are beyond the
scope here.

From the standard equations of the ellipses (Figl11.26), we have the following
observations:

1. Ellipse is symmetric with respect to both the coordinate axes since if (X, y) is a
point on the ellipse, then (— X, y), (X, —Y) and (— X, —Y) are also points on the ellipse.

2. The foci always lie on the major axis. The major axis can be determined by
finding the intercepts on the axes of symmetry. That is, major axis is along the X-axis
if the coefficient of X* has the larger denominator and it is along the y-axis if the
coefficient of y? has the larger denominator.
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11.5.5 Latus rectum Y

Definition 6 Latus rectum of an ellipse is a
line segment perpendicular to the major axis
through any of the foci and whose end points P
lie on the ellipse (Fig 11.28).

To find the length of the latus rectum

2 2
f the elli —t==
of the ellipse a’ b Latus rectum
Let the length of AF be I. Fig 11. 28
Then the coordinates of A are (C, | ),i.e.,
(ae, 1)
2 2
Since A lies on the ellipse 2 + = =1, we have
2 )2
(aez) +l_2 1
a b
=12=pP0-¢€)
C2 a2 _b2 b2
Bul T @
b* b?
Therefore 2= —.ie, |l =—
a a

Since the ellipse is symmetric with respect to y-axis (of course, it is symmetric w.r.t.

2
both the coordinate axes), AF, = F,B and so length of the latus rectum is P

Example 9 Find the coordinates of the foci, the vertices, the length of major axis, the
minor axis, the eccentricity and the latus rectum of the ellipse

2 2
X_ + y_ =1
25 9
X2 y2
Solution Since denominator of > is larger than the denominator of R the major
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2 2

axis is along the x-axis. Comparing the given equation with P + = =1, we get

a=>5and b=3. Also

c=ya’-b*=25-9=4

Therefore, the coordinates of the foci are (— 4,0) and (4,0), vertices are (— 5, 0) and
(5, 0). Length of the major axis is 10 units length of the minor axis 2b is 6 units and the

L . 2b° 18
eccentricity 1s 35 and latus rectum is ? =—.

5
Example 10 Find the coordinates of the foci, the vertices, the lengths of major and

minor axes and the eccentricity of the ellipse 9x* + 4y*= 36.
Solution The given equation of the ellipse can be written in standard form as

2 2
X_+y_:1

49

2) 2
Since the denominator of y? is larger than the denominator of i the major axis is

along the y-axis. Comparing the given equation with the standard equation

2 2
X
FJré:l,wehave b=2anda=3.

Also c=.al-p* = J9-4=45
e C_V5
a 3

Hence the foci are (0, \/5) and (0, —+/5 ), vertices are (0,3) and (0, —3), length of the
major axis is 6 units, the length of the minor axis is 4 units and the eccentricity of the

and

5
llipseis —.
ellipse is 3

Example 11 Find the equation of the ellipse whose vertices are (+ 13, 0) and foci are
(x5,0).
Solution Since the vertices are on X-axis, the equation will be of the form

X2 2

— +-=5 =1, where a is the semi-major axis.

b2

o5}
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Given that a=13,c=%5.
Therefore, from the relation ¢* = & — b?, we get
25 =169 -b*,ie,b=12

2 2

Hence the equation of the ellipse is — + Y _ 1.
169 144

Example 12 Find the equation of the ellipse, whose length of the major axis is 20 and
foci are (0,  5).

Solution Since the foci are on y-axis, the major axis is along the y-axis. So, equation

22
of the ellipse is of the form r= + % =1,
Given that
o020
a = semi-major axis =—-= 10
and the relation c?= a>-— b’ gives

52=10*-Db* ie,b?=75
Therefore, the equation of the ellipse is
2 2
X_ + y_ =1
75 100
Example 13 Find the equation of the ellipse, with major axis along the x-axis and
passing through the points (4, 3) and (- 1.4).

2 2
Solution The standard form of the ellipse is X_2 + E)/_Z = 1. Since the points (4, 3)
and (-1, 4) lie on the ellipse, we have a

16 9

— +—=1 .. (D)

a b

1 16
and — T =1 ....(2)
. . ) 247 , 247

Solving equations (1) and (2), we find that &" = - and b” = Ts

Hence the required equation is
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X y?
+===1 2 2 —
247 247 T e, TR+ 15y = 247,
(7) 15
|[EXERCISE 11.3

In each of the Exercises 1 to 9, find the coordinates of the foci, the vertices, the length
of major axis, the minor axis, the eccentricity and the length of the latus rectum of the
ellipse.

2 2 2 2 2 2
1 Y o XY 3 LY
36 16 4 25 169
2 2 2 2 2 2
4. X_+y_:1 5 X_+y_: 6 X_+y_:1
25 100 49 36 100 400
7. 36X + 4y = 144 8. 16¢+y2 =16 9. 4x+9y* =36

In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies
the given conditions:

10. Vertices (£ 5, 0), foci (£ 4, 0)

11. Vertices (0, = 13), foci (0, = 5)

12. Vertices (£ 6, 0), foci (£ 4, 0)

13. Ends of major axis (£ 3, 0), ends of minor axis (0, + 2)

14. Ends of major axis (0, = ﬁ ), ends of minor axis (£ 1, 0)
15. Length of major axis 26, foci (£ 5, 0)

16. Length of minor axis 16, foci (0, = 6).

17. Foci(x£3,0),a=4

18. b=3, c=4, centre at the origin; foci on the X axis.

19. Centre at (0,0), major axis on the y-axis and passes through the points (3, 2) and
(1,6).
20. Major axis on the X-axis and passes through the points (4,3) and (6,2).

11.6 Hyperbola

Definition 7 A hyperbola is the set of all points in a plane, the difference of whose
distances from two fixed points in the plane is a constant.
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Conjugate
axis

Transverse

/ axis

AN

p,F,-P,F,=P,F,- P,F,=P;F, - P;F,
Fig 11.29

The term “difference” that is used in the definition means the distance to the
farther point minus the distance to the closer point. The two fixed points are called the
foci of the hyperbola. The mid-point of the line segment joining the foci is called the
centre of the hyperbola. The line through the foci is called the transverse axis and
the line through the centre and perpendicular to the transverse axis is called the conjugate
axis. The points at which the hyperbola
intersects the transverse axis are called the
vertices of the hyperbola (Fig 11.29).

We denote the distance between the
two foci by 2c, the distance between two X’
vertices (the length of the transverse axis)
by 2a and we define the quantity b as

b — }CZ_aZ

Also 2bis the length of the conjugate axis
(Fig 11.30).

To find the constant P.F, — P F :

Yl
Fig 11.30

By taking the point P at Aand B in the Fig 11.30, we have
BF, —BF,= AF, - AF (by the definition of the hyperbola)
BA +AF — BF,= AB + BF - AF,

ie,AF = BF,

So that, BF, — BF,= BA + AF - BF, =BA=2a
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11.6.1 Eccentricity

Cc
Definition 8 Just like an ellipse, the ratio e = a is called the eccentricity of the

hyperbola. Since ¢ > a, the eccentricity is never less than one. In terms of the
eccentricity, the foci are at a distance of ae from the centre.

11.6.2 Standard equation of Hyperbola The equation of a hyperbola is simplest if
the centre of the hyperbola is at the origin and the foci are on the x-axis or y-axis. The
two such possible orientations are shown in Fig11.31.

Y
(N
(0,0)¢
Y
N 1 e
X’L (0] - X’\4 O ﬁ\x

o lcan | @olen X
O (Oa_a)
\L '
Y’ ﬁ \
: ) \Z

@ !
iz Lz =1 . Y,
a b y X
Fig 11.31 JER
We will derive the equation for the hyperbola shown in Fig 11.31(a) with foci on
the X-axis.
Let F, and F, be the foci and O be the mid-point of the line segment F F,. Let O
be the origin and the line through O
through F, be the positive x-axis and
that through F, as the negative
x-axis. The line through O
perpendicular to the x-axis be the
y-axis. Let the coordinates of F bex' ¢

(- ¢,0) and F, be (c,0) (Fig 11.32). F, 0 >X
Let P(X, y) be any point on the (=¢,0) (c 0)

hyperbola such that the difference

of the distances from P to the farther \A

point minus the closer point be 2a. Y’
So given, PF —PF, =2a Fig 11.32

=1

||
P(x, y)
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Using the distance formula, we have
\/(x+ o)’ +vy’ —\/(x—c)2 +y*=2a

ie., JX+C0) + Y =2a+(Xx=c)’ +Vy°

Squaring both side, we get

(X+CP+y=4a+4a J(x—c)?+y> T (X—CP+Y?

and on simplifying, we get

CX
. —a=,/(x=c)’ +Vy’

On squaring again and further simplifying, we get

Xy
a® ¢’ -a’
; X_2 _y_Z =1 ; 2 2 — 2
ie., 2 0 (Since ¢* — & = b?)
Y.
Hence any point on the hyperbola satisfies P —? =

Conversely, let P(X, y) satisfy the above equation with 0 <a < c. Then

i x* —a’
y = b 2
Therefore, PF = + /(X+ C)2 + y2

2 2
X —a Cc
—+\/(X+C)2+b2( 3 }:a+—x
a a

Similarly, PF, =a—- —x

c
In hyperbola c> &; and since P is to the right of the line X=a, X> a, a x> a. Therefore,

c _ c
a-— a X becomes negative. Thus, PF, = gx —a.
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C CX
Therefore PF - PF, =a + _x - — + a=2a
a a

Also, note that if P is to the left of the line X =— a, then

c c
PF =— a+—X| PF =a—- —X,
a 2 a

2 2
X

In that case P F,— PF, = 2a. So, any point that satisfies 2z _F: 1, lies on the
hyperbola.

Thus, we proved that the equation of hyperbola with origin (0,0) and transverse axis

| XY
along X-axisis —5 ——5 =1.
g a.2 b2

A hyperbola in which a= b is called an equilateral hyperbola.

Discussion From the equation of the hyperbola we have obtained, it follows that, we

2 2

X
have for every point (X, ¥) on the hyperbola, P =1+ é > 1.

ie, [—{=1,ie.,Xx<—a orx=a. Therefore, no portion of the curve lies between the

lines X =+ a and X = — @, (i.e. no real intercept on the conjugate axis).

2 X2

Similarly, we can derive the equation of the hyperbola in Fig 11.31 (b) as é _F =1
These two equations are known as the standard equations of hyperbolas.

The standard equations of hyperbolas have transverse and conjugate
axes as the coordinate axes and the centre at the origin. However, there are
hyperbolas with any two perpendicular lines as transverse and conjugate axes, but
the study of such cases will be dealt in higher classes.

From the standard equations of hyperbolas (Figl1.29), we have the following
observations:

1.  Hyperbola is symmetric with respect to both the axes, since if (X, y) is a point on
the hyperbola, then (— X, ¥), (X, —¥) and (— X, — Y) are also points on the hyperbola.
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2. The foci are always on the transverse axis. It is the positive term whose
N N

. . . y
denominator gives the transverse axis. For example, — —=—

916

2 2

has transverse axis along x-axis of length 6, while % 16 =

has transverse axis along y-axis of length 10.

11.6.3 Latus rectum
Definition 9 Latus rectum of hyperbola is a line segment perpendicular to the transverse
axis through any of the foci and whose end points lie on the hyperbola.

2b?
As in ellipse, it is easy to show that the length of the latus rectum in hyperbola is =

Example 14 Find the coordinates of the foci and the vertices, the eccentricity,the
length of the latus rectum of the hyperbolas:

2 2

)X——i’—6_1 (i) y* — 16X = 16
XZ y2
Solution (i) Comparing the equation ?_EZI with the standard equation
X2 y2
a b

Here,a=3,b= 4andC—\/a +b* =9+16

Therefore, the coordinates of the foci are (5, 0) and that of vertices are (£ 3, 0).Also,

L c_5 2b> 32
The eccentricity e = —=—. The latus rectum =——=—
a 3 3
y2 X2
(i1) Dividing the equation by 16 on both sides, we have 6 1 =1
2 2
Comparing the equation with the standard equation a— - F =1, we find that

a=4, b=1land c=4a2+b*=.16+1=+17.
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Therefore, the coordinates of the foci are (0, + /17) and that of the vertices are
(0, £ 4). Also,
c 17 207 1
Th tricity €=—=——_ The lat t =—=—.
e eccentricity N e latus rectum =— >
Example 15 Find the equation of the hyperbola with foci (0, = 3) and vertices

S

11
0, —).
0.5 )

Solution Since the foci is on y-axis, the equation of the hyperbola is of the form

2 2

y X _,

a b
Since vertices are (0, *

25
Also, since foci are (0, £3);c=3 andb*=c*-a>= T

Therefore, the equation of the hyperbola is

y_z_x_z =1,ie., 100y? — 44 2 =275
E (25J =1,1e., Yy - = .
4) 4

Example 16 Find the equation of the hyperbola where foci are (0, £12) and the length
of the latus rectum is 36.

Solution Since foci are (0, + 12), it follows that ¢ = 12.

2b?
Length of the latus rectum = a =36 or b’=18a
Therefore ¢ =a + b gives
144 =2+ 18a
ie., a+18a—-144=0,
So =—24,6.

Since a cannot be negative, we take a =6 and so b* = 108.

2 2

X
Therefore, the equation of the required hyperbola is ;,_6 ~ 108 l,ie,3y"—x*=108
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EXERCISE 11.4

In each of the Exercises 1 to 6, find the coordinates of the foci and the vertices, the
eccentricity and the length of the latus rectum of the hyperbolas.

2 2 2 2
X X
X ¥4 o XX 3. 9y - 4% =36
16 9 9 27
4. 16X — 9y = 576 5. 52— 9% =36 6. 49y — 16x = 784.

In each of the Exercises 7 to 15, find the equations of the hyperbola satisfying the given
conditions.
7. Vertices (£ 2, 0), foci (£3,0)
8. Vertices (0, = 5), foci (0,%38)
9. Vertices (0, = 3), foci (0,%5)
10. Foci (£ 5,0), the transverse axis is of length 8.
11. Foci (0, £13), the conjugate axis is of length 24.

12. Foci (34/5, 0), the latus rectum is of length 8.
13. Foci (+4,0), the latus rectum is of length 12

4
14. vertices (£ 7,0), e= 5

15. Foci (0, % /10 ), passing through (2,3)

Miscellaneous Examples

Example 17 The focus of a parabolic mirror as shown in Fig 11.33 is at a distance of
5 cm from its vertex. If the mirror is 45 cm deep, find Y
the distance AB (Fig 11.33). N

(Fig ) - - 45 - >,

Solution  Since the distance from the focus to the
vertex is 5 cm. We have, a=5. If the origin is taken at
the vertex and the axis of the mirror lies along the
positive x-axis, the equation of the parabolic section is

AN
N

Y =4(5)x=20x < 5
Note that X=45. Thus
Yy =900
Therefore y= 430
Hence AB =2y=2x30=60cm. \
Example 18 A beam is supported at its ends by Fig 11.33

supports which are 12 metres apart. Since the load is concentrated at its centre, there
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is a deflection of 3 cm at the centre and the deflected beam is in the shape of a
parabola. How far from the centre is the deflection 1 cm?

Solution Let the vertex be at the lowest point and the axis vertical. Let the coordinate
axis be chosen as shown in Fig 11.34.

Fig 11.34

The equation of the parabola takes the form X*= 4ay. Since it passes through

6i b Yy 3. ~ 36x100 2300
"Too | We have (6)* =4a 100 ) €+ a= T m

1 2
Let AB be the deflection of the beam which is Too ™ Coordinates of B are (X, 100"

2
Theref: X2 =4x300x — =24
erefore x x 100

ie. X= 24 = 2.6 metres

Example 19 A rod AB of length 15 cm rests in between two coordinate axes in such
a way that the end point A lies on X-axis and end point B lies on
y-axis. A point P(X, Y) is taken on the rod in such a way

that AP = 6 cm. Show that the locus of P is an ellipse. A

Solution Let AB be the rod making an angle 6 with B
OX as shown in Fig 11.35 and P (X, y) the point on it
such that AP =6 cm.

Since AB = 15 cm, we have Q

PB= 9cm.

From P draw PQ and PR perpendiculars on y-axis and
X-axis, respectively. Fig 11.35

(0)
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From

From

MATHEMATICS
X
A PBQ, cos 6 = 9
P
A PRA, sin 6 = o

Since ¢o0s?0 +sin?0 =1

or

Thus

)\ 2
-3
9 6
2 2
X,y _
81 36
the locus of P is an ellipse.

Miscellaneous Exercise on Chapter 11

If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.

An arch is in the form of a parabola with its axis vertical. The arch is 10 m high
and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?

The cable of a uniformly loaded suspension bridge hangs in the form of a parabola.
The roadway which is horizontal and 100 m long is supported by vertical wires
attached to the cable, the longest wire being 30 m and the shortest being 6 m.
Find the length of a supporting wire attached to the roadway 18 m from the
middle.

An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre.
Find the height of the arch at a point 1.5 m from one end.

A rod of length 12 cm moves with its ends always touching the coordinate axes.
Determine the equation of the locus of a point P on the rod, which is 3 cm from
the end in contact with the X-axis.

Find the area of the triangle formed by the lines joining the vertex of the parabola
X2 = 12y to the ends of its latus rectum.

A man running a racecourse notes that the sum of the distances from the two flag
posts from him is always 10 m and the distance between the flag posts is 8§ m.
Find the equation of the posts traced by the man.

An equilateral triangle is inscribed in the parabola y?> = 4 ax, where one vertex is
at the vertex of the parabola. Find the length of the side of the triangle.
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Summary

In this Chapter the following concepts and generalisations are studied.

@ A circle is the set of all points in a plane that are equidistant from a fixed point
in the plane.

@ The equation of a circle with centre (h, K) and the radius r is
(X—hp+(y-K2=r2

¢ A parabola is the set of all points in a plane that are equidistant from a fixed
line and a fixed point in the plane.

@ The equation of the parabola with focus at (a, 0) a> 0 and directrix X=—ais

y? = 4ax.
¢ Latus rectum of a parabola is a line segment perpendicular to the axis of the
parabola, through the focus and whose end points lie on the parabola.
& Length of the latus rectum of the parabola y*= 4ax is 4a.
¢ An dllipseis the set of all points in a plane, the sum of whose distances from
two fixed points in the plane is a constant.

22
# The equation of an ellipse with foci on the x-axis is ;"‘ e 1.

b2

¢ Latus rectum of an ellipse is a line segment perpendicular to the major axis
through any of the foci and whose end points lie on the ellipse.

2

2 2
2b
# Length of the latus rectum of the ellipse P +_b2

lis — .
a

@ The eccentricity of an ellipse is the ratio between the distances from the centre

of the ellipse to one of the foci and to one of the vertices of the ellipse.
@ A hyperbola is the set of all points in a plane, the difference of whose distances
from two fixed points in the plane is a constant.

2 2
X
@ The equation of a hyperbola with foci on the X-axis is :g S _ 1

b2
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¢ Latus rectum of hyperbola is a line segment perpendicular to the transverse
axis through any of the foci and whose end points lie on the hyperbola.

2 2 2
Xy . 2b
¢ Length of the latus rectum of the hyperbola : 2 b =1is: —.

@ The eccentricity of a hyperbola is the ratio of the distances from the centre of

the hyperbola to one of the foci and to one of the vertices of the hyperbola.

Historical Note

Geometry is one of the most ancient branches of mathematics. The Greek
geometers investigated the properties of many curves that have theoretical and
practical importance. Euclid wrote his treatise on geometry around 300 B.C. He
was the first who organised the geometric figures based on certain axioms
suggested by physical considerations. Geometry as initially studied by the ancient
Indians and Greeks, who made essentially no use of the process of algebra. The
synthetic approach to the subject of geometry as given by Euclid and in
Sulbasutras, etc., was continued for some 1300 years. In the 200 B.C., Apollonius
wrote a book called ‘The Conic’ which was all about conic sections with many
important discoveries that have remained unsurpassed for eighteen centuries.

Modern analytic geometry is called ‘Cartesian’ after the name of Rene
Descartes (1596-1650) whose relevant ‘La Geometrie’ was published in 1637.
But the fundamental principle and method of analytical geometry were already
discovered by Pierre de Fermat (1601-1665). Unfortunately, Fermats treatise on
the subject, entitled Ad Locus Planos et So LIDOS Isagoge (Introduction to
Plane and Solid Loci) was published only posthumously in
1679. So, Descartes came to be regarded as the unique inventor of the analytical
geometry.

Isaac Barrow avoided using cartesian method. Newton used method of
undetermined coefficients to find equations of curves. He used several types of
coordinates including polar and bipolar. Leibnitz used the terms ‘abscissa’,
‘ordinate’ and ‘coordinate’. L’ Hospital (about 1700) wrote an important textbook
on analytical geometry.

Clairaut (1729) was the first to give the distance formula although in clumsy
form. He also gave the intercept form of the linear equation. Cramer (1750)



CONIC SECTIONS 267

made formal use of the two axes and gave the equation of a circle as
(y—-a+(b-x?=r

He gave the best exposition of the analytical geometry of his time. Monge

(1781) gave the modern ‘point-slope’ form of equation of a line as

y-y=a((x-x)

and the condition of perpendicularity of two lines as aa’ + 1 = 0.

S.F. Lacroix (1765—1843) was a prolific textbook writer, but his contributions
to analytical geometry are found scattered. He gave the ‘two-point’ form of
equation of a line as

y-B-L"P x)
| (B-a-b)
and the length of the perpendicular from (o, ) on y=ax+ b as /1 0,2

a-a
His formula for finding angle between two lines was tan 6 = (1 A aa'J tis, of

course, surprising that one has to wait for more than 150 years after the invention
of analytical geometry before finding such essential basic formula. In 1818, C.
Lame, a civil engineer, gave ME + NYE’ = 0 as the curve passing through the
points of intersection of two loci E =0 and E” = 0.

Many important discoveries, both in Mathematics and Science, have been
linked to the conic sections. The Greeks particularly Archimedes (287-212 B.C.)
and Apollonius (200 B.C.) studied conic sections for their own beauty. These
curves are important tools for present day exploration of outer space and also for
research into behaviour of atomic particles.

J

> —



Chapter 12

INTRODUCTION TO THREE
DIMENSIONAL GEOMETRY

«*Mathematics is both the queen and the hand-maiden of

all sciences — E.T. BELL %»

12.1 Introduction

You may recall that to locate the position of a point in a
plane, we need two intersecting mutually perpendicular lines
in the plane. These lines are called the coordinate axes
and the two numbers are called the coordinates of the
point with respect to the axes. In actual life, we do not
haveto deal with pointslyinginaplane only. For example,
consider the position of aball thrown in space at different
points of time or the position of an aeroplane as it flies
from one placeto another at different timesduringitsflight.
Similarly, if we were to locate the position of the L eonhard Euler

lowest tip of an electric bulb hanging from the ceiling of a (1707-1783)

room or the position of the central tip of the ceiling fan in aroom, we will not only
require the perpendicul ar distances of the point to be located from two perpendicular
wallsof theroom but also the height of the point from the floor of theroom. Therefore,
we need not only two but three numbers representing the perpendicular distances of
the point from three mutually perpendicular planes, namely the floor of the room and
two adjacent walls of the room. The three numbers representing the three distances
are called the coordinates of the point with reference to the three coordinate
planes. So, apoint in space has three coordinates. In this Chapter, we shall study the
basic concepts of geometry in three dimensional space.*

*  For various activitiesin three dimensional geometry one may refer to the Book, “A Hand Book for
designing Mathematics Laboratory in Schools’, NCERT, 2005.
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12.2 Coordinate Axesand Coordinate Planesin Three Dimensional Space

Consider three planes intersecting at a point O 7

such that these three planes are mutually A X'

perpendicular to each other (Fig 12.1). These Vi

three planesintersect along thelinesX’OX, Y'OY == ----,!4 -----

and 2’0z, called thex, y and z-axes, respectively. ., . i R
) Y € - >Y

We may note that these lines are mutually o i

perpendicular to each other. Theselines constitute =

the rectangular coordinate system. The planes 4

XQY, YOZ and ZOX, called, respectively the X v

XY-plane, Y Z-plane and the ZX-plane, are z

known as the three coordinate planes. We take
the XOY plane as the plane of the paper and the
line Z’OZ as perpendicular to the plane XOY. If the plane of the paper is considered
as horizontal, then the line Z’OZ will be vertical. The distances measured from
XY-plane upwards in the direction of OZ are taken as positive and those measured
downwards in the direction of OZ" are taken as negative. Similarly, the distance
measured to the right of ZX-plane along OY are taken as positive, to the left of
ZX-plane and along OY’ as negative, in front of the Y Z-plane along OX as positive
and to the back of it along OX” as negative. The point O is called the origin of the
coordinate system. The three coordinate planes divide the space into eight partsknown
as octants. These octants could be named as XOYZ, X’OYZ, X’OY’Z, XOY’Z,
XOYZ', X'OYZ',X’OY’Z" and XOY’Z’. anddenoted by I, I1, 111, ..., VIII , respectively.

12.3 Coordinatesof aPoint in Space Z }:(x,y,z)
A

Having chosen a fixed coordinate system in the
space, consisting of coordinate axes, coordinate
planes and the origin, we now explain, as to how,
given apoint in the space, we associate withiit three

Fig12.1

z

coordinates (x,y,2) and conversely, given a triplet / 0 EC >Y
of three numbers (x, y, z), how, we locate apoint in LA Youunn- v
the space. /L

Given a point P in space, we drop a X (x, y, 0)
perpendicular PM on the XY-plane with M as the Fig12.2

foot of thisperpendicular (Fig 12.2). Then, from the point M, we draw aperpendicular
ML to the x-axis, meetingitat L. Let OL bex, LM beyand MP be z. Then x,y and z
are called the x, y and z coordinates, respectively, of the point P in the space. In
Fig 12.2, we may note that the point P(X, y, 2) liesin the octant XOYZ and so al x, y,
Z are positive. If P was in any other octant, the signs of x, y and z would change
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accordingly. Thus, to each point P in the space there corresponds an ordered triplet
(%, y, 2) of real numbers.

Conversdly, givenany triplet (x, y, 2), wewould first fix the point L onthe x-axis
corresponding to X, then locate the point M in the XY-plane such that (X, y) are the
coordinates of the point M in the XY-plane. Note that LM is perpendicular to the
x-axisor isparalel tothey-axis. Having reached the point M, we draw a perpendicul ar
MP to the XY-plane and locate on it the point P corresponding to z. The point P so
obtained has then the coordinates (x, y, 2). Thus, thereisaone to one correspondence
between the points in space and ordered triplet (X, y, ) of real numbers.

Alternatively, through the point Pin the 7
space, we draw three planes parallel to the A
coordinate planes, meeting the x-axis, y-axis C E
and z-axisinthepointsA, B and C, respectively A
(Fig 12.3). Let OA = x, OB =y and OC = z. F -
Then, the point Pwill havethe coordinatesx, y p
and zand wewrite P(x, y, z). Conversely, given ols Sy
X, y and z, we locate the three points A, B and LT i B <
C on the three coordinate axes. Through the b X
points A, B and C we draw planes parallel to QS D
the YZ-plane, ZX-plane and XY-plane, X Fig12.3

respectively. The point of interesection of these three planes, namely, ADPF, BDPE
and CEPF is obviously the point P, corresponding to the ordered triplet (x, y, 2). We
observe that if P (X, y, 2) is any point in the space, then x, y and z are perpendicular
distancesfromYZ, ZX and XY planes, respectively.

| == Note|The coordinates of the origin O are (0,0,0). The coordinates of any point

onthex-axiswill be as(x,0,0) and the coordinates of any pointintheY Z-planewill
beas (0, Yy, 2).

Remark The sign of the coordinates of a point determine the octant in which the
point lies. The following table shows the signs of the coordinates in eight octants.

Table 12.1
] | o lm v v [ | ovi | v
g
o
X + — — + + — — +
y + + — — + + - -
z + + + + - = — -
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Example 1InFig12.3, if Pis(2,4,5), find the coordinates of .

Solution For the point F, the distance measured along OY is zero. Therefore, the
coordinates of F are (2,0,5).

Example 2 Find the octant in which the points (-3,1,2) and (-3,1,— 2) lie.

Solution From the Table 12.1, the point (3,1, 2) lies in second octant and the point
(=3, 1,-2) liesin octant VI.

|EXERCISE 12.1]

A point ison the X-axis. What are its y-coordinate and z-coordinates?

A point isin the XZ-plane. What can you say about its y-coordinate?
Name the octantsin which thefollowing pointslie:
1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(—4,2,-5), (-4, 2,5),
(-3,-1,6) (2,—4,-7).
4.  Fillintheblanks:
(i) Thex-axisand y-axistaken together determine a plane known as
(i) The coordinates of pointsin the XY -plane are of the form
(i) Coordinate planes divide the space into octants.

12.4 Distance between Two Points

We have studied about the distance A
between two points in two-dimensional
coordinate system. L et usnow extend this
study to three-dimensional system.

Let P(x,, y,, ) and Q (X, Y,, Z) \
be two points referred to a system of 20
rectangular axes OX, OY and OZ. P 9g A
Through the points P and Q draw planes N
parallel to the coordinate planes so asto 0
form arectangular parallelopiped with one
diagonal PQ (Fig 12.4).

Now, since ZPAQ is aright X Fig12.4
angle, it followsthat, intriangle PAQ,

PQ? = PA2 + AQ? .. (1)
Also, triangle ANQ isright angletrianglewith ZANQ aright angle.
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Therefore AQ? = AN? + N@? .. (2
From (1) and (2), we have

PQ? = PAZ+ AN2? + NQ?

Now PA=y,—-y,AN=x,—x andNQ=2-2
Hence PQ? = (6, = X)2 + (v, = ¥) + (2, - 2)
Therefore PQ = /(%) (Y, Y1) H(2-2)?

This gives us the distance between two points (x, y,, ) and (X,, ¥,, Z,).
In particular, if x, =y, =z =0, i.e,, point Pis origin O, then OQ = \/m ,
which gives the distance between the origin O and any point Q (X, Y,, Z,).
Example 3 Find the distance between the points P(1, -3, 4) and Q (- 4, 1, 2).
Solution The distance PQ between the points P (1,3, 4) and Q (-4, 1, 2) is

PQ = \/(-4-1)%+ (1+3)°+ (2— 4)?

= /511644
= /45 = 3,/5units
Example 4 Show that the points P (-2, 3, 5), Q (1, 2, 3) and R (7, 0, —1) are collinear.
Solution We know that points are said to be collinear if they lieon aline.
Now, PQ = |1+ 2)%+ (2-3)%+ (3-5)2 =9+1+4 = /14
QR = \J(7-1)%+ (0-2)°+ (-1-3)% = +/36+ 4+16 = /56 =2,/14

and PR = \/(7+2)%+ (0-3)%+ (-1-5)? = +/81+ 9+ 36 = 126 = 3/14
Thus, PQ + QR = PR. Hence, P, Q and R are collinear.

Example 5 Arethe pointsA (3, 6, 9), B (10, 20, 30) and C (25, — 41, 5), the vertices
of aright angled triangle?

Solution By the distance formula, we have
AB? =(10-3)*+(20—6)*>+ (30—9)?
=49+ 196 + 441 = 686
BC? =(25-10)*+ (—41—-20)*+ (5—30)°
=225+ 3721 +625=4571
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CA?2 =(3-252%+(6+41)?+(9-5)?
=484+ 2209 + 16 = 2709

Wefind that CA?+ AB?# BC?.
Hence, the triangle ABC is not aright angled triangle.
Example 6 Find the equation of set of points P such that PA2 + PB? = 2k?, where
A and B arethe points (3, 4, 5) and (-1, 3, —7), respectively.
Solution Let the coordinates of point Pbe (X, Y, 2).
Here PA2 =(x—-3)2+(y—4)?+(z-5)2

PB? = (X + 1)*+ (y—3)* + (z+ 7)?
By the given condition PA2 + PB? = 2k?, we have

(X=3)?+(y—4)?+ (z—5) + (x + 1)* + (y—3)*+ (z+ 7)* = 2k*

i.e, 2+ 2y?+ 222 —4x—14y + 4z = 2k*> — 109.

|EXERCISE 12.2]

1. Find the distance between thefollowing pairs of points:
(i) (2,3,5and(4,3,1) (i) (3,7,2and(2,4,-1)
@) (-1,3,—-4)and(1,-3,4) (iv) (2,-1,3)and (-2, 1, 3).
2. Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, —1) are collinear.
3. Verify thefollowing:
@) (0,7,-10), (1,6,—6)and (4,9, —6) aretheverticesof anisoscelestriangle.
(i) (0,7,10), (-1, 6,6) and (-4, 9, 6) aretheverticesof aright angled triangle.
@) (-1,2,1),(1,-2,5),(4,—7,8) and (2,—3, 4) aretheverticesof aparallelogram.

4. Find the equation of the set of points which are equidistant from the points
(1,2,3)and (3, 2,-1).

5. Find the equation of the set of points P, the sum of whose distances from
A(4,0,0)and B (-4, 0, 0) isequa to 10.

12.5 Section Formula
In two dimensional geometry, we have learnt how to find the coordinates of a point
dividing alinesegmentinagivenratiointernally. Now, weextend thisto threedimensional
geometry asfollows:

Let the two given pointsbe P(x,, y,, ) and Q (X, y,, ). Let the point R (X, y, 2)
divide PQ in the given ratio m: ninternally. Draw PL, QM and RN perpendicular to
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the XY-plane. Obviously PL || RN || QM and feet V4
of these perpendiculars lie in a XY -plane. The
pointsL, M and N will lie on alinewhich isthe
intersection of the plane containing PL, RN and
QM withthe XY-plane. Through the point R draw
aline ST pardlel to the line LM. Line ST will
intersect theline LP externally at the point Sand
thelineMQ at T, asshown in Fig 12.5.

Also note that quadrilaterals LNRS and
NMTR are parallelograms.
ThetrianglesPSR and QTR aresimilar. Therefore, X |_—

m_PR_SP_ SL-PL _ NR-PL z-2z Fig125
n QR QT OM-TM OQM-NR 1z,-z

wn

LMz +nz,

Thisimplies mn

Similarly, by drawing perpendicularsto the XZ and Y Z-planes, we get

+nNn mx, + N
MYt g = et %
m+n m+n

y

Hence, the coordinates of the point R which dividesthe line segment joining two points
P(x, Y, z)andQ (X, Y, z) internaly intheratiom: nare

mx, + X, My, +ny; Mz, +nz
m+n  m+n  m+n

If the point R divides PQ externally in the ratio m : n, then its coordinates are
obtained by replacing n by —n so that coordinates of point R will be

[mxz—nxl my, — Ny, mzz—nzlj

m-n ' m-n ' m-n
Case 1 Coordinates of the mid-point: In case R is the mid-point of PQ, then
+ X + +z
m:n=1:1sotha X = X12 2y = ylzyzand ;-4%%

These are the coordinates of the mid point of the segment joining P (x,, y,, Z)
and Q (X, ¥, Z,).
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Case 2 The coordinates of the point R which divides PQ intheratiok : 1 are obtained

m
by taking K= = which are as given below:

kX,+% ky,+y, kz,+z
kT vk T 1k

Generally, thisresult isused in solving problemsinvolving ageneral point on theline
passing through two given paints.

Example 7 Find the coordinates of the point which dividesthe line segment joining
the points (1, -2, 3) and (3, 4, -5) intheratio 2: 3 (i) internally, and (ii) externally.

Solution (i) Let P(x, Y, 2) bethe point which dividesline segment joining A(1, —2, 3)
and B (3,4,-5)internadlyintheratio 2 : 3. Therefore

L2430 9 _249+3(2) 2 _ 25+ _-1
“T 213 5777 2:3 5 %77 213 s

_ 4 92-1
Thus, therequired pointis [g s ?j
(ii) Let P (x, y, 2 be the point which divides segment joining A (1, =2, 3) and
B (3,4, -5) externaly intheratio2: 3. Then

_29+(3O 5, 294D 4, ,_ AHHIE) g

2+(-3 2+(-3 ' 2+ (-3
Therefore, the required point is (-3, —14, 19).
Example 8 Using section formula, prove that the three points (- 4, 6, 10), (2, 4, 6)
and (14, 0, —2) are collinear.
Solution LetA (-4, 6, 10), B (2, 4, 6) and C(14, 0, — 2) bethe given points. Let the
point PdividesAB intheratio k : 1. Then coordinates of the point Pare

2k 4 4k 6 6k 10
k 1k 1" k 1

L et us examine whether for some value of k, the point P coincides with point C.

2k -4
On putting m=14, weget k = —g
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3
4-2)+6
When k=-—2,then 2X*+6_ 32 -0
k+1 3.
2
3
k+10 O(=5)+10
and K+l 3 ==2
+ —§+1

Therefore, C (14, 0, —2) isapoint which dividesAB externally intheratio3: 2andis
same as PHence A, B, C are collinear.

Example 9 Find the coordinates of the centroid of the triangle whose vertices are
% Vi 2), (% Y, Z) and (X, Y, Z)-

Solution Let ABC be the triangle. Let the coordinates of the vertices A, B,C be

(X, ¥y Z), (X ¥, Z) @nd (X, Y, Z,), respectively. Let D be the mid-point of BC.
Hence coordinates of D are

(X2+X3 YotYs 22+Z3j

2 2 2

Let G bethe centroid of thetriangle. Therefore, it dividesthemedian AD intheratio2: 1.
Hence, the coordinates of G are

X+ X Yot Y3 LHtZ
2(2 jer1 2(2 )+y1 2[2 j+z1

2+1 2+1 2+1

o XN+XtX VYi+YotYs 4+7,+7;
3 ’ 3 3

Example 10 Findtheratioinwhichtheline segment joining the points (4, 8, 10) and
(6, 10, —8) isdivided by the Y Z-plane.

Solution Let YZ-plane dividesthe line segment joining A (4, 8, 10) and B (6, 10, —8)
at P(x,y, 2 intheratio k : 1. Then the coordinates of P are

(4+ 6k 8+10k 10—8k)

k+1' k+1 " k+1
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_ _ . ) _ . 4+6k
Since Plieson the Y Z-plane, its x-coordinate is zero, i.e., Kol =0
2
k=-2
or 3

Therefore, Y Z-plane dividesAB externaly intheratio 2 : 3.

|EXERCISE 12.3|

1.  Findthecoordinatesof the point which dividestheline segment joining the points
(-2,3,5)and (1,—4, 6) intheratio (i) 2: 3internaly, (ii) 2 : 3 externaly.

2. GiventhatP(3,2,-4),Q(5,4,—6)and R (9, 8,-10) arecollinear. Find theratio
inwhich Q divides PR.

3. FindtheratioinwhichtheY Z-plane dividestheline segment formed by joining
the points (-2, 4, 7) and (3, -5, 8).
4. Using section formula, show that the points A (2, -3, 4), B (-1, 2, 1) and

1
C[O,g,ZJ are collinear.
5. Findthe coordinates of the pointswhich trisect theline segment joining the points

P (4, 2,—6) and Q (10, -16, 6).

Miscellaneous Examples
Example 11 Show that the points A (1, 2, 3), B (-1, -2, -1), C (2, 3, 2) and
D (4, 7, 6) are the vertices of aparallelogram ABCD, but it is not a rectangle.

Solution To show ABCD isa parallelogram we need to show opposite side are equal
Note that.

AB = |[(-1-1)*+(-2-2)*+(-1-3)® = \[4+16+16=6
BC = \J(2+1)%+(3+2)%+(2+1)? = J9+25+9 = 43
CD = /(4-2)+(7-3*+(6-2)° = 4+16+16 =6

DA = |/(1-4)°+(2-7)°+(3-6)> = 9+ 25+9=143

Since AB =CD and BC = AD, ABCD is a parallelogram.

Now, it is required to prove that ABCD is not a rectangle. For this, we show that
diagonals AC and BD are unequal. We have
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AC = (2-1%+(3-2*H2-37 =1+1+1=\3
BD = \/(4+1D%(7+2)?+(6+1)% = 25+ 8L+ 49=155.

Since AC # BD, ABCD is not arectangle.

We can also show that ABCD is aparallelogram, using the property that
diagonals AC and BD bisect each other.

Example 12 Find the equation of the set of the points P such that its distances from
the pointsA (3, 4,-5) and B (- 2, 1, 4) are equal.

Solution If P (X, Y, 2) be any point such that PA = PB.

Now (x=3)%+ (Y= 4+ (z+5)° = /(x+2)%+ (y-1)°+ (z—4)?
o (x=3)2+(y-4)°*+(z+5% = (x+2*+(y-1)*+(z-4)*

or 10X+ 6y —18z2—29=0.

Example 13 Thecentroid of atriangle ABCisat thepoint (1, 1, 1). If the coordinates
of A and B are (3, -5, 7) and (-1, 7, — 6), respectively, find the coordinates of the
point C.

Solution Let the coordinates of C be (X, y, z) and the coordinates of the centroid G be
(1,1, 1). Then

3 =41 l1.e,A=1 3 =4, 1.e,y=1 3 =41 1.e,z=_~4

Hence, coordinates of C are (1, 1, 2).

Miscellaneous Exercise on Chapter 12
1. Three vertices of a parallelogram ABCD are A(3, -1, 2), B (1, 2, — 4) and
C (-1, 1, 2). Find the coordinates of the fourth vertex.

2. Findthelengths of the medians of thetriangle with verticesA (0, 0, 6), B (0,4, 0)
and (6, 0, 0).

3. If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6),
Q (=4, 3b, -10) and R(8, 14, 2¢), then find the values of a, b and c.

4. Find the coordinates of a point on y-axis which are at a distance of 5\/5 from
the point P (3, -2, 5).



INTRODUCTION TO THREE DIMENSIONAL GEOMETRY 279

5. A point R with x-coordinate 4 lies on the line segment joining the points
P(2, -3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint Suppose R dividesPQ intheratiok: 1. The coordinates of the point R are given
(8k+2 -3 10k+4j]
k+1 'k+1" k+1 )

6.1f A and B bethepoints(3, 4, 5) and (-1, 3, —7), respectively, find the equation of the
set of points P such that PA2 + PB2 = k?, where k is a constant.

Summary

# Inthree dimensions, the coordinate axes of arectangular Cartesian coordinate
system are three mutually perpendicular lines. The axes are called the x, y
and z-axes.

@ The three planes determined by the pair of axes are the coordinate planes,
called XY, YZ and ZX-planes.

@ Thethree coordinate planes divide the spaceinto eight parts known as octants.

@ The coordinates of apoint Pin three dimensional geometry is alwayswritten
in the form of triplet like (X, y, 2). Here x, y and z are the distances from the
YZ, ZX and XY -planes.

@ (i) Any point on x-axisis of the form (x, 0, 0)
(i) Any point on y-axisisof theform (0, y, 0)
(i) Any point on z-axisis of the form (0, 0, 2).
2 Distance between two points P(x,, y,, ) and Q (X, Y,, Z,) is given by

PQ=/(% —% 2 +(Y, - %1 2 +(2,— 2 )?

@ The coordinates of the point R which divides the line segment joining two
points P (x, ¥, ) and Q (X,, ¥,, z,) internally and externally intheratiom: n
are given by

mx, +1% My, +Ny; Mz, +NZ mx, —nx My, —ny; Mz, —Nz
m+n  m+n  m+n A "mon T men  m-n )’

respectively.
# The coordinates of the mid-point of the line segment joining two points

X +X VitY, Z+2
P(Xl’yl’zl)andQ(Xz’yz’é)are( 22112 2’ 22).
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# The coordinates of the centroid of the triangle, whose vertices are (x,, y,, Z,)

X+tXo+X VitY,tY; Z+7Z,+X
(xz,yz,zz)and(xg,yg,za),are[ s T 3 3 j

Historical Note

Rene' Descartes (1596-1650), the father of analytical geometry, essentially dealt
with plane geometry only in 1637. The same is true of his co-inventor Pierre
Fermat (1601-1665) and LaHire (1640-1718). Although suggestionsfor thethree
dimensional coordinate geometry can be found in their works but no details.
Descartes had the idea of coordinates in three dimensions but did not develop it.
J.Bernoulli (1667-1748) inaletter of 1715 to Leibnitz introduced the three coor-
dinate planes which we use today. It was Antoinne Parent
(1666-1716), who gave a systematic development of analytical solid geometry
for the first time in a paper presented to the French Academy in 1700.

L.Euler (1707-1783) took up systematically the three dimensional coordinate ge-
ometry, in Chapter 5 of the appendix to the second volume of his “Introduction
to Geometry” in 1748.

It was not until the middle of the nineteenth century that geometry was extended
to more than three dimensions, the well-known application of which is in the
Space-Time Continuum of Einstein’s Theory of Relativity.



Chapter 13

‘ LIMITSAND DERIVATIVES '

**With the Calculus as a key, Mathematics can be successfully applied to the
explanation of the course of Nature — WHITEHEAD ¢

13.1 Introduction

This chapter is an introduction to Calculus. Calculus is that
branch of mathematics which mainly deals with the study
of change in the value of a function as the points in the
domain change. First, we give an intuitive idea of derivative
(without actually defining it). Then we give a naive definition
of limit and study some algebra of limits. Then we come
back to a definition of derivative and study some algebra
of derivatives. We also obtain derivatives of certain
standard functions.

13.2 Intuitiveldeaof Derivatives Sir 1ssac Newton

Physical experiments have confirmed that the body dropped (1642-1727)

from a tall cliff covers a distance of 4.9t metres in t seconds,

i.e., distance Sin metres covered by the body as a function of time t in seconds is given
by s=4.9¢t%.

The adjoining Table 13.1 gives the distance travelled in metres at various intervals
of time in seconds of a body dropped from a tall cliff.

The objective is to find the veloctiy of the body at time t = 2 seconds from this
data. One way to approach this problem is to find the average velocity for various
intervals of time ending at t = 2 seconds and hope that these throw some light on the
velocity at t =2 seconds.

Average velocity between t =t and t = t, equals distance travelled between

t=1t and t = t, seconds divided by (t, —t,). Hence the average velocity in the first
two seconds



282 MATHEMATICS

_ Distance travelled betweent, =2 and t, =0 Table13.1
Time interval (t, —t,) ¢ s
0 0
(19.6—0)m 1 4.9
=-—-—-—=9.8m/s.

(2-0)s L5 11.025
Similarly, the average velocity between t = 1 = 1557
andt=2is 1.9 17.689

1.95 18.63225
19.6-4.9)m
( LU 2 19.6

(2-1)s 205 20.59225

Likewise we compute the average velocitiy 2.1 21.609
between t=t, and t =2 for various t,. The following ol 23.716
Table 13.2 gives the average velocity (v), t = t, 2.5 30.625
seconds and t = 2 seconds. 3 441

4 78.4
Table13.2
t 0 1 1.5 1.8 Lo 1.95 1.99

v 9.8 14.7 17.15 | 18.62 19.11 19.355 19.551

From Table 13.2, we observe that the average velocity is gradually increasing.
As we make the time intervals ending at t =2 smaller, we see that we get a better idea
of the velocity at t = 2. Hoping that nothing really dramatic happens between 1.99
seconds and 2 seconds, we conclude that the average velocity at t = 2 seconds is just
above 19.551nvs.

This conclusion is somewhat strengthened by the following set of computation.
Compute the average velocities for various time intervals starting at t =2 seconds. As
before the average velocity v between t = 2 seconds and t = t, seconds is

Distance travelled between 2 seconds and t, seconds
t,-2

Distance travelled in t, seconds — Distance travelled in 2 seconds
t, -2
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_ Distance travelled in t, seconds — 19.6
t,-2

The following Table 13.3 gives the average velocity Vv in metres per second
between t = 2 seconds and t, seconds.

Table13.3

t 4 3 [25 )22 )21 (205 | 201

vV | 294 | 24.5 [22.05]20.58 [20.09]19.845 |19.649

Here again we note that if we take smaller time intervals starting at t =2, we get
better idea of the velocity at t = 2.

In the first set of computations, what we have done is to find average velocities
in increasing time intervals ending at t =2 and then hope that nothing dramatic happens
just before t=2. In the second set of computations, we have found the average velocities
decreasing in time intervals ending at t = 2 and then hope that nothing dramatic happens
just after t = 2. Purely on the physical grounds, both these sequences of average
velocities must approach a common limit. We can safely conclude that the velocity of
the body at t = 2 is between 19.551m/s and 19.649 nVs. Technically, we say that the
instantaneous velocity at t = 2 is between 19.551 m/s and 19.649 nVs. As is
well-known, velocity is the rate of change of displacement. Hence what we have
accomplished is the following. From the given data of distance covered at various time
instants we have estimated the rate of
change of the distance at a given instant A
of time. We say that the derivativeof ~ f=============-- B,
the distance function S=4.9t> att =2
is between 19.551 and 19.649.

An alternate way of viewing this
limiting process is shown in Fig 13.1.
This is a plot of distance S of the body
from the top of the cliff versus the time !
t elapsed. In the limit as the sequence ~  f==-ee i fflaaa- s == dC
of time intervals h , h,, ..., approaches .
zero, the sequence of average velocities : >t
approaches the same limit as does the © / : 4G 244 Time-axis

sequence of ratios Fig 13.1

s=49¢

Distance-axis




284 MATHEMATICS

ClBl C2B2 C3B3
AC,” AC, AC,

where C B, =, — s, is the distance travelled by the body in the time interval h =AC,,
etc. From the Fig 13.1 it is safe to conclude that this latter sequence approaches the
slope of the tangent to the curve at point A. In other words, the instantaneous velocity
V() of a body at time t =2 is equal to the slope of the tangent of the curve S= 4.9t at
t=2.

13.3Limits

The above discussion clearly points towards the fact that we need to understand limiting
process in greater clarity. We study a few illustrative examples to gain some familiarity
with the concept of limits.

Consider the function f(X) = X2. Observe that as X takes values very close to 0,
the value of f(X) also moves towards 0 (See Fig 2.10 Chapter 2). We say

}g% f(x)=0

(to be read as limit of f (X) as X tends to zero equals zero). The limit of f (X) as X tends
to zero is to be thought of as the value f (X) should assume at X = 0.
In general as X — &, f(X) — |, then | is called limit of the function f (X) which is

symbolically written as }(13;‘ f (X) =1
Consider the following function g(X) = x|, X % 0. Observe that g(0) is not defined.

Computing the value of g(X) for values of X very
near to 0, we see that the value of g(X) moves

towards 0. So, lim g(X) = 0. This is intuitively

> x—0
clear from the graph of y = |X| for X =0.
(See Fig 2.13, Chapter 2).
Consider the following function.

2
h(x)z);__;,x;tz.

Compute the value of h(x) for values of y/¢ >
X very near to 2 (but not at 2). Convince yourself /(—2,0) 0 (2,0)
that all these values are near to 4. This is
somewhat strengthened by considering the graph
of the function y = h(X) given here (Fig 13.2). Fig13.2
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In all these illustrations the value which the function should assume at a given
point X=adid not really depend on how is X tending to a. Note that there are essentially
two ways X could approach a number a either from left or from right, i.e., all the
values of X near a could be less than a or could be greater than a. This naturally leads
to two limits — the right hand limit and the left hand limit. Right hand limit of a
function f(X) is that value of f(X) which is dictated by the values of f(X) when X tends
to afrom the right. Similarly, the left hand limit. To illustrate this, consider the function

1, x<0
f(x):{2

x>0 Y
N
Graph of'this function is shown in the Fig 13.3. It is
b v g y=£(x)

clear that the value of f at 0 dictated by values of f(x) with 0,2)
X < 0 equals 1, i.e., the left hand limit of f (X) at 0 is

lin% f(x)=1 —(0,1)
X—>
Similarly, the value of f at 0 dictated by values of x' ¢ >
f (X) with x> 0 equals 2, i.e., the right hand limit of f (X) \ A
at0is Y’
lim f (xX)=2
x ' Fig 13.3

In this case the right and left hand limits are different, and hence we say that the
limit of f (X) as X tends to zero does not exist (even though the function is defined at 0).

Summary

We say Xlgg_ f(X) is the expected value of fat X = a given the values of f near

X to the left of a. This value is called the left hand limit of f at a.

We say Xlgg f(X) is the expected value of f at X = a given the values of

f near X to the right of a. This value is called the right hand limit of f(x) at a.
If the right and left hand limits coincide, we call that common value as the limit

of f(X) at x = @ and denote it by Im f(x).

[llustration 1 Consider the function f(x) = X + 10. We want to find the limit of this
function at X = 5. Let us compute the value of the function f(X) for X very near to 5.
Some of the points near and to the left of 5 are 4.9, 4.95, 4.99, 4.995. . ., etc. Values
of the function at these points are tabulated below. Similarly, the real number 5.001,
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5.01, 5.1 are also points near and to the right of 5. Values of the function at these points
are also given in the Table 13.4.

Table13.4
X 49 | 495 4.99 4.995 5.001 5.01 5.1
f(x) 149 | 1495 1499 [ 14.995  15.001 15.01 15.1

From the Table 13.4, we deduce that value of f(X) at X = 5 should be greater than
14.995 and less than 15.001 assuming nothing dramatic happens between X = 4.995
and 5.001. It is reasonable to assume that the value of the f(X) at x =5 as dictated by
the numbers to the left of 5 1s 15, 1.e.,

lim f(x) =15

X—5

Similarly, when X approaches 5 from the right, f(X) should be taking value 15, i.e.,

lim f(x)=15

x—5"

Hence, it is likely that the left hand limit of f(X) and the right hand limit of f(X) are
both equal to 15. Thus,

lim f(x)=lim f(x)=1lim f(x)=15
i (0= Jim T00=lim 109=15.

This conclusion about the limit being equal to 15 is somewhat strengthened by
seeing the graph of this function which is given in Fig 2.16, Chapter 2. In this figure, we
note that as X approaches 5 from either right or left, the graph of the function
f(X) = x +10 approaches the point (5, 15).

We observe that the value of the function at X = 5 also happens to be equal to 15.

Illustration 2 Consider the function f(X) = x*. Let us try to find the limit of this
function at X = 1. Proceeding as in the previous case, we tabulate the value of f(X) at
Xnear 1. This is given in the Table 13.5.

Table13.5

X 0.9 0.99 0.999 1.001 1.01 1.1

f(x) [ 0.729 | 0.970299 | 0.997002999 | 1.003003001 | 1.030301 | 1.331

From this table, we deduce that value of f(x) at X = 1 should be greater than
0.997002999 and less than 1.003003001 assuming nothing dramatic happens between



LIMITS AND DERIVATIVES 287

X =0.999 and 1.001. It is reasonable to assume that the value of the f(X) at x = 1 as
dictated by the numbers to the left of 1 is 1, i.e.,
lim f(x)=1
x1—1>111’ (X) ’
Similarly, when X approaches 1 from the right, f(x) should be taking value 1, i.e.,
lim f(x)=1,

x—>1"

Hence, it is likely that the left hand limit of f(X) and the right hand limit of f(X) are

both equal to 1. Thus,
il_l;rll f(X)—gll} f(X)—E(lir} f(x)=1,

This conclusion about the limit being equal to 1 is somewhat strengthened by
seeing the graph of this function which is given in Fig 2.11, Chapter 2. In this figure, we
note that as X approaches 1 from either right or left, the graph of the function
f(X) = x* approaches the point (1, 1).

We observe, again, that the value of the function at X = 1 also happens to be
equal to 1.

Illustration 3 Consider the function f(X) = 3x. Let us try to find the limit of this
function at X = 2. The following Table 13.6 is now self-explanatory.

Table13.6
X 1.9 1.95 1.99 1.999 | 2.001 | 2.01 2.1
f(x) 5.7 5.85 5.97 5.997 6.003 | 6.03 6.3
Y
As before we observe that as X approaches 2 A

from either left or right, the value of f(X) seem to (0, 6)
approach 6. We record this as

lim f(X)z lim f(X)zlim f(X)=6

X—2" x—2" X—2

Its graph shown in Fig 13.4 strengthens this ' € o
fact. 0 2,0)
Here again we note that the value of the function

at X=2 coincides with the limit at Xx=2.

®
\ 4
>

IlTustration 4 Consider the constant function v
f(xX) = 3. Let us try to find its limit at X = 2. This 'Y'
function being the constant function takes the same Fig13.4
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value (3, in this case) everywhere, i.¢., its value at points close to 2 is 3. Hence
fim 0= fim f(x)=Jim (=3
Graph of f(x) = 3 is anyway the line parallel to x-axis passing through (0, 3) and
is shown in Fig 2.9, Chapter 2. From this also it is clear that the required limit is 3. In

fact, it is easily observed that lim f(X)=3 for any real number a.
X—a

Illustration 5 Consider the function f(x) = x> + Xx. We want to find EE} (). we

tabulate the values of f(X) near X = 1 in Table 13.7.

Table13.7
X 0.9 0.99 0.999 1.01 1.1 1.2
f(x) 1.71 1.9701 1.997001 2.0301 2.31 2.64
From this it is reasonable to deduce that Y
lim f(x)=lim f(x)=lim f(x)=2_ 1
x—>1" x—1" x—1 4
From the graph of f(x) = x> + x 3
shown in the Fig 13.5, it is clear that as X y=£x)
approaches 1, the graph approaches (1, 2). Ll \
Here, again we observe that the 1 '
lim f(x) = f(1) X' € X SX
! T2 o 2 3 4 57
. v
Now, convince yourself of the B
following three facts: Y Fglss
limx* =1, limx=1and limx+1=2
X—1 X—1 X—1
Then lim x* + 1imx=1+1=2=1im[x2+x]
x—1 x—1 X—1

Also limx. lim(x+1)=1.2=2=lim| x(x+1)]=lim| x* + x].

X—1 x—1 X—1
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Illustration 6 Consider the function f(X) = sin X. We are interested in lin}t sin X
X—>—
2

where the angle is measured in radians.

Here, we tabulate the (approximate) value of f(X) near g(Table 13.8). From

this, we may deduce that

lim f (X)z lim+ f (X)= lim f (X)=1
x—>g x—>g X—>§ .

Further, this is supported by the graph of f(X) = sin Xwhich is given in the Fig 3.8

(Chapter 3). In this case too, we observe that lim sin X= 1.

Table 13.8
X 01 Z_o001 Z1o001 01
2 2 2 2
f(x) | 0.9950 0.9999 0.9999 0.9950
Illustration 7 Consider the function f(X) = X + cos X. We want to find the }gréf (X).
Here we tabulate the (approximate) value of f(X) near 0 (Table 13.9).
Table 13.9
X -0.1 —-0.01 —0.001 0.001 0.01 0.1

f(x) 0.9850 | 0.98995 | 0.9989995 | 1.0009995| 1.00995 1.0950

From the Table 13.9, we may deduce that
lim f(x)=lim f(X)=}(iiI(l)f(X)=1

X0~ x—0"
In this case too, we observe that lin(l)f x)=f0)=1.
X—>
Now, can you convince yourself that

1im[x + cos x] =lim X+ limcos X is indeed true?
X—0 X—0 X—0 ’
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1 .
llustration 8 Consider the function f (X)= 2 for x > (0. We want to know }(lng f(X).
S

Here, observe that the domain of the function is given to be all positive real
numbers. Hence, when we tabulate the values of f(X), it does not make sense to talk of
X approaching 0 from the left. Below we tabulate the values of the function for positive
X close to 0 (in this table n denotes any positive integer).

From the Table 13.10 given below, we see that as X tends to 0, f(X) becomes
larger and larger. What we mean here is that the value of f(X) may be made larger than
any given number.

Table13.10
X 1 0.1 0.01 10"
f(x) 1 100 10000 1020

Mathematically, we say
}(11)1(1) f ( X) =+00

We also remark that we will not come across such limits in this course.

[llustration 9 We want to find }(lg(l) f (X) , where

X—2, X<0
f(x)=40 , x=0
X+2, X>0

As usual we make a table of X near 0 with f(x). Observe that for negative values of X
we need to evaluate X — 2 and for positive values, we need to evaluate X + 2.

Table13.11
X - 0.1 —-0.01 —-0.001 0.001 0.01 0.1
f(x) — 2.1 —2.01 —2.001 2.001 2.01 2.1

From the first three entries of the Table 13.11, we deduce that the value of the
function is decreasing to —2 and hence.

lim f (X) =2

X—0"
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From the last three entires of the table we deduce that the value of the function

is increasing from 2 and hence Y
lim f(x)=2
lim £ (x) ©,2)
Since the left and right hand limits at 0 do not coincide,
we say that the limit of the function at 0 does not exist. X' € P >X
Graph of this function is given in the Fig13.6. Here,
we remark that the value of the function at X = 0 is well (0,-2)
defined and is, indeed, equal to 0, but the limit of the function
at X =0 is not even defined. )
_ _ _ . Fig 13.6
Illustration 10 As a final illustration, we find lxlg} f (X) ,
where
X+2 x=l1
(-1
0 x=1
Table13.12
X 0.9 0.99 0.999 1.001 1.01 1.1
f(x) 2.9 2.99 2.999 3.001 3.01 3.1

As usual we tabulate the values of f(X) for X near 1. From the values of f(X) for

X less than 1, it seems that the function should take value 3 at X

lim f (x)=3

X—1"

Similarly, the value of f(X) should be 3 as dic-

tated by values of f(X) at X greater than 1. i.e.
lim f(x)=3

But then the left and right hand limits coincide
and hence

=1.,1.e.,

Y
A
0,3) 1

0,2)

N

lim f (x)=lim f(x)=lim f (x)=3

x—1" x—1" x—>1
Graph of function given in Fig 13.7 strengthens
our deduction about the limit. Here, we

-2,0)

0

Y!

1,00 ~

Fig 13.7
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note that in general, at a given point the value of the function and its limit may be
different (even when both are defined).

13.3.1 Algebraof limitsIn the above illustrations, we have observed that the limiting
process respects addition, subtraction, multiplication and division as long as the limits
and functions under consideration are well defined. This is not a coincidence. In fact,
below we formalise these as a theorem without proof.

Theorem 1 Let f and g be two functions such that both }(ingl f(x) and }(irrgl g(X) exist.
Then
(1) Limit of sum of two functions is sum of the limits of the functions, i.e.,

lim [f(x) + g (9] = lim f(x) + lim g(x).

(i) Limit of difference of two functions is difference of the limits of the functions, i.e.,
lim[f(x) ~ g(x)] = lim 0 — lim g(x).

(iii) Limit of product of two functions is product of the limits of the functions, i.e.,

lim [f(x) . g09] = lim (. lim g(x).

(iv) Limit of quotient of two functions is quotient of the limits of the functions (whenever
the denominator is non zero), i.e.,

L f0glim ()
x>ag(x) limg(x)

X—a

In particular as a special case of (iii), when g is the constant function
such that g(x) = 4, for some real number ;, we have

lim[ (&) (x)]=21im f(x)

X—a X—a

In the next two subsections, we illustrate how to exploit this theorem to evaluate
limits of special types of functions.

13.3.2 Limits of polynomials and rational functions A function f is said to be a
polynomial function if f(X) is zero function or if f(X) = a, + ax +ax* +. ..+ ax"
where as are real numbers such that @, # 0 for some natural number n.

We know that lim X = a. Hence
X—a
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limx* =lim(xX)=limxlimx=a a=a’

X—a X—a X—a X—a

An easy exercise in induction on N tells us that

limx"=a"
X—a

Now, let f(X)=ay+aX+a,X" +...+a,x" be a polynomial function. Thinking

of each of a,,a x,a,%x*,...,a, X" as a function, we have

lim f (x) = 11m[ao+a1x+a2x +..+a,X ]

X—>a

— lima, + lima,x+lima,x* +...+ lima, X"

X—a X—a X—a X—a

= a0+a111mx+a2hrnx +...+a, limx"
X—a

= a,+aa+a,a +..+aa"
= 1(a)
(Make sure that you understand the justification for each step in the above!)

g(Xx
A function f is said to be a rational function, if f(x) = ( ) , where g(X) and h(x)

are polynomials such that h(x) # 0. Then

g(x)_ima(X) g(a)
X—>a x—>a h(X) lim h(X) h(a)

X—a

However, if h(a) = 0, there are two scenarios — (i) when g(a) # 0 and (ii) when
g(a@) = 0. In the former case we say that the limit does not exist. In the latter case we
can write g(X) = (X — @)*g, (X), where K is the maximum of powers of (X — @) in g(X)
Similarly, h(x) = (x— &)'h, (x) as h (a) = 0. Now, if k> |, we have

o ma)_im(x-a)a (9
iﬂf(x): limh(X) B 1jm(x—a)I hl(X)

x—a x—a
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lim(x-a)*™" g, () _0.g,(a)

X—a

lirnhl(x) hl(a)

X—a

If k <, the limit is not defined.

=0

Example 1 Find the limits: (i) Iim[ X’ =3¢ +1] (i) lim[x(x+1)]

X—3
iy lm [ 14+ x+x2 +..+x°
(i) om 1[ J .
Solution The required limits are all limits of some polynomial functions. Hence the
limits are the values of the function at the prescribed points. We have

() Impe_x+1]=1-12+1=1

X—1

Giy lim[x(x+1)]=3(3+1)=3(4)=12

X—3

(iiiy lim [1 + X+ X+ Xw] =14 (=1)+(=1) 4.4 (-1)"°

X—>-1
=1-1+1..+1=1.
Example 2 Find the limits:

. lim_ X +1 ) hm_x3—4x2+4x
@ 551 x+100 e
o fim| — X4 y lim| X2
(i) x2| X0 — 4% +4X (iv) x2| X* —5X+6

lim| X=2_ 1 }
) ol X —x X =33 +2x ]

Solution All the functions under consideration are rational functions. Hence, we first

0
evaluate these functions at the prescribed points. If this is of the form —, we try to

rewrite the function cancelling the factors which are causing the limit to be of

the ft 9
e form .
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X+1  1P+1 2

x>l X+100 1+100 101

(i) Evaluating the function at 2, it is of the form

X —4x* +4x

Hence lim———— =
X—2

x> —4

0
2

po o X(x=2)

X»Z(x+2)(x—2)

X(X—2) as X#2
x>2 (X+2)
2(2—2)_9_0

242 4

0
(i) Evaluating the function at 2, we get it of the form 0

. x> —4
Hence lim ————— =
x=2 X7 —4X" +4X

which is not defined.

0
(iv) Evaluating the function at 2, we get it of the form —.

X =2x
lim

Hence = . =
X2 X" —5X+6

S x-3)

1im(x+2)(x—2)
x(x—2)2

x-2X(x-2) 2(2-2)

(x+2)  2+2 4
0

0

im X (X=2)
x>2 (x=2)(x-3)
x* (2 4

:—:—:—4
-3 -1 '
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(v) First, we rewrite the function as a rational function.

X—2 1 X=2 _ 1
[xz—x_x3—3x2+2x}: X(x~1) X(X2—3X+2)

[ x-2 1 }
__x(x—l) X(x-1)(x-2)

X —dx+4-1
- _x(x—l)(x—z)
x> —4x+3

~ x(x-1)(x-2)

0
Evaluating the function at 1, we get it of the form 0

Hence lim

Xt =2 1 f x> —4x+3
ol X2 —x X =3x2 +2x

=35 X(x-1)(x-2)

o X3 1-3
Tooix(x=2) T 1(1-2) =%

We remark that we could cancel the term (X — 1) in the above evaluation because

X#1.

Evaluation of an important limit which will be used in the sequel is given as a
theorem below.
Theorem 2 For any positive integer n,

Xn _ an n-1

lim =na

x>a X—a

Remark The expression in the above theorem for the limit is true even if n is any
rational number and a s positive.
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Proof Dividing (X" — a@") by (X — @), we see that
X'—a'=(xa) (X*' +xra+xa+ .+ xar+a)
n n

. X'—-a )
Thus, lim =lm X'+ x2a+x3a+ .. +xa?+at)
Xx—=»a X—a X—a

=a"'+aa?+. .. +a?(a +a!
=ar' +a ! +. . +av'+ ar! (n terms)

_ na.n—l

Example 3 Evaluate:

I S
(i) Mo (ii) Lim »
Solution (i) We have
Xls—l _X15_1 Xlo_l
lim — lim +
x—1 x10 1 Xﬁl_ x—1 X—1

O xsor] L [x9-
— lim +1lim
x>l x—1 x> X—1

= 15 ()" = 10(1)° (by the theorem above)

—15~10—3
Ve 2

(i) Puty=1+Xx,sothaty—>1 as x— 0.

/ _ . -1

Then lim w — lim —y
x>0 X y=l y—1

11

2 _12

— Jim Y1

y=1 y—1

L 1
= 5(1)2 (by the remark above) = 3
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13.4 Limits of Trigonometric Functions
The following facts (stated as theorems) about functions in general come in handy in
calculating limits of some trigonometric functions.

Theorem 3 Let f and g be two real valued functions with the same domain such that

f(X) < g( X) for all X in the domain of definition, For some a, if both )1(135}1 f(X) and

lim g(x) exist, then 1M f(x) < im g(x). This is illustrated in Fig 13.8.

Y
A
| y =g(x)
I
I
I Y =flx)
5 . >X

Fig 13.8

Theorem 4 (Sandwich Theorem) Let f, g and h be real functions such that
f(X) < g( X) < h(x) for all X in the common domain of definition. For some real number

aif M f(x) =1 = 1M h(x), then lim g(x)=1. This is illustrated in Fig 13.9.
Y
N

>X

1S

0)

Fig 13.9

Given below is a beautiful geometric proof of the following important
inequality relating trigonometric functions.

sin X T
cosX<——<1  for 0<|x|<5 (*)
X
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Proof We know that sin (— X) = — sin X and cos( — X) = cos X. Hence, it is sufficient

T
to prove the inequality for 0 <X< 7 C {
In the Fig 13.10, O is the centre of the unit circle such that Ah

T
the angle AOC is X radians and 0 <X < 5 Line segments B A and
CD are perpendiculars to OA. Further, join AC. Then
Area of AOAC < Area of sector QAC < Area of A OAB. Fig 13.10

ie. ~0ACD<X r(0AY <loAAB.
2 o 2

e, CD<x.OA<AB.
From A OCD,

. cb . : AB
sin X = OA (since OC = OA) and hence CD = OA sin X. Also tan X “OA and
hence AB = OA. tan X. Thus
OA sin X < OA. X < OA. tan X.
Since length OA is positive, we have

sin X < X < tan X.
Since 0 <X <5 , sinX is positive and thus by dividing throughout by sin X, we have

X

. < .
sinX cosX

1< Taking reciprocals throughout, we have

sin X
cosXx<——x<1
X

which complete the proof.
Theorem 5 The following are two important limits.

sinx_1 l-cosx

=0

) im i) lim
(l) Xx—=0 X ’ (11) X—0 X
sin X

X
function cos X and the constant function which takes value 1.

Proof (i) The inequality in (*) says that the function is sandwiched between the
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Further, since }(133 cos X = 1, we see that the proof of (i) of the theorem is

complete by sandwich theorem.

X
To prove (ii), we recall the trigonometric identity 1 — cos X = 2 sin? (EJ .

Then

X
Observe that we have implicitly used the fact that x — ¢ is equivalent to B — 0. This

X
may be justified by putting y = 2

: o - ‘ hmsm4x .. limtanX

xample 4 Evaluate: (i) im Sin2x )
Wtion ) lim ST i SI0AX_2X_ 5

Solution (i)~ lim sindx 0| 4x sin2x

. | sin4x sin 2X
= 2.lim +
x=0|  4X 2X

=2.1.1=2(asXx— 0,4Xx — 0 and 2x — 0)
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.. . tanX . sin X . sinX . 1
(ii) We have lim = lim = lim . lim =11=1
x=>0 X x>0 X cos X x>0 X x—0 COS X

A general rule that needs to be kept in mind while evaluating limits is the following.

. f(x)
Say, given that the limit }(l_rg M exists and we want to evaluate this. First we check
the value of f(a) and g(a). If both are 0, then we see if we can get the factor which
is causing the terms to vanish, i.e., see if we can write f(x) = f, (X) f(X) so that
f (@) =0 and f, (a) # 0. Similarly, we write g(X) = g, (X) g,(X), where g,(a) = 0 and
g,(a) # 0. Cancel out the common factors from f(X) and g(X) (if possible) and write

t(x) _p(x)

g(X) = m , where q(X) # 0.

t(x)_ p(a)

lim =3
Then ‘oa g(x) q(a) .

|EXERCISE 13.1

Evaluate the following limits in Exercises 1 to 22.

1 limx+3 2 lim(x—2] 5 limar?
X3 X—on 7 r—l
10 5 5
f lim4x+3 £ lim X0+ % +1 6. tm (x+1) -1
x4 X—2 x— —1 X—1 %0 X
. 3xr=x-10 . x* —81 . ax+b
7. hmz— 8. hrn—2 9. Iim
-2 X" —4 x-3 2X° —5x-3 x=0 CX+1
1
3 - 2
10, lim z -1 11 limaXJr—bX+C a+b+c#0
R Cxol o +bx+a’
Z6-1
11 | |
12, fim X2 13, lim 22X 14 1im 2 b0
x>-2 X+42 x>0 bx x>0 sinbx
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15.

18.

20.

22.

23.

24,

25.

26.

27.

28.

MATHEMATICS
i sin (7 - X) . COSX . cos2x—1
m-———= 16. lim 17. Im—
x> n(n—x) x—0 T — X x=0 cosX—1
lim X+ XCeos X 19. lim XsecX
x=>0  bsin X x—0
. sinax+bx .
lim ————a,b,a+b=#0, 21 lim (cosec X—cot X)
x>0 ax + sin bx x=0
. tan2X
lim
n i
X_>E X——
2

2X+3,

Find 1im f(X) and lim f (X) | where 1:()()2{3(x+1),

lim 1 (%) f(x) XX =1, x<I
ind lim f (X =
Find ™M , Where 1 x>1
m X=0
Evaluate }(1_)m0 f (X), where f(X)= X’
0, x=0
X
Y —, X=#0
Find }g‘éf(x),where f(X): | X|
0, x=0

Find }(l_rg f(x) , where f(x)=|x|-5

a+bx, x<l1
Suppose f(X)=+4, x=1
b-ax, x>1

and if ng}f (X) = f (1) what are possible values of a and b?

X<0
X>0
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29. Leta,a,..., a be fixed real numbers and define a function
f(X)=(x-a)(x—a)..(x—a,).

What is )}1_1)1;1 f(x) ? For some a#a, a, ..., a, compute IXEI; f(x).

X +1, x<0
30. 1f f(x)=40, x=0 .
-1, x>0

For what value (s) of a does }g{,}lf (X) exists?

f(x)-2

31. If the function f(x) satisfies im —>——=m _ evaluate lim f (X).
-1 x*—1 x=1

m< +n, X<O0
32, 1f F(X)=1 nx+m, 0<X<1_ For what integers mand n does both }(i_r)%f(x)
n+m, x>1

and EE} f (X) exist?

13.5 Derivatives

We have seen in the Section 13.2, that by knowing the position of a body at various
time intervals it is possible to find the rate at which the position of the body is changing.
It is of very general interest to know a certain parameter at various instants of time and
try to finding the rate at which it is changing. There are several real life situations
where such a process needs to be carried out. For instance, people maintaining a
reservoir need to know when will a reservoir overflow knowing the depth of the water
at several instances of time, Rocket Scientists need to compute the precise velocity
with which the satellite needs to be shot out from the rocket knowing the height of the
rocket at various times. Financial institutions need to predict the changes in the value of
a particular stock knowing its present value. In these, and many such cases it is desirable
to know how a particular parameter is changing with respect to some other parameter.
The heart of the matter is derivative of a function at a given point in its domain
of definition.
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Definition 1 Suppose f is a real valued function and a is a point in its domain of
definition. The derivative of f at a is defined by

f h)— f

i 1 (220)= (2

provided this limit exists. Derivative of f (x) at a is denoted by f{a).
Observe that f’(a) quantifies the change in f(X) at a with respect to X.

Example 5 Find the derivative at X = 2 of the function f(X) = 3x.

Solution We have

f/(2) = lim f2rh)-f(2) 1imw

h—0 h h—0
im 8300 3N imsos
h—0 h h—0 h h—0

The derivative of the function 3X at X=2 is 3.

Example 6 Find the derivative of the function f(X) = 2X*> + 3Xx— 5 at x= —1. Also prove
that f 7 (0) + 3f " (~1) = 0.

Solution We first find the derivatives of f(x) at X =—1 and at X = 0. We have

f(=1+h)-f(-1)

fi(=1) = Jim h
[2(=14h) +3(=14h) =5 || 2(=1) +3(-1) -5
= lim
h—0 h
. 2h-h .
= lim — =m(2h—1)=2(0)—1=—1

f(0+h)— f(0)

and f'(0) = lim

h—0

) lim[2(0+ h)* +3(0+h)-5] [ 2(0)" +3(0)-5]

h—0 h
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2
— tim 2N i oh3)=2(0) 4323

h—0 h h—0
Clearly f'(0)+3f'(-1)=0
Remark At this stage note that evaluating derivative at a point involves effective use
of various rules, limits are subjected to. The following illustrates this.
Example 7 Find the derivative of sin X at Xx= 0.
Solution Let f(x) = sin X. Then
f(0+h)- f(0)
h

KGR

~im sin(0+h)—sin(0) — tm sin h _
h—0 h h—-0 h

1

Example 8 Find the derivative of f(X) =3 at X =0 and at x = 3.

Solution Since the derivative measures the change in function, intuitively it is clear
that the derivative of the constant function must be zero at every point. This is indeed,
supported by the following computation.

F0+h)-F(0) 3.3

Vel 1 o T U
)= i I Time

h
f3+h)-f(3) . 3-3

Similarly ~ f'(3) = rl]li% h =i111£13 - =0
We now present a geomet- ){

ric interpretation of derivative of a
function at a point. Let y=1(X) be
a function and let P=(a, f(a)) and
Q=(a+h, f(a+h)be two points
close to each other on the graph
of'this function. The Fig 13.11 is
now self explanatory.

fla+h)

fla)

Fig 13.11
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f h)- f
We know that f'(a):lim (a+ ) (a)

h—0 h

From the triangle PQR, it is clear that the ratio whose limit we are taking is
precisely equal to tan(QPR) which is the slope of the chord PQ. In the limiting process,
as htends to 0, the point Q tends to P and we have
f(a+h)-f(a
lim ( ) ( ) = limQ—R

h—0 h Q—P PR

This is equivalent to the fact that the chord PQ tends to the tangent at P of the

curve Yy = f(X). Thus the limit turns out to be equal to the slope of the tangent. Hence

f'(a)=tany .
For a given function f we can find the derivative at every point. If the derivative

exists at every point, it defines a new function called the derivative of f . Formally, we
define derivative of a function as follows.

Definition 2 Suppose f is a real valued function, the function defined by

i f(x+h)-f(x)
h—0 h

wherever the limit exists is defined to be the derivative of f at x and is denoted by
f(x). This definition of derivative is also called the first principle of derivative.
f (x+h)—f(x)

Thus f'(x)= lim

Clearly the domain of definition of f*(X) is wherever the above limit exists. There
are different notations for derivative of a function. Sometimes f’(X) is denoted by

d . . dy ... "
&( f (X)) or if y="1(x), it is denoted by o This is referred to as derivative of f(X)

or y with respect to X. It is also denoted by D (f (X) ). Further, derivative of fatx=a

or ar a
2 % xla OTEven | g L
Example 9 Find the derivative of f(X) = 10x.

f (x+h)-f(x)
h

d
is also denoted by I f(x)

Solution Since f/( X) = lim
h—0
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10(x+h)-10(x)

= lim
h—0

_ 1im " _ tim (10) =10
h—0 h h—0

Example 10 Find the derivative of f(X) = x2.

f(x+h)-f(x)

Solution We have, f'(x) = Liné
2 2

(xrh)" = (x) — lim (h+2x)=2x

h—0 h h—0

Example 11 Find the derivative of the constant function f(X) = a for a fixed real
number a.

f (x+h)-f(x)
h

Solution We have, f'(x) = }llrno

. a—a .0
= fim == =lm i =0as h2o

1

Example 12 Find the derivative of f(X) = X

f(x+h)-f(x)
h

Solution We have f’(x) = Lm(%
1 1

= lim (x+h) x
h—0 h

fim L | fim 1
~ o0 h| x(x+h) | T o0 x(x+h) T2
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13.5.1 Algebra of derivative of functions Since the very definition of derivatives
involve limits in a rather direct fashion, we expect the rules for derivatives to follow
closely that of limits. We collect these in the following theorem.

Theorem 5 Let f and g be two functions such that their derivatives are defined in a
common domain. Then

(1) Derivative of sum of two functions is sum of the derivatives of the
functions.

d d d
&[f (x)+g(x)]=& f(x)+&g(x),

(i) Derivative of difference of two functions is difference of the derivatives of
the functions.

d d d
—| f(X)—9(X)|=—F(X)——g(x
(iii) Derivative of product of two functions is given by the following product
rule.
d

&[f(x) : g(X)]=%f(X).g(X)+ f(X)-%g(X)

(iv) Derivative of quotient of two functions is given by the following quotient
rule (whenever the denominator is non—zero).

d d
i(f(x)jzdxf<x>.g<x>— f0 o 900

x| g(x) (g(x)’

The proofs of these follow essentially from the analogous theorem for limits. We
will not prove these here. As in the case of limits this theorem tells us how to compute

derivatives of special types of functions. The last two statements in the theorem may
be restated in the following fashion which aids in recalling them easily:

Let u= f(x) and v= g (X). Then
(W) = uv+w

This is referred to a Leibnitz rule for differentiating product of functions or the
product rule. Similarly, the quotient rule is
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! [ ’
u uv-—uv
v Ve

Now, let us tackle derivatives of some standard functions.
It is easy to see that the derivative of the function f(X) = X is the constant

f(x+h)— f  xaho
function 1. This is because f'(x)=lim (x+h)-f(x) — lim> =X
h—0 h h—0 h
— liml=1
h—0 .

We use this and the above theorem to compute the derivative of
f(X) = 10x = X + .... + X (ten terms). By (i) of the above theorem
df(x) d

™ = (X+...+X) (ten terms)

d
= —X+...+—X
ix ix (ten terms)

= 1+...+1 (ten terms) = 10.

We note that this limit may be evaluated using product rule too. Write
f(X) = 10x = uv, where U is the constant function taking value 10 everywhere and
V(X) = X. Here, f(X) = 10x = uv we know that the derivative of u equals 0. Also
derivative of V(X) = X equals 1. Thus by the product rule we have

f'(x) = (IOX)' =(uv)' =uv+w' =0.x+10.1=10

On similar lines the derivative of f(X) = x> may be evaluated. We have
f(X) = x> = X .X and hence

df d d d
ol &(xx)_&(x).x+ x&(x)
= 1.X+Xx1=2x.

More generally, we have the following theorem.
Theorem 6 Derivative of f(X) = X" is nx"~! for any positive integer n.

Proof By definition of the derivative function, we have

f'(x):limf(x+h)_f(x):lim(x+h) X
h—0 h h—0
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Binomial theorem tells that (X + h)" = ( "C, ) X"+ ( "C, ) X"+ + ( ”Cn) h" and

hence (X+ h)"—x"=h(nx"~!'+... + h"~"). Thus

df m_xn
(x) _ lim(x+ h)" —x
dx h—0 h

. h(nx”‘1 ot h“‘l)
h—0 h

. n-1 n-1
= }11_r>r(1)(nx +..+h ) = X"

Alternatively, we may also prove this by induction on n and the product rule as
follows. The result is true for n= 1, which has been proved earlier. We have

di o di.
S 00) = o)
d

= &( X)( X" ) + X.%( X" ) (by product rule)

=1.x""+ x((n ~1)x"? ) (by induction hypothesis)

= X" +(n-1)x"" =nx"".
Remark The above theorem is true for all powers of X, i.e., N can be any real number
(but we will not prove it here).
13.5.2 Derivative of polynomials and trigonometric functions We start with the
following theorem which tells us the derivative of a polynomial function.

Theorem 7 Let f(X) = anx” + aﬂ_lx"*l +....+ @ X+ @, beapolynomial function, where

a sare all real numbers and @, # 0. Then, the derivative function is given by

dfd(XX)znaan1+(n_1)an_1x“+...+ 2a,X+a, .

Proof of this theorem is just putting together part (i) of Theorem 5 and Theorem 6.

Example 13 Compute the derivative of 6x'° — x*° + X.
Solution A direct application of the above theorem tells that the derivative of the

above function is 00x*° —55x>* +1 -
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Example 14 Find the derivative of {(X) = 1 + X+ X + x> +... + X at X = 1.
Solution A direct application of the above Theorem 6 tells that the derivative of the
above function is 1 +2X+3x>+. ..+ 50x¥. At x=1 the value of this function equals

(50)(51)
1+2(D)+ 3172 +...+50()®=1+2+3+...+50= — =1275.

X+1
Example 15 Find the derivative of f(X) = S

Solution Clearly this function is defined everywhere except at X = 0. We use the
quotient rule with u= X+ 1 and v=X. Hence u’= 1 and v’= 1. Therefore

df(x) d (X+1j d [UJ _u'v—uv’_l(X)—(X+1)1 R

v X X

\Y

dx  dx| x ) dx
Example 16 Compute the derivative of sin X.
Solution Let f(X) = sin X. Then

dfeo f(x+h)—f (X)zlirn
dx h—0 h h—0

sin(x+ h)—sin(x)

o2}l
= lim 2 2) (using formula for sin A — sin B)
h—0 h

sin —

B limcos(x+—j.lim 2 _cosx.1=cosX

= h->0 2 ) h—>0 D .
2

Example 17 Compute the derivative of tan X.

Solution Let f(X) = tan x. Then

df (%) _ i f (x+h)—f(x) . tan(X+ h)—tan(x)
dx h—0 h h—0

1{sin(x+ h) Sinx}

x+h) cosx

(@)

]

wn
—
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sin( X+ h)cos x—cos(x+ h)sin x

_ lim
h—0 hcos(x+ h)cosx

sin(x+h-x)

= hl_rf(l) hcos(x+ h)cos X (using formula for sin (A + B))

. sinh . 1
_ lim dim
>0 h "h-0 cos(X+h)cosX

1

2

=1.
cos” X

=sec’ X

Example 18 Compute the derivative of f(X) = sin® X.
Solution We use the Leibnitz product rule to evaluate this.
df(x) d

dx &(sm Xsin X)

= (sin X)' sin X + sin X(sin X),
=(cos X)sin X +sin X(cos X)

=2sin Xcos X=sin2X -

|[EXERCISE 13.2]

1. Find the derivative of X> — 2 at x = 10.
2. Find the derivative of 99x at X =100.
3. Find the derivative of X at X = 1.
4. Find the derivative of the following functions from first principle.
(i) 0 -27 (i) (x-1)(x-2)
Lo o X+l
(i) v ~—

5. For the function

100 99 2
f(x):x—+x—+...+x—+ X+1.
100 99 2
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Prove that f'(1)=100f'(0).

6. Find the derivative of X"+ ax™! + a®x"? +...+a" 'x+a" for some fixed real

number a.
7. For some constants a and b, find the derivative of

2 X—a
(i) (x-a)(x-b) (i) (& +b) (i) S
Xn _ n
8. Find the derivative of for some constant a.
9. Find the derivative of
3
(i) 2x-=— (i) (5% +3x-1)(x-1)
4
i)y x> (5+3x) (iv) x(3-6x7)
2 x2
4 5 .
X3 -4X —_
) ( ) vi) X+1 3x-1
10. Find the derivative of cos X from first principle.
11. Find the derivative of the following functions:
() sinXcos X (if) secx (iii) 5secx+4cosx
(iv) cosec X (v) 3cotx+5cosecX
(vi) 5sinX—6cosX+7 (vil) 2tanX—7secX

Miscellaneous Examples

Example 19 Find the derivative of f from the first principle, where f is given by

2X+3
X—=2

M fx)= (i) o= X+§

Solution (i) Note that function is not defined at X = 2. But, we have

2(x+h)+3_2x+3
fr(x):limf(X+h)—f(X):1im x+h—2 V)

h—0 h h—0 h
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(2x+2h+3)(x-2)-(2x+3)(x+h-2)

= h(x—2)(x+h-2)

i (2x+3)(x-2)+2h(x-2)—(2x+3)(x-2)-h(2x+3)
= o h(x-2)(x+h-2)

lim l —

T (x=2) (x+h-2)  (x-2)

Again, note that the function f' is also not defined at x= 2.
(i) The function is not defined at X = 0. But, we have

£(x) =}]1rréf(x+h3_f(x)—}]iné !
= hml[th;—l
h—0 h Xx+h X

— lim|1- ; =1- ']
0| x(x+h) x?
Again, note that the function f' is not defined at x=0.
Example 20 Find the derivative of f(X) from the first principle, where f(X) is
(1) sin X+ cos X (i1) xsin x
f(x+h)-f(x)
h

Solution (i) we have f'(x) =

sin(X+ h) + cos(x+ h)—sin X— cos X

= lim
h—0 h

sin X cos h+ cos X sin h+ cos Xcos h —sin X sin h—sin X— cos X

= lim
h—0 h
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sin h(cos X —sin X) + sin X(cos h—1) + cos X(cosh—1)

= lim
h—0 h
=lim@(cosx—sinx)+limsinx—(COSh_l) +1imCOSX(COSh_1)
h-0 h—0 h—0
= Ccos X —sin X
L ) : f(x+ h)—f(X) . (X+ h)sin(x+ h)—xsinx
@@ f (X) = tlg% . 2#33 -

1 (X+h)(sianosh+sinhcosx)—XsinX
B hl—rg h

Xsin X(cos h— 1) + Xcos Xsinh + h(sin xcosh+sinh cos X)

= lim
h—0 h
xsinX(cosh—1) sinh | .
= lim +limy,_,y Xcos X—— +lim(sin xcos h+ sin hcos x)

h—0 h—0

= Xcos X+ sin X
Example 21 Compute derivative of
(1) f(X) = sin 2x (11) g(X) = cot X

Solution (1) Recall the trigonometric formula sin 2X= 2 sin X cos X. Thus

LA CY) = i(25in XCos X) =2i(sin Xcos X)
dx dx dx

= 2[(sin X), cos X+ sin X(cos X)'}
= 2[(cos X) €oSs X+ sin X(—sin X)]
= 2(0082 X —sin? X)

cos X
(i) By definition, g(x) = COtX:ﬁ. We use the quotient rule on this function

dg d d ( cosx
wherever it is defined. ——=——(cotX)=—| —
dx dx dx\ sin x
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~ (cos X)"(sin X) —(cos X) (sin X)'
- (sin x)?

_ (=sin X)(sin X)—(cos X) (cos X)
- (sin x)?

sin’ X+ cos® X 2
= —————5 ———=—cosec’X
sin” X

1
Alternatively, this may be computed by noting that cot X= anx Here, we use the fact

that the derivative of tan X is sec? X which we saw in Example 17 and also that the
derivative of the constant function is 0.

d—g:i(cotx):i( ! J
dx  dx dx | tan X

(1)’ (tan X)—(1) (tan X)’
~ (tan x)*

~ (0)(tan x)—(sec x)*

(tan x)*
—sec? X 2
= S —= —Cosec”X
tan” X

Example 22 Find the derivative of

x> —cos X  X+cosX

(i)

sin X tan X

(1)

> —cCcosX

X . X . . .
Solution (i) Let h(x)= . We use the quotient rule on this function wherever

it is defined.

(X° —cos X)'sin X— (X° — cos X) (sin X)'

Mg = (sin x)?
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(5x* +sin X)sin X— (X° — cos X) cos X

sin? x

—x° cos X+ 5x*sin x+1
(sin X)*

X+ cos X
(i1)) We use quotient rule on the function Tanx wherever it is defined.
an

(X+ cos X)"tan X — (X + cos X) (tan X)’
(tan x)*

h(x) =

(1—sin X) tan X — (X + cos X) sec” X
(tan X)?

Miscellaneous Exercise on Chapter 13

1. Find the derivative of the following functions from first principle:

(i) -x (i) (=) (i) sin(x+1)  (iv) cos (X— g)

Find the derivative of the following functions (it is to be understood that a, b, c, d,
p, g, r and s are fixed non-zero constants and mand n are integers):

r
2. (X+ a) 3. (px+ Q) (;Jrsj 4, (ax+b)(cx+d)2
1
ax+b I+ 1
6. —X L
cx+d l—l ax” +bx+c
X
ax+b 2 a b
PX” + QX+ T a b X
1. 4x-2 12. (ax+b)" 13. (ax+b)" (cx+d)™
. cos X
14. sin (X + a) 15. cosec X cot X 16.

1+sin X
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17.

20.

23.

25.

28.

MATHEMATICS

sin X + cos X 18 secX—1 19, win
sin X — cos X "~ secX+1 - smeX
a+ bsin X sin(X+a) i
—_— 21, ——— 22. X*(5sin X—3cos X)
c+dcosXx cOoSs X
(X2 +1)cosx 24, (ax2 +sin X)( p+qcos X)
. 2 4
4X+ 5sin X X COS()
(X+cosx)(x—tanx) 26. # 27. 4
X+ 7cos X S
X X

L+ tan x 29. (X+secx)(x—tanx) 30. sin” x

Summary

® The expected value of the function as dictated by the points to the left of a
point defines the left hand limit of the function at that point. Similarly the right
hand limit.

# Limit of a function at a point is the common value of the left and right hand
limits, if they coincide.

@ For a function f and a real number a, }(133 f(X) and f (a) may not be same (In
fact, one may be defined and not the other one).

@ For functions f and g the following holds:

}(m;[ f(X)£ g(X)]=}(iII; f (x)i}(in;1 g(x)
lim[ f (x).g(x)]=lim f (x).lim g(x)

{f(x)}_iir‘;f(x)
9(x) ] limg(x)

lim
X—a

@ Following are some of the standard limits

n n
x"-a .
=na""

lim
Xx—a X—a
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sinX

lim——=1
x—>0 X

. 1l—cosX
lim =0
X—0 X

@ The derivative of a function f at a is defined by

f/(a)=lim f(a+h)—f (a)
h—0 h

@ Derivative of a function f at any point X is defined by
df (x) im f(x+h)—f(x)
dx h—0 h
# For functions uand v the following holds:
(uzv)=u=Vv

f'(x)=

(uv)' =u'v+uv'

u) uv-uv
(V) = 7 provided all are defined.

@ Following are some of the standard derivatives.

d n n-1

—(X")=nXx

K

di(sin X)=cos X
X

i(cos X)=—sin X
dx

Historical Note

In the history of mathematics two names are prominent to share the credit for
inventing calculus, Issac Newton (1642 — 1727) and G.W. Leibnitz (1646 —1717).
Both of them independently invented calculus around the seventeenth century.
After the advent of calculus many mathematicians contributed for further
development of calculus. The rigorous concept is mainly attributed to the great
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mathematicians, A.L. Cauchy, J.L.Lagrange and Karl Weierstrass. Cauchy gave
the foundation of calculus as we have now generally accepted in our textbooks.
Cauchy used D’ Alembert’s limit concept to define the derivative of a function.
Starting with definition of a limit, Cauchy gave examples such as the limit of
sina Ay f(x+i)-f(x)

for ¢ = 0. He wrote H— | > and called the limit for

i = 0, the “function derive’e, Y for f”(x)”.

Before 1900, it was thought that calculus is quite difficult to teach. So calculus
became beyond the reach of youngsters. But just in 1900, John Perry and others
in England started propagating the view that essential ideas and methods of calculus
were simple and could be taught even in schools. F.L. Griffin, pioneered the
teaching of calculus to first year students. This was regarded as one of the most
daring act in those days.

Today not only the mathematics but many other subjects such as Physics,
Chemistry, Economics and Biological Sciences are enjoying the fruits of calculus.

J

> ——



Chapter 14

‘I\/IATHEMATICAL REASONING ’

*»*There are few things which we know which are not capable of
mathematical reasoning and when these can not, it is a sign that our
knowledge of them is very small and confused and where a mathematical
reasoning can be had, it is as great a folly to make use of another,
as to grope for a thing in the dark when you have a candle stick
standing by you. —- ARTHENBOT ¢¢

14.1 Introduction

Inthis Chapter, we shall discuss about some basic ideas of
Mathematical Reasoning. All of usknow that human beings
evolved from the lower species over many millennia. The
main asset that made humans “ superior” to other species
wastheability to reason. How well thisability can be used
depends on each person’s power of reasoning. How to
develop this power? Here, we shall discussthe process of
reasoning especially in the context of mathematics.

In mathematical language, there are two kinds of
reasoning — inductive and deductive. We have aready
discussed the inductive reasoning in the context of George Boole
mathematical induction. In this Chapter, we shall discuss (1815 - 1864)
some fundamental's of deductive reasoning.

14.2 Satements

The basic unit involved in mathematical reasoning is a mathematical statement.
Let us start with two sentences:

In 2003, the president of India was a woman.
An elephant weighs more than a human being.
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When we read these sentences, we immediately decide that the first sentenceis
false and the second is correct. Thereisno confusion regarding these. In mathematics
such sentences are called statements.

On the other hand, consider the sentence:

Women are more intelligent than men.

Some peoplemay think it istruewhile othersmay disagree. Regarding this sentence
we cannot say whether itisalwaystrue or false. That meansthis sentenceisambiguous.
Such a sentence is not acceptable as a statement in mathematics.

A sentence is called a mathematically acceptable statement if it is either
true or false but not both. Whenever we mention a statement here, it is a
“mathematically acceptable” statement.

While studying mathematics, we come across many such sentences. Some examples
are:
Two plus two equals four.
The sum of two positive numbers is positive.
All prime numbers are odd numbers.

Of these sentences, the first two are true and the third one is false. Thereisno
ambiguity regarding these sentences. Therefore, they are statements.

Canyouthink of an example of asentence which isvague or ambiguous? Consider
the sentence:

The sum of x and y is greater than O

Here, we are not in a position to determine whether it istrue or false, unless we
know what x and y are. For example, it is false where x = 1, y = -3 and true when
x=1andy = 0. Therefore, this sentence is not a statement. But the sentence:

For any natural numbers x and y, the sum of x and y is greater than O
is a statement.

Now, consider the following sentences:

How beautiful!

Open the door.
Where are you going?

Arethey statements?No, becausethefirst oneisan exclamation, the second
an order and the third aquestion. None of these is considered as a statement in
meathematical |anguage. Sentencesinvolving varigbletimesuchas*“today” , “tomorrow”
or “yesterday” arenot statements. Thisisbecauseitisnot knownwhat timeisreferred
here. For example, the sentence

Tomorrow is Friday
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isnot astatement. The sentenceiscorrect (true) on a Thursday but not on other
days. The same argument holdsfor sentenceswith pronouns unlessaparticular
person is referred to and for variable places such as “here’, “there” etc., For
example, the sentences

She is a mathematics graduate.

Kashmir is far from here.
are not statements.

Here is another sentence
There are 40 days in a month.

Would you call this a statement? Note that the period mentioned in the sentence
aboveisa*“variabletime” that isany of 12 months. But we know that the sentenceis
alwaysfalse (irrespective of the month) since the maximum number of daysinamonth
can never exceed 31. Therefore, this sentenceisastatement. So, what makes a sentence
a statement is the fact that the sentence is either true or false but not both.

While dealing with statements, we usually denote them by small lettersp, q, r,...

For example, we denote the statement “Fire is always hot” by p. Thisis also written
as
p: Fireisaways hot.

Example 1 Check whether the following sentences are statements. Give reasons for
your answe.

(i) 8islessthan 6. (ii) Every setisafinite set.
(i) Thesunisastar. (iv) Mathematicsis fun.
(v) Thereisno rainwithout clouds. (vi) How far is Chennai from here?

Solution (i) This sentenceisfalse because 8 is greater than 6. Hence it is a statement.
(i) Thissentenceis also false since there are sets which are not finite. Henceitis
a statement.

(i) Itisascientifically established fact that sunisastar and, therefore, this sentence
is aways true. Hence it is a statement.

(iv) Thissentenceis subjectivein the sense that for those who like mathematics, it
may be fun but for others it may not be. This means that this sentence is not aways
true. Hence it is not a statement.
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(v) Itisascientifically established natural phenomenon that cloud isformed beforeit
rains. Therefore, this sentence is always true. Hence it is a statement.

(vi) Thisisaquestionwhich also containstheword“Here”. Henceit isnot astatement.

The above examples show that whenever we say that a sentence is a statement
we should always say why it isso. This“why” of it is moreimportant than the answer.

|EXERCISE 14.1

1. Which of thefollowing sentences are statements? Give reasons for your answer.

() There are 35 daysin amonth.
(i) Mathematicsisdifficult.
(i) Thesum of 5and 7 is greater than 10.
(iv) The sguare of a number is an even number.
(v) Thesidesof aquadrilateral have equal length.
(vi) Answer this question.
(vii) The product of (—1) and 8is8.
(viii) Thesum of al interior angles of atriangleis180°.
(ixX) Today isawindy day.
(x) All real numbers are complex numbers.
2.  Givethree examples of sentenceswhich are not statements. Give reasonsfor the
answers.

14.3 New Satementsfrom Old

We now look into method for producing new statements from those that we aready
have. An English mathematician, “ George Boole” discussed these methodsin hisbook
“The laws of Thought” in 1854. Here, we shall discuss two techniques.

Asafirst stepin our study of statements, we ook at an important technique that
we may use in order to deepen our understanding of mathematical statements. This
techniqueisto ask not only what it meansto say that agiven statement is true but also
what it would mean to say that the given statement is not true.

14.3.1 Negation of a statement Thedenial of astatement is called the negation of
the statement.
Let us consider the statement:
p: New Delhi is a city
The negation of this statement is
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It is not the case that New Delhi is a city
This can aso be written as
It is false that New Delhi is a city.
This can simply be expressed as
New Delhi is not a city.

Definition 1 If p is a statement, then the negation of p is also a statement and is
denoted by ~ p, and read as ‘not p'.

While forming the negation of a statement, phrases like, “It is not the
case” or “It isfalse that” are also used.

Hereisan exampletoillustrate how, by looking at the negation of astatement, we
may improve our understanding of it.
Let us consider the statement

p: Everyone in Germany speaks German.

Thedenial of thissentencetellsusthat not everyonein Germany speaks German.
This does not mean that no person in Germany speaks German. It says merely that at
least one person in Germany does not speak German.

We shall consider more examples.

Example 2 Write the negation of the following statements.
(i) Both the diagonals of arectangle have the same length.

(i) /7 isrational.

Solution (i) Thisstatement says that in arectangle, both the diagonals have the same
length. This means that if you take any rectangle, then both the diagonals have the
same length. The negation of this statement is

It is false that both the diagonals in a rectangle have the same length
This means the statement

There is atleast one rectangle whose both diagonals do not
have the same length.

(ii) The negation of the statement in (ii) may also be written as
It is not the case that/7 is rational.

This can also be rewritten as

{7 is not rational.
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Example 3 Write the negation of the following statements and check whether the
resulting statements are true,

(i) Austraiaisacontinent.

(i) Theredoesnot exist aquadrilateral which has all its sides equal.
(i) Every natural number is greater than 0.
(iv) Thesumof 3and 4is9.

Solution (i)  The negation of the statement is
It is false that Australia is a continent.
This can aso be rewritten as
Australia is not a continent.

We know that this statement is false.
(i)  The negation of the statement is

It is not the case that there does not exist a quadrilateral which has all its sides

equal.
Thisalso meansthefollowing:

There exists a quadrilateral which has all its sides equal.

This statement istrue because we know that square isaquadrilateral such that itsfour
sides are equal.
(i) The negation of the statement is

It isfalse that every natural number is greater than O.
This can be rewritten as
There exists a natural number which is not greater than O.
Thisis afalse statement.
(iv) Thenegationis
It is false that the sum of 3 and 4 is 9.
This can be written as
The sum of 3 and 4 is not equal to 9.
This statement is true.
14.3.2 Compound statements Many mathematical statements are obtained by

combining one or more statements using some connecting wordslike “and”, “or”, etc.
Consider thefollowing statement

p: There is something wrong with the bulb or with the wiring.
This statement tells us that there is something wrong with the bulb or there is
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something wrong with the wiring. That meansthe given statement is actually made up
of two smaller statements:

g: There is something wrong with the bulb.
r: There is something wrong with the wiring.
connected by “or”
Now, suppose two statements are given as below:
p: 7 is an odd number.
g: 7 is a prime number.
These two statements can be combined with “and”
r: 7 is both odd and prime number.
Thisisacompound statement.
Thisleadsusto thefollowing definition:
Definition 2 A Compound Statement is a statement which is made up of two or
more statements. In this case, each statement is called a component statement.
Let us consider some examples.
Example 4 Find the component statements of the following compound statements.
(i) Thesky isblue and the grassis green.
(i) Itisraininganditiscold.
(iii) All rational numbersarereal and all real numbers are complex.
(iv) Oisapositive number or anegative number.
Solution Let us consider one by one
(i) The component statements are
p: The sky is blue.
g: The grass is green.
The connecting word is‘and’.
(if) The component statements are
p: It is raining.
g: It iscold.
Theconnectingwordis‘and'.
(iii) The component statements are
p: All rational numbers are real.
g: All real numbers are complex.

Theconnectingwordis‘and'.
(iv) The component statements are
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p: 0 is a positive number.
g: O is a negative number.

Theconnectingwordis‘or’.

Example 5 Find the component statements of the following and check whether they
are true or not.

(i) A squareisaquadrilateral and itsfour sides equal.
(i) All prime numbers are either even or odd.

(i) A person who has taken Mathematics or Computer Science can go for
MCA.

(iv) Chandigarhisthe capital of Haryana and UP.
(v) /2 isarational number or anirrational number.

(vi) 24isamultipleof 2,4 and 8.

Solution (i) The component statements are
p: A square is a quadrilateral.

g: A square has all its sides equal.

We know that both these statements are true. Here the connecting word is ‘and’.
(i) The component statements are

p: All prime numbers are odd numbers.

g: All prime numbers are even numbers.
Both these statements are fal se and the connecting word is ‘or’.
(ili) The component statements are

p: A person who has taken Mathematics can go for MCA.

g: A person who has taken computer science can go for MCA.
Both these statements are true. Here the connecting word is ‘or’.
(iv) The component statements are
p: Chandigarh is the capital of Haryana.

g: Chandigarh is the capital of UP.
Thefirst statement istrue but the second isfalse. Here the connecting word is‘and’.
(v) The component statements are
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p: /2 isarational number.

g: f2 isanirrational number.
Thefirst statement is false and second istrue. Here the connecting word is‘or’.
(vi) The component statements are
p: 24 is a multiple of 2.

g: 24 isa multiple of 4.

r: 24 isa multiple of 8.

All the three statements are true. Here the connecting words are ‘and’.
Thus, we observe that compound statements are actually made-up of two or more
statements connected by the words like “and”, “or”, etc. These words have special
meaning in mathematics. We shall discuss this mattter in the following section.

|[EXERCI SE 14.2)|

1. Writethe negation of thefollowing statements:
(i) Chennai isthe capital of Tamil Nadu.

(i) /2 isnot acomplex number
(iii)  All trianglesarenot equilateral triangle.
(iv) Thenumber 2is greater than 7.
(v) Every natural number is an integer.
2. Arethefollowing pairs of statements negations of each other:

(i) Thenumber x isnot arational number.
The number x is not an irrational number.

(i)  Thenumber x isarational number.
The number x isanirrational number.

3. Findthe component statements of the following compound statements and check
whether they are true or false.

(i) Number 3isprimeoritisodd.
(i) All integersare positive or negative.
(i) 100isdivisibleby 3,11 and5.
14.4 Special Wor ds/Phrases
Some of the connecting words which are found in compound statements like “ And”,
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“Or”, etc. are often used in Mathematical Statements. These are called connectives.
When we use these compound statements, it is necessary to understand the role of
these words. We discuss this below.
14.4.1 Theword “And” Let uslook at acompound statement with “And”.

p: A point occupies a position and its location can be determined.
The statement can be broken into two component statements as

g: A point occupies a position.
r: Its location can be determined.

Here, we observe that both statements are true.
Let uslook at another statement.

p: 42 isdivisible by 5, 6 and 7.
This statement has following component statements
g: 42isdivisibleby 5.
r: 42isdivisibleby 6.
s 42isdivisibleby 7.
Here, we know that the first is false while the other two are true.
We have the following rules regarding the connective “And”

1. The compound statement with ‘And’ is true if al its component
statements are true.

2. Thecomponent statement with ‘ And’ isfalseif any of its component
statementsis false (this includes the case that some of its component
statements are false or al of its component statements are false).

Example 6 Write the component statements of the following compound statements
and check whether the compound statement is true or false.

(i) Alineisstraight and extendsindefinitely in both directions.
(i) Oislessthan every positive integer and every negative integer.
(iii)  All living things have two legs and two eyes.
Solution (i) The component statements are
p: Alineis straight.
g: A line extends indefinitely in both directions.
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Both these statements are true, therefore, the compound statement is true.

(i) The component statements are
p: O is less than every positive integer.
g: O is less than every negative integer.
The second statement is false. Therefore, the compound statement is false.
(ili) Thetwo component statements are
p: All living things have two legs.
g: All living things have two eyes.
Both these statements are false. Therefore, the compound statement is false.
Now, consider the following statement.

p: A mixture of alcohol and water can be separated by chemical methods.

This sentence cannot be considered as a compound statement with “And”. Here the
word “And” refers to two things — alcohol and water.
Thisleads usto an important note.

Do not think that astatement with “And” is alwaysacompound statement
asshowninthe aboveexample. Therefore, theword “ And” isnot used asaconnective.

14.4.2 Theword “Or” Let uslook at the following statement.
p: Two lines in a plane either intersect at one point or they are parallel.

We know that this is a true statement. What does this mean? This means that if two
linesin aplaneintersect, thenthey are not parallel. Alternatively, if thetwo linesare not
paralel, thenthey intersect at apoint. That isthis statement istruein both the situations.
In order to understand statements with “Or” we first notice that theword “Or” is
used in two waysin English language. Let usfirst look at the following statement.

p: An ice cream or pepsi is available with a Thali in a restaurant.

This means that a person who does not want ice cream can have a pepsi along
with Thali or one does not want pepsi can have anice cream along with Thali. That is,
who do not want a pepsi can have an ice cream. A person cannot have both ice cream
and pepsi. Thisis caled an exclusive “ Or”.

Here is another statement.

A student who has taken biology or chemistry can apply for M.Sc.
microbiology programme.

Here we mean that the students who have taken both biology and chemistry can
apply for the microbiology programme, as well as the students who have taken only
one of these subjects. In this case, we are using inclusive “Or”.

It isimportant to note the difference between these two ways because we require this
when we check whether the statement is true or not.
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Let uslook at an example.

Example 7 For each of the following statements, determine whether an inclusive
“Or” or exclusive “Or” is used. Give reasons for your answer.

(i) To enter acountry, you need a passport or avoter registration card.
(i) Theschool isclosedif it isaholiday or a Sunday.
(i) Two linesintersect at a point or are parallel.
(iv) Students can take French or Sanskrit as their third language.

Solution (i)Here “Or” is inclusive since a person can have both a passport and a
voter registration card to enter a country.
(i) Herealso“Or” isinclusive since school is closed on holiday aswell as on
Sunday.
(i) Here"Or” isexclusive because it is not possible for two lines to intersect
and parallel together.
(iv) Hereaso“Or” isexclusive because a student cannot take both French and
Sanskrit.

Rule for the compound statement with ‘Or’

1. A compound statement with an ‘Or’ is true when one component
statement is true or both the component statements are true.

2. A compound statement with an‘ Or’ isfal sewhen both the component
statements are false.

For example, consider the following statement.
p: Two lines intersect at a point or they are parallel
The component statements are
g: Two lines intersect at a point.
r: Two lines are paralléel.

Then, when g is true r is false and when r is true q is false. Therefore, the
compound statement p istrue.
Consider another statement.

p: 125 isa multiple of 7 or 8.
Its component statements are
g: 125 isa multiple of 7.

r: 125 isa multiple of 8.
Both g and r are false. Therefore, the compound statement p is false.
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Again, consider thefollowing statement:
p: The school is closed, if there is a holiday or Sunday.
The component statements are
g: School is closed if there is a holiday.
r: School is closed if there is a Sunday.

Both g and r are true, therefore, the compound statement is true.
Consider another statement.

p: Mumbai is the capital of Kolkata or Karnataka.
The component statements are
g: Mumbai is the capital of Kolkata.
r: Mumbai is the capital of Karnataka.
Both these statements are false. Therefore, the compound statement is fal se.
Let us consider some examples.
Example 8 ldentify the type of “Or” used in the following statements and check
whether the statements are true or false:
(i) /2 isarational number or anirrational number.
(i) Toenterintoapubliclibrary children need an identity card from the school
or aletter from the school authorities.

(i) A rectangleisaquadrilateral or a’5-sided polygon.

Solution (i) The component statements are
p:|/2is a rational number.

0: /2 isan irrational number.

Here, we know that the first statement isfalse and the second istrueand “Or” is
exclusive. Therefore, the compound statement is true.
(i) The component statements are
p: To get into a public library children need an identity card.
g: To get into a public library children need a letter from the school authorities.
Children can enter thelibrary if they have either of thetwo, anidentity card or the
letter, as well as when they have both. Therefore, it isinclusive “Or” the compound
statement is also true when children have both the card and the | etter.
(i) Here“Or” isexclusive. When we [ook at the component statements, we get that
the statement is true.
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14.4.3 Quantifiers Quantifiers are phrases like, “ There exists’ and “For all”.
Another phrase which appearsin mathematica statementsis*“thereexists’. For example,
consider the statement. p: There exists a rectangle whose all sides are equal. This
means that there is atleast one rectangle whose all sides are equal.

A word closely connected with “there exists’ is“for every” (or for all). Consider
a statement.

p: For every prime number p, \/Bis an irrational number.
Thismeansthat if Sdenotesthe set of al prime numbers, then for all the membersp of

theset S, \/pisanirrationa number.

In general, amathematical statement that says “for every” can beinterpreted as
saying that all the members of the given set S where the property applies must satisfy
that property.

We should also observethat it isimportant to know precisely wherein the sentence
a given connecting word is introduced. For example, compare the following two
sentences:

1. For every positive number x there exists a positive number y such that
y < X

2.  Thereexists apositive number y such that for every positive number x, we
havey < x.

Although these statements may look similar, they do not say the samething. Asa
matter of fact, (1) istrue and (2) isfalse. Thus, in order for a piece of mathematical
writing to make sense, all of the symbols must be carefully introduced and each symbol
must be introduced precisely at the right place — not too early and not too late.

Thewords “And” and “Or” are called connectives and “ There exists” and “For
al” are called quantifiers.

Thus, we have seen that many mathematical statements contain some special words
and it isimportant to know the meaning attached to them, especially when we haveto
check the validity of different statements.

|EXERCISE 14.3|

1. Foreach of thefollowing compound statementsfirst identify the connecting words
and then break it into component statements.

() All rational numbersarereal and all real numbers are not complex.

(i) Squareof aninteger ispositive or negative.
(ili)  Thesand heats up quickly in the Sun and does not cool down fast at night.
(iv) x=2and x=3aretheroots of the equation 3x* —x — 10 = 0.
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2. |dentify the quantifier in the following statements and write the negation of the
statements.

(i) There exists anumber which is egual to its square.
(i) For every real number X, X islessthan x + 1.
(iiy There exists a capital for every statein India.

3. Check whether thefollowing pair of statements are negation of each other. Give
reasons for your answer.

() x+y=y+xistruefor every real numbers x and y.
(i) There existsreal numbers x and y for whichx +y =y + x.

4. Statewhether the*Or” used inthefollowing statementsis“exclusive“or” inclusive.
Give reasons for your answer.

(i) Sunrisesor Moon sets.
(i) Toapply for adriving licence, you should have aration card or a passport.
(iii)  All integers are positive or negative.
14.5 Implications

Inthis Section, weshall discusstheimplicationsof “if-then”, “only if” and“if andonly if ”.

The statements with “if-then” are very common in mathematics. For example,
consider the statement.

r: If you are born in some country, then you are a citizen of that country.
When we look at this statement, we observe that it corresponds to two statements p
and g given by

p : you are born in some country.
g : you are citizen of that country.
Then the sentence “if p then " saysthat in the event if pistrue, then g must betrue.

One of the most important facts about the sentence “if p then g” is that it does
not say any thing (or places no demand) on g when p isfalse. For example, if you are
not born in the country, then you cannot say anything about g. To put it in other words”
not happening of p has no effect on happening of g.

Another point to be noted for the statement “if p then q” is that the statement
does not imply that p happens.

There are several ways of understanding “if p then g statements. We shall
illustrate these waysin the context of the following statement.

r: If a number is a multiple of 9, then it is a multiple of 3.
Let p and g denote the statements
p : a number is a multiple of 9.
g: a number is a multiple of 3.
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Then, if p then g isthe same as the following:

1. pimpliesqisdenoted by p = . The symbol = stands for implies.
Thissaysthat anumber isamultiple of 9impliesthat it isamultiple of 3.

2. pisasufficient condition for g.
Thissaysthat knowing that anumber asamultiple of 9issufficient to conclude
that it isamultiple of 3.

3. ponlyifq.
Thissaysthat anumber isamultiple of 9 only if itisamultiple of 3.

4. gisanecessary condition for p.
Thissaysthat when anumber isamultipleof 9, itisnecessarily amultipleof 3.

5. —qimplies —p.
Thissaysthat if anumber isnot amultiple of 3, then it isnot amultiple of 9.

14.5.1 Contrapositive and converse Contrapositive and converse are certain
other statements which can be formed from a given statement with “if-then”.

For example, let us consider the following “if-then” statement.

If the physical environment changes, then the biological environment changes.
Then the contrapositive of this statement is

If the biological environment does not change, then the physical environment
does not change.

Note that both these statements convey the same meaning.
To understand this, let us consider more examples.

Example 9 Write the contrapositive of the following statement:
(i) If anumberisdivisibleby 9, thenitisdivisibleby 3.
(if) If you arebornin India, then you are acitizen of India
(i) If atriangleisequilateral, itisisosceles.
Solution The contrapositive of the these statements are
(i) If anumberisnot divisibleby 3, itisnot divisibleby 9.
(i) If you are not acitizen of India, then you were not bornin India.

(ii) If atriangleisnot isosceles, then it is not equilateral.
The above examples show the contrapositive of the statement if p, then g is “if —q,
then —p”.

Next, we shall consider another term called converse.
The converse of a given statement “if p, then q” isif g, then p.
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For example, the converse of the statement
p: If a number is divisible by 10, it is divisible by 5 is
g: If a number is divisible by 5, then it is divisible by 10.

Example 10 Write the converse of the following statements.

(i) If anumber niseven, then n?is even.
(i) If youdo al the exercisesin the book, you get an A grade in the class.
(i) If twointegersa and b are such that a > b, then a—b isalways a positive
integer.
Solution The converse of these statements are
(i) If anumber n?iseven, then nis even.
(if) If you get an A grade in the class, then you have done all the exercises of
the book.
(iii) If two integersa and b are such that a — b isaways a positive integer, then
a>h.
Let us consider some more examples.

Example 11 For each of the following compound statements, first identify the
corresponding component statements. Then check whether the statements are
true or not.

(i) If atriangleABC isequilateral, thenit isisosceles.
(i) If aand b areintegers, then ab is arational number.

Solution (i) The component statements are given by
p : Triangle ABC is equilateral.
g : Triangle ABC is Isosceles.

Since an equilateral triangleisisosceles, weinfer that the given compound statement
istrue.
(i)  The component statements are given by

p : aand b are integers.

g: abisarationa number.
since the product of two integers is an integer and therefore a rational number, the
compound statement istrue.
‘If and onlyif’, represented by the symbol ‘ <* meansthefollowing equivalent forms
for the given statements p and g.

() pifandonlyifq
(i) gifandonlyifp
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(i) pisnecessary and sufficient condition for g and vice-versa
(iv) p=gq
Consider an example.

Example 12 Given below aretwo pairs of statements. Combine thesetwo statements
using“if and only if ”.
(i) p: If arectangleisasquare, then al itsfour sides are equal.
g: If al the four sides of a rectangle are equal, then the rectangle is a
square.
(i) p: If the sum of digits of a number is divisible by 3, then the number is
divisbleby 3.

g: If anumber isdivisible by 3, then the sum of itsdigitsisdivisible by 3.
Solution (i) A rectangleisasquareif and only if all itsfour sides are equal.
(i) A numberisdivisibleby 3if and only if thesum of itsdigitsisdivisibleby 3.

|[EXERCI SE 14.4|

1. Rewritethefollowing statement with “if-then” in five different ways conveying
the same meaning.

If a natural number is odd, then its square is also odd.
2. Writethe contrapositive and converse of the following statements.
(

(i) If thetwo linesare paralel, then they do not intersect in the same plane.

) If xisaprime number, then x is odd.

(i) Somethingiscoldimpliesthat it haslow temperature.

(iv)  You cannot comprehend geometry if you do not know how to reason
deductively.

(v) xisanevennumber impliesthat xisdivisible by 4.
3. Write each of the following statementsin the form “if-then”
(i) Youget ajobimpliesthat your credentials are good.
(i) TheBannanatreeswill bloom if it stays warm for a month.
(i) A quadrilateral isaparallelogramif its diagonals bisect each other.

(iv) TogetanA*intheclass, itisnecessary that you do al the exercises of
the book.
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4. Given statements in (a) and (b). Identify the statements given below as
contrapositive or converse of each other.

(@) If youlivein Delhi, then you have winter clothes.

()  If you do not have winter clothes, then you do not livein Delhi.

(i)  If you havewinter clothes, thenyou livein Delhi.

(b) If aquadrilateral isaparallelogram, then its diagonal s bisect each other.

() If the diagonals of a quadrilateral do not bisect each other, then the
quadrilateral isnot aparallelogram.

(i) Ifthediagonalsof aquadrilateral bisect each other, thenitisaparallelogram.

14.6 Validating Satements

In this Section, we will discuss when a statement istrue. To answer this question, one
must answer all the following questions.

What does the statement mean? What would it mean to say that this statement is
true and when this statement is not true?

The answer to these questions depend upon which of the special words and
phrases“and”, “or”, and which of theimplications“if and only”, “if-then”, and which
of the quantifiers “for every”, “there exists’, appear in the given statement.

Here, we shall discuss some techniques to find when a statement is valid.
We shall list some general rulesfor checking whether a statement is true or not.

Rule 1 If p and q are mathematical statements, then in order to show that the
statement “p and q” is true, the following steps are followed.

Siep-1 Show that the statement p is true.
Step-2 Show that the statement q is true.

Rule 2 Satements with “Or”

If p and g are mathematical statements , then in order to show that the statement
“por(q’ istrue, one must consider the following.

Case 1 By assuming that pisfalse, show that g must be true.
Case 2 By assuming that q isfalse, show that p must be true.

Rule 3 Satements with “If-then”
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In order to prove the statement “if p then " we need to show that any one of the
following caseistrue.

Case 1 By assuming that p is true, prove that g must be true.(Direct method)
Case 2 By assuming that q is false, prove that p must be false.(Contrapositive
method)
Rule 4 Statements with “if and only if ”
In order to prove the statement “p if and only if ", we need to show.
(i) If pistrue, thenqistrueand (ii) If gistrue, then pistrue
Now we consider some examples.

Example 13 Check whether the following statement is true or not.
If X,y e Z aresuch that x and y are odd, then xy is odd.

Solution Let p: X,y e Z such that x and y are odd
g : xy is odd

To check the validity of the given statement, we apply Case 1 of Rule 3. That is
assume that if p istrue, then g istrue.
p is true means that x and y are odd integers. Then

X =2m+ 1, for someinteger m. y = 2n + 1, for some integer n. Thus
Xy =(2m+1) (2n+1)
=22mn+m+n)+1

This shows that xy is odd. Therefore, the given statement is true.

Suppose we want to check this by using Case 2 of Rule 3, then we will proceed
asfollows.

We assume that g is not true. Thisimpliesthat we need to consider the negation
of the statement g. This gives the statement

~q : Product xy is even.

Thisispossibleonly if either x or yiseven. Thisshowsthat pisnot true. Thuswe

have shown that

~q= ~p

The above exampleillustrates that to prove p = g, it is enough to show
~q = ~p which is the contrapositive of the statement p = @.

Example 14 Check whether the following statement is true or false by proving its
contrapositive. If X, y € Z such that xy is odd, then both x and y are odd.

Solution Let us name the statements as below
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p: Xy is odd.
g : both x and y are odd.
We haveto check whether the statement p = qistrueor not, that is, by checking
its contrapositive statement i.e., ~q = —p
Now —q: It isfalse that both x and y are odd. Thisimpliesthat x (or y) is even.
Then x = 2n for some integer n.

Therefore, xy = 2ny for some integer n. Thisshowsthat xy iseven. That is —p istrue.
Thus, we have shown that —q = —p and hence the given statement is true.

Now what happens when we combine an implication and its converse? Next, we
shall discussthis.

Let us consider the following statements.
p : Atumbler is half empty.

g : Atumbler is half full.

We know that if the first statement happens, then the second happens and also if
the second happens, then the first happens. We can express this fact as

If a tumbler is half empty, then it is half full.

If a tumbler is half full, then it is half empty.
We combine these two statements and get the following:
A tumbler is half empty if and only if it is half full.
Now, we discuss another method.

14.6.1 By Contradiction Here to check whether a statement p is true, we assume
that pisnot truei.e. —pistrue. Then, we arrive at some result which contradicts our
assumption. Therefore, we conclude that p istrue.

Example 15 Verify by the method of contradiction.
p: /7 isirrational
Solution In this method, we assume that the given statement isfalse. That is
we assumethat /7 isrational. This means that there exists positive integersa and b

a
such that /7 :E , Where a and b have no common factors. Squaring the equation,
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2
a
we get 7=? = a?=7b* = 7 divides a. Therefore, there exists an integer ¢ such
that a = 7c. Then a?=49c? and a2 = 7b?
Hence, 7b? = 49¢2 = b? = 7¢2 = 7 divides b. But we have already shown that
7 dividesa. Thisimpliesthat 7 isacommon factor of both of a and b which contradicts
our earlier assumption that a and b have no common factors. This shows that the

assumption /7 isrational iswrong. Hence, the statement /7 isirrational istrue.

Next, we shall discuss amethod by which we may show that astatement isfalse.
The method involves giving an example of a situation where the statement is not
valid. Such an example is called a counter example. The name itself suggests that
thisis an example to counter the given statement.

Example 16 By giving a counter example, show that the following statement isfalse.
If nisan odd integer, then nis prime.

Solution The given statement isin the form “if p then " we have to show that thisis
false. For this purpose we need to show that if p then —g. To show thiswe look for an
odd integer nwhich isnot aprime number. 9 is one such number. So n = 9isacounter
example. Thus, we conclude that the given statement is false.

Inthe above, we have discussed sometechniquesfor checking whether astatement
istrue or not.

In mathematics, counter examples are used to disprove the statement.

However, generating examples in favour of a statement do not provide validity of
the statement.

|[EXERCISE 14.5|

1. Show that the statement
p: “If x isarea number such that x® + 4x = O, then x is 0" istrue by
(i) direct method, (i) method of contradiction, (iii) method of contrapositive
2. Show that the statement “For any real numbers a and b, a? = b? implies that
a=Db" isnot true by giving a counter-example.
3. Show that the following statement is true by the method of contrapositive.
p: If x is an integer and x? is even, then x is also even.
4. By giving a counter example, show that the following statements are not true.
(i) p: If al the angles of atriangle are equal, then the triangle is an obtuse
angledtriangle.
(i) g: The equation x> — 1 = 0 does not have aroot lying between 0 and 2.
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5. Which of the following statements are true and which are false? In each case
give avalid reason for saying so.
(i) p: Eachradius of acircleisachord of the circle.
(i) g: The centre of acircle bisects each chord of the circle.
(iii) r: Circleisaparticular case of an ellipse.
(iv) s If xandy areintegers such that x >y, then x < —v.

(v) t: . 11isarational number.

Miscellaneous Examples

Example 17 Check whether “ Or” used in the following compound statement isexclusive
or inclusive? Write the component statements of the compound statements and use
them to check whether the compound statement is true or not. Justify your answer.

t: you are wet when it rains or you arein ariver.

Solution “Or” used inthe given statement isinclusive becauseit ispossiblethat it rains
and you are in theriver.
The component statements of the given statement are

p : you are wet when it rains.

g : You are wet when you are in a river.
Here both the component statements are true and therefore, the compound statement
istrue.
Example 18 Write the negation of the following statements:
(i) p: For every real number X, x> > x.

(i) q: There exists arational number x such that x? = 2.

(iii) r: All birdshave wings.

(iv) s: All students study mathematics at the elementary level.
Solution (i) Thenegation of pis“Itisfalsethat pis’ which meansthat the condition
x2 > x does not hold for all real numbers. This can be expressed as

~p: There exists areal number x such that X2 < x.
(i) Negation of qis“itisfalsethat ", Thus -qisthe statement.

~Q: There does not exist arational number x such that x2 = 2.

This statement can be rewritten as
~Q: For al real numbersx, X? # 2

(i) The negation of the statement is
~r: There exists a bird which have no wings.
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(iv) The negation of the given statement is —s. There exists a student who does not
study mathematics at the elementary level.

Example 19 Using the words “ necessary and sufficient” rewrite the statement “The
integer nisodd if and only if n?isodd”. Also check whether the statement is true.

Solution The necessary and sufficient condition that the integer n be odd isn? must be
odd. Let p and g denote the statements

p : theinteger nisodd.

g: n?isodd.
To check the validity of “p if and only if ", we have to check whether “if p then g”
and “if g then p” istrue.
Case 1If p, then g
If p, then q is the statement:

If the integer nis odd, then n? is odd. We have to check whether this statement is
true. Let us assume that n is odd. Then n = 2k + 1 when k is an integer. Thus

n? = (2k + 1)?
=4k?+ 4k + 1
Therefore, n? is one more than an even number and hence is odd.
Case 2 If g, then p
If g, then p is the statement
If nisaninteger and n?is odd, then n is odd.

We have to check whether this statement is true. We check this by contrapositive
method. The contrapositive of the given statement is:

If nisan even integer, then n? is an even integer
niseven implies that n = 2k for some k. Then n? = 4k2 Therefore, n? is even.
Example 20 For the given statementsidentify the necessary and sufficient conditions.
t: If you drive over 80 km per hour, then you will get afine.
Solution Let p and g denote the statements:

p : you drive over 80 km per hour.

g: you will get afine.

Theimplicationif p, then gindicatesthat pissufficient for g. That isdriving over
80 km per hour is sufficient to get afine.
Here the sufficient condition is*“driving over 80 km per hour”:
Similarly, if p, then g also indicates that g is necessary for p. That is
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When you drive over 80 km per hour, you will necessarily get a fine.

Here the necessary condition is “getting afine’.

Miscellaneous Exercise on Chapter 14

Write the negation of the following statements:

(i) p: For every positive real number x, the number x — 1 isalso positive.
(i) g: All cats scratch.
(iii)  r: For every real number x, either x > 1or x< 1.
(iv) s Thereexistsanumber x suchthat 0<x< 1.
State the converse and contrapositive of each of the following statements:

(i) p: Apositiveintegerisprimeonly if it hasno divisorsother than 1 and itself.
(i) g: I go to abeach whenever it is a sunny day.

(iii)y  r:Ifitishot outside, then you feel thirsty.

Write each of the statements in the form “if p, then "

(i) p: Itisnecessary to have a password to log on to the server.
(i) g Thereistraffic jam whenever it rains.
(iii) r: You can access the website only if you pay a subsciption fee.

Rewrite each of the following statementsin the form “p if and only if 9"

(i) p: If youwatch television, then your mind isfree and if your mind isfree,

then you watch television.

(i) g For you to get an A grade, it is necessary and sufficient that you do all
the homework regularly.

(iii)y  r:If aquadrilateral isequiangular, thenitisarectangleand if aquadrilateral
isarectangle, thenitisequiangular.

Given below are two statements

p: 25isa multiple of 5.

g: 25 isa multiple of 8.

Write the compound statements connecting these two statements with “And” and
“Or”. In both cases check the validity of the compound statement.

Check the validity of the statements given below by the method given against it.

(i) p: Thesum of anirrational number and arational number isirrational (by
contradiction method).

(i) g If nisarea number with n> 3, then n?> 9 (by contradiction method).

Writethefollowing statement in five different ways, conveying the same meaning.
p: If a triangle is equiangular, then it is an obtuse angled triangle.
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Summary

¢ A mathematically acceptable statement is a sentence which is either true or
false.

¢ Explained theterms:

— Negation of a statement p: If p denote a statement, then the negation of pis
denoted by —p.

— Compound statements and their related component statements:
A statement is a compound statement if it is made up of two or more smaller
statements. The smaller statements are called component statements of the
compound statement.

— The role of “And”, “Or”, “There exists’ and “For every” in compound
statements.

— Themeaning of implications“If ”, “only if ”, “ if and only if ”.
A sentence with if p, then g can be written in the following ways.

— pimpliesqg (denoted by p = Q)

— pisasufficient condition for q

— gisanecessary condition for p

— ponlyifq

— ~qgimplies-p

— The contrapositive of a statement p = ¢ is the statement - q = ~p . The
converse of a statement p = q is the statement g = p.
p = q together with its converse, gives p if and only if g.

# Thefollowing methods are used to check the validity of statements:

(i) direct method

(i) contrapositive method
(i) method of contradiction
(iv) using acounter example.

Historical Note

Thefirst treatise on logic was written by Aristotle (384 B.C.-322 B.C.). It
was a collection of rules for deductive reasoning which would serve as a basis
for the study of every branch of knowledge. Later, in the seventeenth century,
German mathematician G. W. Leibnitz (1646 — 1716) conceived theideaof using
symbolsin logic to mechanise the process of deductive reasoning. Hisideawas
realised in the nineteenth century by the English mathematician George Boole
(1815-1864) and Augustus De Morgan (1806-1871) , who founded the modern
subject of symboliclogic.



Chapter 15

‘ STATISTICS )

«»“ Satistics may be rightly called the science of averages and their
estimates.” — A.L.BOWLEY & A.L. BODDINGTON ¢

15.1 Introduction

We know that statistics deals with data collected for specific
purposes. We can make decisions about the data by
analysing and interpreting it. In earlier classes, we have
studied methods of representing data graphically and in
tabular form. This representation reveals certain salient
features or characteristics of the data. We have also studied
the methods of finding a representative value for the given
data. This value is called the measure of central tendency.
Recall mean (arithmetic mean), median and mode are three
measures of central tendency. A measure of central
tendency gives us a rough idea where data points are Karl Pearson
centred. But, in order to make better interpretation from the (1857-1936)
data, we should also have an idea how the data are scattered or how much they are
bunched around a measure of central tendency.
Consider now the runs scored by two batsmen in their last ten matches as follows:
Batsman A : 30,91, 0,64,42,80,30,5,117, 71
Batsman B : 53, 46, 48, 50, 53, 53, 58,60, 57, 52

Clearly, the mean and median of the data are

Batsman A Batsman B
Mean 53 53
Median 53 53

Recall that, we calculate the mean of a data (denoted by X ) by dividing the sum
of the observations by the number of observations, i.e.,
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X=—3X

1

n
i=

S |=

Also, the median is obtained by first arranging the data in ascending or descending
order and applying the following rule.

n+1

th
If the number of observations is odd, then the median is [Tj observation.

th
n
If the number of observations is even, then median is the mean of (Ej and

NG
3 +1| observations.

We find that the mean and median of the runs scored by both the batsmen A and
B are same i.e., 53. Can we say that the performance of two players is same? Clearly
No, because the variability in the scores of batsman A is from 0 (minimum) to 117
(maximum). Whereas, the range of the runs scored by batsman B is from 46 to 60.

Let us now plot the above scores as dots on a number line. We find the following
diagrams:

For batsman A

P o o : L ] L ] L ] L ] L ] [ ] ~
~ rd
0 10 20 30 40 50 60 70 80 90 100 110 120
For batsman B Fig15.1
P --.-: 00 ~
\ 7

0 10 20 30 40 50 60 70 80 90 100 110 120
Fig 15.2

We can see that the dots corresponding to batsman B are close to each other and
are clustering around the measure of central tendency (mean and median), while those
corresponding to batsman A are scattered or more spread out.

Thus, the measures of central tendency are not sufficient to give complete
information about a given data. Variability is another factor which is required to be
studied under statistics. Like ‘measures of central tendency’ we want to have a
single number to describe variability. This single number is called a ‘measure of
dispersion’. In this Chapter, we shall learn some of the important measures of dispersion
and their methods of calculation for ungrouped and grouped data.
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15.2 Measures of Dispersion

The dispersion or scatter in a data is measured on the basis of the observations and the
types of the measure of central tendency, used there. There are following measures of
dispersion:

(i) Range, (ii) Quartile deviation, (iii) Mean deviation, (iv) Standard deviation.

In this Chapter, we shall study all of these measures of dispersion except the
quartile deviation.

15.3 Range

Recall that, in the example of runs scored by two batsmen A and B, we had some idea
of variability in the scores on the basis of minimum and maximum runs in each series.
To obtain a single number for this, we find the difference of maximum and minimum
values of each series. This difference is called the ‘Range’ of the data.

In case of batsman A, Range =117 —0= 117 and for batsman B, Range =60 —-46 = 14.
Clearly, Range of A > Range of B. Therefore, the scores are scattered or dispersed in
case of A while for B these are close to each other.

Thus, Range of a series = Maximum value — Minimum value.

The range of data gives us a rough idea of variability or scatter but does not tell
about the dispersion of the data from a measure of central tendency. For this purpose,
we need some other measure of variability. Clearly, such measure must depend upon
the difference (or deviation) of the values from the central tendency.

The important measures of dispersion, which depend upon the deviations of the
observations from a central tendency are mean deviation and standard deviation. Let
us discuss them in detail.

15.4 Mean Deviation

Recall that the deviation of an observation X from a fixed value ‘@’ is the difference
X—a. In order to find the dispersion of values of X from a central value ‘a’ , we find the
deviations about a. An absolute measure of dispersion is the mean of these deviations.
To find the mean, we must obtain the sum of the deviations. But, we know that a
measure of central tendency lies between the maximum and the minimum values of
the set of observations. Therefore, some of the deviations will be negative and some
positive. Thus, the sum of deviations may vanish. Moreover, the sum of the deviations
from mean (X ) is zero.

Sum of deviations 0

0 Mean of deviations Number of observations n

Thus, finding the mean of deviations about mean is not of any use for us, as far
as the measure of dispersion is concerned.
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Remember that, in finding a suitable measure of dispersion, we require the distance
of each value from a central tendency or a fixed number ‘@’. Recall, that the absolute
value of the difference of two numbers gives the distance between the numbers when
represented on a number line. Thus, to find the measure of dispersion from a fixed
number ‘@’ we may take the mean of the absolute values of the deviations from the
central value. This mean is called the ‘mean deviation’. Thus mean deviation about a
central value ‘@’ is the mean of the absolute values of the deviations of the observations
from ‘a’. The mean deviation from ‘@’ is denoted as M.D. (a). Therefore,

Sum of absolute values of deviations from 'a

M.D.(a) = ;
@ Number of observations

Remark Mean deviation may be obtained from any measure of central tendency.
However, mean deviation from mean and median are commonly used in statistical
studies.

Let us now learn how to calculate mean deviation about mean and mean deviation
about median for various types of data

15.4.1 Mean deviation for ungrouped data Let nobservations be X, X, X,, ..., X .
The following steps are involved in the calculation of mean deviation about mean or
median:

Step 1 Calculate the measure of central tendency about which we are to find the mean
deviation. Let it be ‘@’.

Sep 2 Find the deviation of each X from @, i.e., X, —a, X,—a, X,—a,. .., X~ a

Step 3 Find the absolute values of the deviations, i.e., drop the minus sign (-), if it is

x —al,|x, —al,|x, —4&,....|x,~ 4

Sep 4 Find the mean of the absolute values of the deviations. This mean is the mean
deviation about &, 1.e.,

there, i.e.,

>|% -4

MD(a) = IZIT

1 & o
Thus M.D. ( X) = Z|>§ —X|, where X = Mean

i=l

1 n
and M.D. (M) - Z|>§ —M|, where M = Median
i1
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| @ Note|In this Chapter, we shall use the symbol M to denote median unless stated
otherwise.Let us now illustrate the steps of the above method in following examples.

Example 1 Find the mean deviation about the mean for the following data:
6,7,10,12,13,4,8,12
Solution We proceed step-wise and get the following:
Step 1 Mean of the given data is
6+7+10+12+13+4+8+12 72

X = 2oy
8 8

Step 2 The deviations of the respective observations from the mean X, i.e., Xx—X are
6-9,7-9,10-9,12-9,13-9,4-9,8-9,12 -9,
or -3,-2,1,3,4,-5,-1,3
Step 3 The absolute values of the deviations, i.e., |Xi —Y| are
3,2,1,3,4,5,1,3
Step 4 The required mean deviation about the mean is
8 —
>
-\ _ =
MD. (X) = =5
_ 3+2+1+3;4+5+1+3 2%22.75

Instead of carrying out the steps every time, we can carry on calculation,
step-wise without referring to steps.

Example 2 Find the mean deviation about the mean for the following data :
12,3,18,17,4,9,17,19,20,15,8,17,2,3,16,11,3,1,0,5

Solution We have to first find the mean ( X ) of the given data
o 1 200
X=7"2X=——=10

20; 20

The respective absolute values of the deviations from mean, i.e., |Xi — )_(| are
2,7,8,7,6,1,7,9,10,5,2,7,8,7,6,1,7,9,10,5
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Therefore Z|X| _¥| =124

1
and MD.(X)=—-=6.2
Example 3 Find the mean deviation about the median for the following data:
3,9,5,3,12,10,18,4,7,19,21.

Solution Here the number of observations is 11 which is odd. Arranging the data into
ascending order, we have 3,3,4,5,7,9,10,12, 18, 19, 21

11 + 1

th
Now Median = ( j or 6" observation =9

The absolute values of the respective deviations from the median, i.e., |Xi - M| are
6,6,5,4,2,0,1,3,9,10,12

11
Therefore Z|X| - M| =58
io1

and M.D.(M)zizpq —M|:H><58:5.27

15.4.2 Mean deviation for grouped data We know that data can be grouped into
two ways :

(a) Discrete frequency distribution,

(b) Continuous frequency distribution.

Let us discuss the method of finding mean deviation for both types of the data.

(a) Discretefrequency distribution Let the given data consist of n distinct values
X, X, ..., X occurring with frequencies f, f,, ..., f respectively. This data can be
represented in the tabular form as given below, and is called discrete frequency
distribution:
XIX X X . X
fof f f .. f
(i) Mean deviation about mean

First of all we find the mean ¥ of the given data by using the formula
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n
where Z X f. denotes the sum of the products of observations X with their respective
=1

n
frequencies f and N :z f, is the sum of the frequencies.
i=1
Then, we find the deviations of observations X from the mean X and take their
absolute values, i.e., |X —Y| foralli=l1,2,...,n.

After this, find the mean of the absolute values of the deviations, which is the
required mean deviation about the mean. Thus

> filx - X

; 1< =
M.D.(X) = =2 - = _Z fi|Xi _X|
N5
21
i=1
(i) M ean deviation about median To find mean deviation about median, we find the

median of the given discrete frequency distribution. For this the observations are arranged
in ascending order. After this the cumulative frequencies are obtained. Then, we identify

the observation whose cumulative frequency is equal to or just greater than — , where

N is the sum of frequencies. This value of the observation lies in the middle of the data,
therefore, it is the required median. After finding median, we obtain the mean of the
absolute values of the deviations from median.Thus,

1 n
M.D.(M) = = D % —M|
i=1

Example 4 Find mean deviation about the mean for the following data :
X. 2 5 6 8 10 12

f. 2 8 10 7 8 5
I
Solution Let us make a Table 15.1 of the given data and append other columns after
calculations.
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Table15.1
X, f, fx, Ix =% | f]x-X
2 2 4 5.5 11
5 8 40 2.5 20
6 10 60 L5 15
8 7 56 0.5 3.5
10 8 80 2.5 20
12 5 60 45 225
40 300 92

szé:fi =40 Zé“fixi =300, Zﬁ:fi|xi—i|:92
i i=1
Therefore X

6
and M.D. (%) =§ S |x ¥ :4—10 x 92 =23
i=1

Example5 Find the mean deviation about the median for the following data:

X 3 6 9 12 13 15| 21 | 22

f. 3 4 5 2 4 5 4 3

Solution The given observations are already in ascending order. Adding a row
corresponding to cumulative frequencies to the given data, we get (Table 15.2).

Table15.2
X | 3 6 9 12 13 15 | 21 | 22

f 3 4 5 2 4 5 4 3

cf.| 3 7 12 | 14 18 | 23 | 27 | 30

Now, N=30 which is even.
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Median is the mean of the 15™ and 16™ observations. Both of these observations
lie in the cumulative frequency 18, for which the corresponding observation is 13.

15™ observation +16™ observation 13+13 3

Therefore, Median M = = 13
2 2
Now, absolute values of the deviations from median, i.e., |% —M| are shown in
Table 15.3.
Table15.3
x-M | 10 | 7| 4| 1|0 28] 9
f. 3 4 51 2 4 5 4 3
f.|x —M| 30 | 28 20| 2| 0| 1032 ] 27
8 8
We have D> =30 and ) f |x —M|=149
i=l i=1
1 8
Therefore M.D. (M) = D % —M|
i=1
1
= —x149 =4.97.
0

(b) Continuousfrequency distribution A continuous frequency distribution is a series
in which the data are classified into different class-intervals without gaps alongwith
their respective frequencies.

For example, marks obtained by 100 students are presented in a continuous
frequency distribution as follows :

Marks obtained 0-10 | 10-20 | 20-30 |30-40 | 40-50| 50-60
Number of Students| 12 18 27 20 17 6

(i) Mean deviation about mean While calculating the mean of a continuous frequency
distribution, we had made the assumption that the frequency in each class is centred at
its mid-point. Here also, we write the mid-point of each given class and proceed further
as for a discrete frequency distribution to find the mean deviation.

Let us take the following example.
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Example 6 Find the mean deviation about the mean for the following data.

Marks obtained 10-20 |20-30 | 30-40| 40-50|50-60]60-70| 70-80
Number of students 2 3 8 14 8 3 2

Solution We make the following Table 15.4 from the given data :

Table15.4
Marks Number of | Mid-points | fx | |x=X | f|x—x|
obtained | students
f, X,
10-20 2 15 30 30 60
20-30 3 25 75 20 60
30-40 8 35 280 10 80
40-50 14 45 630 0 0
50-60 8 55 440 10 80
60-70 3 65 195 20 60
70-80 2 75 150 30 60
40 1800 400
7 7 7
Here N = > f =40,> fix =1800, > f|x —X| =400
i1 i1 in
Therefore X= %IZ:: fix = % =45
o I o1
and M.D.(x)zﬁgfim—x|=Ex400=10

Shortcut method for calculating mean deviation about mean We can avoid the
tedious calculations of computing X by following step-deviation method. Recall that in
this method, we take an assumed mean which is in the middle or just close to it in the
data. Then deviations of the observations (or mid-points of classes) are taken from the
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assumed mean. This is nothing but the shifting of origin from zero to the assumed mean
on the number line, as shown in Fig 15.3

-60 —50 —40 30 20 —-10 0 10 20 30 40 50 60<€—After

s 0 o o o o o o o o o o o deviations
Before 10 20 30 40 50 60 70 80 90 100 110 120
deviations

Assumed
Mean
Fig15.3

If there is a common factor of all the deviations, we divide them by this common
factor to further simplify the deviations. These are known as step-deviations. The
process of taking step-deviations is the change of scale on the number line as shown in
Fig15.4

Ste
. -6 5 4 -3 2 -1 0 1 2 3 4 5 o6<€ P
Deviations from deviations
=> —60 —50 —40 -30 -20 —10 0 10 20 30 40 50 60
assumed mean L e e e e e o e e e e e

<

b —— S —— 4 >
0 10 20 30 40 50 60 70 80 90 100 110 120

Assumed
Mean

Fig 15.4

The deviations and step-deviations reduce the size of the observations, so that the
computations viz. multiplication, etc., become simpler. Let, the new variable be denoted

X

—a . .
by d. :T , where ‘@’ is the assumed mean and h is the common factor. Then, the

mean X by step-deviation method is given by

Let us take the data of Example 6 and find the mean deviation by using step-

deviation method.
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Take the assumed mean a= 45 and h= 10, and form the following Table 15.5.

Table15.5
. . X —45 - o
Marks [ Number of | Mid-points | d; =——— | f,d, |)§ - X| fi|>g - X|
obtained | students 10
f, X;
10-20 2 15 -3 -6 30 60
20-30 3 25 -2 -6 20 60
30-40 8 35 -1 -8 10 80
40-50 14 45 0 0 0 0
50-60 8 55 1 8 10 80
60-70 3 65 2 6 20 60
70-80 2 75 3 6 30 60
40 0 400
7
36
Therefore X=a+!= <h
N
=45+ o x10=45
40
1< 400
and M.D. X) = — fi1x —X|=—— =10
® =5 2f % -%= ;5

The step deviation method is applied to compute X . Rest of the procedure

1S same.

(i) Mean deviation about median The process of finding the mean deviation about
median for a continuous frequency distribution is similar as we did for mean deviation
about the mean. The only difference lies in the replacement of the mean by median
while taking deviations.

Letus recall the process of finding median for a continuous frequency distribution.

The data is first arranged in ascending order. Then, the median of continuous
frequency distribution is obtained by first identifying the class in which median lies
(median class) and then applying the formula
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-C

Median =1I + x h

| Z

where median class is the class interval whose cumulative frequency is just greater

N
than or equal to EX N is the sum of frequencies, |, f, hand C are, respectively the lower

limit , the frequency, the width of the median class and C the cumulative frequency of
the class just preceding the median class. After finding the median, the absolute values

of the deviations of mid-point X of each class from the mediani.e., |xi - M| are obtained.

1 n
Then MD. (M) = = 3 % - M|

The process is illustrated in the following example:

Example 7 Calculate the mean deviation about median for the following data :

Class 0-10 | 10-20{20-30|30-40]40-50( 50-60
Frequency 6 7 15 | 16 4 2

Solution Form the following Table 15.6 from the given data :

Table15.6
Class Frequency | Cumulative | Mid-points ‘XI = Med.‘ f ‘X] = Med.‘
frequency
f. (c.f) X,

0-10 6 6 5 23 138
10-20 7 13 15 13 91
20-30 15 28 25 3 45
30-40 16 44 35 7 112
40-50 4 48 45 17 68
50-60 2 50 55 27 54

50 508
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th
The class interval containing > or 25" item is 20-30. Therefore, 20-30 is the median

class. We know that

Median= | + 2f x h

Here | =20,C=13,f =15, h=10and N =50

25_13><10 =20+ 8 =28

Therefore, Median =20+

Thus, Mean deviation about median is given by

6
M.D. (M) = %Z filx - M| = 5—10><508 =10.16
i=1

|[EXERCISE 15.1

Find the mean deviation about the mean for the data in Exercises 1 and 2.
1. 4,7,8,9,10,12,13,17
2. 38,70,48,40,42,55,63,46,54, 44

Find the mean deviation about the median for the data in Exercises 3 and 4.
3. 13,17,16,14,11,13,10,16,11,18,12,17
4. 36,72,46,42,60,45,53,46,51,49

Find the mean deviation about the mean for the data in Exercises 5 and 6.
5. X 5 100 15 20 25

f 7 4 6 3 5

6. X 10 30 50 70 90
f 4 24 28 16 8

Find the mean deviation about the median for the data in Exercises 7 and 8.
7. X 5 7 9 10 12 15
f. 8 6 2 2 2 6

8. X 15 21 27 30 35

f 3 5 6 7 8
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Find the mean deviation about the mean for the data in Exercises 9 and 10.
9. Income 0-100100-200200-300 300-400400-500 500-600 600-700 700-800

per day
Number 4 8 9 10 7 5 4 3
of persons

10. Height 95-105  105-115 115-125 125-135 135-145 145-155
in cms
Number of 9 13 26 30 12 10
boys

11. Find the mean deviation about median for the following data :
Marks 0-10 1020 20-30  30-40  40-50  50-60
Number of 6 8 14 16 4 2
Girls

12. Calculate the mean deviation about median age for the age distribution of 100
persons given below:

Age 16-20  21-25  26-30 31-35 36-40 4145 46-50 51-55
Number 5 6 12 14 26 12 16 9

[Hint Convert the given data into continuous frequency distribution by subtracting 0.5
from the lower limit and adding 0.5 to the upper limit of each class interval]

15.4.3 Limitations of mean deviation In a series, where the degree of variability is
very high, the median is not a representative central tendency. Thus, the mean deviation
about median calculated for such series can not be fully relied.

The sum of the deviations from the mean (minus signs ignored) is more than the
sum of the deviations from median. Therefore, the mean deviation about the mean is
not very scientific. Thus, in many cases, mean deviation may give unsatisfactory results.
Also mean deviation is calculated on the basis of absolute values of the deviations and
therefore, cannot be subjected to further algebraic treatment. This implies that we
must have some other measure of dispersion. Standard deviation is such a measure of
dispersion.

15.5 Varianceand Sandard Deviation
Recall that while calculating mean deviation about mean or median, the absolute values
of the deviations were taken. The absolute values were taken to give meaning to the
mean deviation, otherwise the deviations may cancel among themselves.

Another way to overcome this difficulty which arose due to the signs of deviations,
is to take squares of all the deviations. Obviously all these squares of deviations are
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non-negative. Let X, X,, X,, ..., X be n observations and X be their mean. Then

X X % X %, X

If this sum is zero, then each (X, —X) has to be zero. This implies that there is no

dispersion at all as all observations are equal to the mean X .

n
)2 . ... .
If Z(X. —=X)" is small , this indicates that the observations X, X,, X,,...,X are
i=1

close to the mean X and therefore, there is a lower degree of dispersion. On the
contrary, if this sum is large, there is a higher degree of dispersion of the observations

n
)2 . &
from the mean X . Can we thus say that the sum z (% —X)” is a reasonable indicator
i=1

of the degree of dispersion or scatter?
Let us take the set A of six observations 5, 15, 25, 35, 45, 55. The mean of the
observations is X = 30. The sum of squares of deviations from ¥ for this set is

6
D (X =X)% = (5-30) + (15-307+ (25-30)2 + (35-30)+ (45-30)2+(55-30)?

i=1
=625+225+25+25+225+625=1750

Let us now take another set B of 31 observations 15, 16,17, 18, 19,20, 21, 22,23,
24,25,26,27,28,29,30,31, 32,33, 34,35, 36,37, 38, 39,40, 41, 42,43, 44, 45. The
mean of these observations is Y = 30

Note that both the sets A and B of observations have a mean of 30.

Now, the sum of squares of deviations of observations for set B from the mean Y is
given by

31
D =97 = (15230 +(16-30)2 + (17-30)* + ...+ (44-30)2 +(45-30)’

i=1

(150 +(14)+ .t (C1P+ 02+ 124 224 324+ 142+ 152

= 2152+ 14+ ..+ 17]

15X 154130+
6

) 5% 16 x 31 = 2480

nn+1)(2n+1)

(Because sum of squares of first n natural numbers = 6

. Here n=15)
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Y <\ . . . .
If Z (X =X)" is simply our measure of dispersion or scatter about mean, we
i-1

will tend to say that the set A of six observations has a lesser dispersion about the mean
than the set B of 31 observations, even though the observations in set A are more
scattered from the mean (the range of deviations being from —25 to 25) than in the set
B (where the range of deviations is from —15 to 15).

This is also clear from the following diagrams.

For the set A, we have

Z. 2 2 2 2 2 2 2 2 2 2 2 2 N
0 5 10 15 20 25 1\31(') 35 40 45 50 55 60
Mean
Fig155
For the set B, we have
PA :....:....:....:....:....:....: -~
~ 7

0510152025?:1(')354045505560

Mean
Fig 15.6

Thus, we can say that the sum of squares of deviations from the mean is not a proper
measure of dispersion. To overcome this difficulty we take the mean of the squares of

n
Z(Xi —X)’ _ In case of the set A, we have
=

S5 |—

the deviations, i.e., we take

1 1
Mean = g x 1750 =291.67 and in case of the set B, it is i x 2480 = 80.

This indicates that the scatter or dispersion is more in set A than the scatter or dispersion
in set B, which confirms with the geometrical representation of the two sets.

1 2
Thus, we can take H Z (% =X%)" asa quantity which leads to a proper measure

of dispersion. This number, i.e., mean of the squares of the deviations from mean is

called the variance and is denoted by o (read as sigma square). Therefore, the

variance of N observations X, X,,..., X is given by
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azzli(x - X)*
N

15.5.1 Standard Deviation In the calculation of variance, we find that the units of
individual observations X and the unit of their mean X are different from that of variance,
since variance involves the sum of squares of (X—X ). For this reason, the proper
measure of dispersion about the mean of a set of observations is expressed as positive
square-root of the variance and is called standard deviation. Therefore, the standard
deviation, usually denoted by ¢, is given by

GZW/%Z‘()Q -X)* (D

Let us take the following example to illustrate the calculation of variance and
hence, standard deviation of ungrouped data.

Example 8 Find the Variance of the following data:
6,8,10,12,14,16, 18,20,22,24

Solution From the given data we can form the following Table 15.7. The mean is
calculated by step-deviation method taking 14 as assumed mean. The number of
observations is =10

Table15.7
X d - X,T14 Dev1at1?)1(1ii f;o)m mean =%
6 —4 -9 81
-3 =7 49
10 -2 -5 25
12 -1 -3 9

14 0

16 1 1

18 2 3

20 3 5 25

22 4 7 49

24 5 9 81
S 330
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n

2.

_ = 5
Therefore Mean X = assumed mean + ~ 1n xh = 14+ m x2=15

1 10 0 1
and Variance (o?) = EZ(Xi —-X) = EXSSO =33
i1

Thus Standard deviation (o )= J33=5.74
15.5.2 Standard deviation of a discrete frequency distribution Let the given discrete
frequency distribution be

Xi X, Xy X, X

f: f, f f f

12 2> 3202 n

n
In this case standard deviation (cr) = \/%Z f(x — %)? .. (2)
i1

where N:Zn: f..

i1
Let us take up following example.

Example 9 Find the variance and standard deviation for the following data:

X. 4 8 11 17 ) 20| 24 | 32

f 3 5 9 5 4 3 1

Solution Presenting the data in tabular form (Table 15.8), we get

Table15.8

X, f fx | x=x| (x=%X?7| f(x-%?
4 3 12 -10 100 300
8 5 40 —6 36 180
11 9 99 =3 9 81
17 5 85 3 9 45
20 4 80 6 36 144
24 3 72 10 100 300
3 | 3 18 | 324 324
30 420 1374
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N = 30, fo 420, Zf x —X) =1374

i=1

A

Therefore

X=izl . 420-14
N 30
1 .
Hence variance (o°) = N Z fix— X
i=1
_ L x 1374 =458
30 S
and Standard deviation (g)=+/45.8 =6.77

15.5.3 Standard deviation of a continuous frequency distribution The given
continuous frequency distribution can be represented as a discrete frequency distribution
by replacing each class by its mid-point. Then, the standard deviation is calculated by
the technique adopted in the case of a discrete frequency distribution.

Ifthere is a frequency distribution of n classes each class defined by its mid-point
X with frequency f, the standard deviation will be obtained by the formula

1 & -
= \/E iZ:I:fi(Xi_ X)*

n
where X is the mean of the distribution and N = Z f, .
i=1
Another formula for standard deviation We know that
1

n . 1 n _ B
Variance (o?) = N Z fi(x= %) = N Z f(x’+ X*—2XX)
i=l i=1

><|

:% _Zn:fi>q2+ Z::i Zi: }

:ﬁ_gfm% Zi: izn: }

i=1
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|:Z fIXI +i2 N_2X.NY:| |:Here§2xi fi :YorZXi fi =N7:|
i=l - =

1 n N n 2
Thus, standard deviation (0) "N \/NZ fix" - (Z fix j ..(3)
Example 10 Calculate the mean, variance and standard deviation for the following
distribution :
Class 30-40 40-50 50-60 60-70 70-80 80-90 90-100
Frequency 3 7 12 15 8 3 2

Solution From the given data, we construct the following Table 15.9.

Table15.9
Class | Frequency | Mid-point| fXx. [ (X—X ) f(x—X )
(f) (X)
30-40 3 35 105 729 2187
40-50 7 45 315 289 2023
50-60 12 55 660 49 588
60-70 15 65 975 9 135
70-80 8 75 600 169 1352
80-90 3 85 255 529 1587
90-100 2 95 190 | 1089 2178
50 3100 10050
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Thus Mean X =

= L>< 10050 =201
50

and Standard deviation (o-) =+/201=14.18

Example 11 Find the standard deviation for the following data :

X. 3 8 13 18

23

f 7 10 | 15 10

6

Solution Let us form the following Table 15.10:

Table15.10

X. f. fixi xi2 fx?

3 71 21 9

63

8 10 80 | o4 640
13 15 | 195 | 169 | 2535
18 10 | 180 | 324 | 3240
23 6 | 138 | 529 [ 3174

48 | 614 9652

Now, by formula (3), we have

o= %\/NZ i = (X )’

_ 4% J48x9652 - (614)°

_ L /463296 — 376996
48
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1
—x293.77 =6.12
48

Therefore, Standard deviation (o )=06.12

15.5.4. Shortcut method to find variance and standard deviation Sometimes the
values of X in a discrete distribution or the mid points X of different classes in a
continuous distribution are large and so the calculation of mean and variance becomes
tedious and time consuming. By using step-deviation method, it is possible to simplify
the procedure.

Let the assumed mean be ‘A’ and the scale be reduced to—~ times (h being the

h

width of class-intervals). Let the step-deviations or the new values be y..

. X —A
ie. Y = oor X =A+hy, .. (D)
fix
We know that X= i:lN . (2)
Replacing X, from (1) in (2), we get
Zn: f.(A+hy)
X = .=l
N
1 n n 1 n n
- —(Z fA+ > h fiyij: —|AY f+h) fy
N\ i=1 N i=1 i=l
>
fiy, :
- . b f.=N
_ A.%+h ':lN ecause%: ,
Thus X=A+hy .. (3)
2 1S 2
Now Variance of the variable X, Ox = E Z fi(x —%)
i=1

1 & -
_ EZ f.(A+hy —A—-hy) (Using (1) and (3))

i=1
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Lstry -y
= N i:l i i

h* & _
= E Z fi (v - y)2 = h? X variance of the variable Y,
i-1

i.e. 0'X2 = hzO'y2
or o= hoy (4
From (3) and (4), we have
h n ) n 2
PN sziyi —[zfiYiJ .. (5)
i=1 i=1

Let us solve Example 11 by the short-cut method and using formula (5)

Examples 12 Calculate mean, Variance and Standard Deviation for the following
distribution.

Classes 30-40 [{40-50{ 50-60( 60-70] 70-80| 80-90]90-100
Frequency 3 7 12 15 8 3 2

Solution Let the assumed mean A = 65. Here h= 10
We obtain the following Table 15.11 from the given data :

Table15.11
- ¢ % —65
Class |[Frequency | Mid-point [ y= T Yy’ fy fy?
f, X,

30-40 3 35 -3 9 -9 27
40-50 7 45 -2 4 - 14 28
50-60 12 55 -1 1 -12 12
60-70 15 65 0 0 0 0
70-80 8 75 1 1 8
80-90 3 85 2 4 6 12
90-100 2 95 3 9 6 18

N=50 —15 105
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15

fv
Therefore X = A+Z 'y'xh=65—%x10262

Variance

50

h? 2
0.2 = F[NZ fiyiz—(Z fiyi ) }

2
0 105 - (L15)2
- (50)2[ e }

- L5250 -2251=201
25

and standard deviation (a) =201 =14.18

|[EXERCI SE 15.2|

Find the mean and variance for each of the data in Exercies 1 to 5.

1

2
3.
4

6,7,10,12,13,4,8,12

First n natural numbers

First 10 multiples of 3

X. 6 |10 14 | 18 24 | 28 |30
f 2 4 71 12 8 4 3

X192 [ 93 97 | 98 | 102 | 104 [ 109
fl 3 2 3 2 6 3 3

Find the mean and standard deviation using short-cut method.

X | 60 [ 61| 62| 63 64 | 65 66 | 67 | 68

fl 2 1| 12 29| 25| 12 10 4 5

Find the mean and variance for the following frequency distributions in Exercises
7 and 8.

7.

Classes 0-30] 30-60|60-90 [ 90-120 | 120-150 | 150-180 | 180-210
Frequencies| 2 3 5 10 3 5 2
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8 [ Classes 0-10 10-20 [ 20-30 | 30-40 | 40-50

Frequencies 5 8 15 16 6

9. Find the mean, variance and standard deviation using short-cut method

Height | 70-75] 75-80|80-85]85-90( 90-95 [95-100 [ 100-105[{105-110[110-115
in cms

No. of 3 4 7 7 15 9 6 6 3
children

10. The diameters of circles (in mm) drawn in a design are given below:

Diameters 33-36 | 37-40 41-44 45-48 49-52
No. of circles| 15 17 21 22 25

Calculate the standard deviation and mean diameter of the circles.

[ Hint First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5,
40.5-44.5,44.5 - 48.5, 48.5 - 52.5 and then proceed. |

15.6 Analysisof Frequency Distributions

In earlier sections, we have studied about some types of measures of dispersion. The
mean deviation and the standard deviation have the same units in which the data are
given. Whenever we want to compare the variability of two series with same mean,
which are measured in different units, we do not merely calculate the measures of
dispersion but we require such measures which are independent of the units. The
measure of variability which is independent of units is called coefficient of variation

(denoted as C.V.)
The coefficient of variation is defined as

C.V.=Zx100 , X0,
X
where ¢ and X are the standard deviation and mean of the data.

For comparing the variability or dispersion of two series, we calculate the coefficient
of variance for each series. The series having greater C.V. is said to be more variable
than the other. The series having lesser C.V. is said to be more consistent than the
other.
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15.6.1 Comparison of two frequency distributions with same mean Let X, and o,

be the mean and standard deviation of the first distribution, and X, and o, be the
mean and standard deviation of the second distribution.

lo}
Then C.V. (Ist distribution) = ;1 x100
|
o
and C.V. (2nd distribution) = Y_z x 100
2

Given X = X, = X (say)

e (o3
Therefore C.V. (1st distribution) = E 100 . (1)

O
and C.V. (2nd distribution) = ?2 x 100 " (2)

It is clear from (1) and (2) that the two C.Vs. can be compared on the basis of values
of g, and o, only.

Thus, we say that for two series with equal means, the series with greater standard
deviation (or variance) is called more variable or dispersed than the other. Also, the
series with lesser value of standard deviation (or variance) is said to be more consistent

than the other.
Let us now take following examples:

Example 13 Two plants A and B of a factory show following results about the number
of workers and the wages paid to them.

A B
No. of workers 5000 6000
Average monthly wages Rs 2500 Rs 2500
Variance of distribution 81 100

of wages
In which plant, A or B is there greater variability in individual wages?

Solution The variance of the distribution of wages in plant A ( 0-12 ) =281

Therefore, standard deviation of the distribution of wages in plant A (o,) =9
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Also, the variance of the distribution of wages in plant B (0-22 )=100

Therefore, standard deviation of the distribution of wages in plant B (o, ) = 10

Since the average monthly wages in both the plants is same, i.e., Rs.2500, therefore,
the plant with greater standard deviation will have more variability.
Thus, the plant B has greater variability in the individual wages.

Example 14 Coefficient of variation of two distributions are 60 and 70, and their
standard deviations are 21 and 16, respectively. What are their arithmetic means.

Solution Given C.V. (Ist distribution) = 60, o, =21
C.V. (2nd distribution) = 70, o, = 16

Let X and X, be the means of 1st and 2nd distribution, respectively. Then

o
C.V. (1st distribution) = )_(—‘ % 100
1
Therefore 60 = _2—1 x100 or X :EXIOO =35
X 60
62
and C.V. (2nd distribution) = { %100
ie. 70 = _1—6x1000r22=Ex100=22.85
X, 70

Example 15 The following values are calculated in respect of heights and weights of
the students of a section of Class XI :

Height Weight
Mean 162.6 cm 52.36kg
Variance 127.69 cm? 23.1361 kg?

Can we say that the weights show greater variation than the heights?
Solution To compare the variability, we have to calculate their coefficients of variation.
Given Variance of height = 127.69cm?

Therefore Standard deviation of height = \/127.69cm =11.3 cm
Also Variance of weight=23.1361 kg?
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Therefore Standard deviation of weight = +/23.1361 kg =4.81 kg
Now, the coefficient of variations (C.V.) are given by

Standard Deviation

(C.V.) in heights = x 100

Mean

11.3
= x100 = 6.95
162.6

4.81
and (C.V.) in weights = x100 =9.18
52.36

Clearly C.V. in weights is greater than the C.V. in heights
Therefore, we can say that weights show more variability than heights.

|EXERCISE 15.3]

1.  From the data given below state which group is more variable, A or B?

Marks 10-20 | 20-30 | 30-40 | 40-50 | 50-60| 60-70 | 70-80
Group A 9 17 32 33 40 10 9
GroupB | 10 20 30 25 43 S 7

2. From the prices of shares X and Y below, find out which is more stable in value:

X 35 54 52| 53] 56 | 58 521 50| 51 49
Y | 108 | 107 | 105 | 105| 106 | 107 | 104]| 103 | 104 | 101

3. Ananalysis of monthly wages paid to workers in two firms A and B, belonging to
the same industry, gives the following results:

Firm A Firm B

No. of wage earners 586 648
Mean of monthly wages Rs 5253 Rs 5253
Variance of the distribution 100 121
of wages

(i) Which firm A or B pays larger amount as monthly wages?

(i) Which firm, A or B, shows greater variability in individual wages?
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4.  The following is the record of goals scored by team A in a football session:

No. of goals scored 0 1 2 3 4
No. of matches 1 9 7 5 3

For the team B, mean number of goals scored per match was 2 with a standard
deviation 1.25 goals. Find which team may be considered more consistent?

5. The sum and sum of squares corresponding to length X (in cm) and weight y
(in gm) of 50 plant products are given below:

50 50 50 50
D% =212 3% =902.8 Dy =261 ) y’=1457.6
i=1 i=1 i=1 i=1

Which is more varying, the length or weight?

Miscellaneous Examples

Example 16 The variance of 20 observations is 5. If each observation is multiplied by
2, find the new variance of the resulting observations.

Solution  Let the observations be X, X,, ..., X,; and X be their mean. Given that
variance = 5 and n = 20. We know that

1 & 1 & 2
Variance (GZ)ZHZ(Xi -%) e, 3 =EZ(>€ -X)
i=1 i=l

20
or D% =% =100 (D
i=1
If each observation is multiplied by 2, and the new resulting observations are Y, then
2X. i 1 Y
=2X 1.6, X = Y)Y
yl i L.C., i 2
1 20 1 20 1 20
Therefore y N .Zzl: Yi 20 & X 30 ;X,
i y=2% 5=~ y
1.€. y=2x or X= >

Substituting the values of X and X in (1), we get
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20

1 1 2 20 .
339 -39] =100 e, v~y =400
i=1

i=l

1
Thus the variance of new observations = 20 x 400 =20=2% x5

The reader may note that if each observation is multiplied by a constant
k, the variance of the resulting observations becomes k? times the original variance.

Examplel?7 The mean of 5 observations is 4.4 and their variance is 8.24. If three of
the observations are 1, 2 and 6, find the other two observations.

Solution Let the other two observations be X and .
Therefore, the seriesis 1, 2, 6, X, V.

1+2+6+X+Yy

Now Mean X = 4.4 = s

or 22=9+x+y

Therefore X+y=13 .. (1)
1L —

Also variance = 8.24 = EZ(X. —X)

i=1

ie. 8.24= %[(3.4)2 + (2.4)2 + (1.6)2 +X + Yy —2x4.4(X+Y)+2x (4.4)2}

or 4120 = 11.56 + 5.76 + 2.56 + X* + y* —8.8 x 13 + 38.72

Therefore X +y =97 .. (2)
But from (1), we have

X2+ Yy +2xy =169 .. (3)
From (2) and (3), we have

2xy =172 .. (4)

Subtracting (4) from (2), we get
Xty - 2xy=97-72 ie. (X-Yy)P=25

or X—y=+45 .. (5)
So, from (1) and (5), we get

X=9,y=4 when Xx—-y=5
or X=4,y=9 when X—y=-5
Thus, the remaining observations are 4 and 9.
Example 18 If each of the observation X, X,, ...,X is increased by ‘@', where a is a
negative or positive number, show that the variance remains unchanged.
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Solution Let X be the mean of X, X,, ...,X . Then the variance is given by

1

_Z (% —X)?

If ‘ais added to each observation, the new observations will be
y=Xx+a - (D)
Let the mean of the new observations be Yy . Then

>

ie. y=xt+a ... (2)
Thus, the variance of the new observations

TR (. _
o= Ez yY:ﬁg(& +a- X-a)’  [Using (1) and (2)]

1 & o
“p X KXo

Thus, the variance of the new observations is same as that of the original observations.

We may note that adding (or subtracting) a positive number to (or from)
each observation of a group does not affect the variance.

Example 19 The mean and standard deviation of 100 observations were calculated as
40 and 5.1, respectively by a student who took by mistake 50 instead of 40 for one
observation. What are the correct mean and standard deviation?

Solution Given that number of observations (n) = 100
Incorrect mean (X ) = 40,

Incorrect standard deviation (G) = 5.1

n

1
We know that X= H Z %;

100 100

ie. IOOZX' or qu 4000



1.€.
Thus

Hence

Also

1.€.

or

Therefore

Now

Therefore
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Incorrect sum of observations = 4000

the correct sum of observations = Incorrect sum — 50 + 40

=4000 — 50 + 40 =3990

correct sum 3990

Correct mean = = =399

100 100

1 . 2 2
— [— X Incorrect —(40
5.1 \/100 Zx (40)

26.01 = — x Incomect %" _ 1600
100 -

n
IncorrethXi2 =100 (26.01 +1600) =162601

i=1

n n
2
Correct Z&z = Incorrect Z X — (50)*+ (40)
=

i=l

=162601-2500+1600= 161701

Correct standard deviation

:\/Correct Z)gz

— (Correct mean)2
n

161701 ,
- (39.9)
100

= J1617.01-1592.01 = \f5 =5



380

MATHEMATICS

Miscellaneous Exercise On Chapter 15

The mean and variance of eight observations are 9 and 9.25, respectively. If six
of the observations are 6, 7, 10, 12, 12 and 13, find the remaining two observations.
The mean and variance of 7 observations are 8 and 16, respectively. If five of the
observations are 2, 4, 10, 12, 14. Find the remaining two observations.

The mean and standard deviation of six observations are 8 and 4, respectively. If
each observation is multiplied by 3, find the new mean and new standard deviation
of the resulting observations.

Given that X is the mean and o2 is the variance of n observations Xy Xy consX.
Prove that the mean and variance of the observations ax,, ax,, ax,, ..., ax_ are
ax and & o2, respectively, (a # 0).

The mean and standard deviation of 20 observations are found to be 10 and 2,
respectively. On rechecking, it was found that an observation 8 was incorrect.
Calculate the correct mean and standard deviation in each of the following cases:
(i) If wrong item is omitted. (i1) If it is replaced by 12.

The mean and standard deviation of marks obtained by 50 students of a class in
three subjects, Mathematics, Physics and Chemistry are given below:

Subject M athematics Physics  Chemistry

Mean 42 32 40.9
Standard 12 15 20
deviation

which of the three subjects shows the highest variability in marks and which
shows the lowest?

The mean and standard deviation of a group of 100 observations were found to
be 20 and 3, respectively. Later on it was found that three observations were
incorrect, which were recorded as 21, 21 and 18. Find the mean and standard
deviation if the incorrect observations are omitted.

Summary

© Measur esof dispersion Range, Quartile deviation, mean deviation, variance,

standard deviation are measures of dispersion.
Range = Maximum Value — Minimum Value

® Mean deviation for ungrouped data

M.D. (X) =w, M.D. (M)=M
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® Mean deviation for grouped data
flx —X flx —M
M.D. (X) =%, M.D.(M)z%,wheresz f.
@ Variance and standard deviation for ungrouped data
D 1 —\2 1 —\2
o =n Z(Xi_x), o= HZ(Xi_X)
¢ Variance and standard deviation of a discrete frequency distribution
1 2 1 2
=— f(x —X), = |— fi - —X
LA o= L3h(s-%)
@ Variance and standard deviation of a continuous frequency distribution

= T =X, o= < NT (T %)’

@ Shortcut method to find variance and standard deviation.

—h—Z[NZfiy. (Tt ] e =g TR -(Z )

. — A
where Y, = Ll

h

@ Coefficient of variation (C.V.) = %xlOO,Y:ﬁO.

For series with equal means, the series with lesser standard deviation is more consistent
or less scattered.

Historical Note

‘Statistics’ is derived from the Latin word ‘status’ which means a political
state. This suggests that statistics is as old as human civilisation. In the year 3050
B.C., perhaps the first census was held in Egypt. In India also, about 2000 years
ago, we had an efficient system of collecting administrative statistics, particularly,
during the regime of Chandra Gupta Maurya (324-300 B.C.). The system of
collecting data related to births and deaths is mentioned in Kautilya’s Arthshastra
(around 300 B.C.) A detailed account of administrative surveys conducted during
Akbar’s regime is given in Ain-I-Akbari written by Abul Fazl.
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Captain John Graunt of London (1620-1674) is known as father of vital
statistics due to his studies on statistics of births and deaths. Jacob Bernoulli
(1654-1705) stated the Law of Large numbers in his book “Ars Conjectandi’,
published in 1713.

The theoretical development of statistics came during the mid seventeenth
century and continued after that with the introduction of theory of games and
chance (i.e., probability). Francis Galton (1822-1921), an Englishman, pioneered
the use of statistical methods, in the field of Biometry. Karl Pearson (1857-1936)
contributed a lot to the development of statistical studies with his discovery
of Chi sguare test and foundation of statistical laboratory in England (1911).
Sir Ronald A. Fisher (1890-1962), known as the Father of modern statistics,
applied it to various diversified fields such as Genetics, Biometry, Education,
Agriculture, etc.



Chapter 16

PROBABILITY

«*Where a mathematical reasoning can be had, it is as great a folly to
make use of any other, as to grope for a thing in the dark, when
you have a candle in your hand. — JOHN ARBUTHNOT ¢

16.1 Introduction

In earlier classes, we studied about the concept of
probability as a measure of uncertainty of various
phenomenon. We have obtained the probability of getting

1
an even number in throwing a die as s ie., 5 Here the

total possible outcomes are 1,2,3,4,5 and 6 (six in number).
The outcomes in favour of the event of ‘getting an even
number’ are 2,4,6 (i.e., three in number). In general, to
obtain the probability of an event, we find the ratio of the
number of outcomes favourable to the event, to the total
number of equally likely outcomes. This theory of probability Kolmogorov

is known as classical theory of probability. (1903-1987)

In Class IX, we learnt to find the probability on the basis of observations and
collected data. This is called statistical approach of probability.

Both the theories have some serious difficulties. For instance, these theories can
not be applied to the activities/experiments which have infinite number of outcomes. In
classical theory we assume all the outcomes to be equally likely. Recall that the outcomes
are called equally likely when we have no reason to believe that one is more likely to
occur than the other. In other words, we assume that all outcomes have equal chance
(probability) to occur. Thus, to define probability, we used equally likely or equally
probable outcomes. This is logically not a correct definition. Thus, another theory of
probability was developed by A.N. Kolmogorov, a Russian mathematician, in 1933. He
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laid down some axioms to interpret probability, in his book ‘Foundation of Probability’
published in 1933. In this Chapter, we will study about this approach called axiomatic
approach of probability. To understand this approach we must know about few basic
terms viz. random experiment, sample space, events, etc. Let us learn about these all,
in what follows next.

16.2 Random Experiments

In our day to day life, we perform many activities which have a fixed result no matter
any number of times they are repeated. For example given any triangle, without knowing
the three angles, we can definitely say that the sum of measure of angles is 180°.

We also perform many experimental activities, where the result may not be same,
when they are repeated under identical conditions. For example, when a coin is tossed
it may turn up a head or a tail, but we are not sure which one of these results will
actually be obtained. Such experiments are called random experiments.

An experiment is called random experiment if it satisfies the following two
conditions:

(i) It has more than one possible outcome.
(i) Itis not possible to predict the outcome in advance.

Check whether the experiment of tossing a die is random or not?
In this chapter, we shall refer the random experiment by experiment only unless
stated otherwise.

16.2.1 Outcomes and sample space A possible result of a random experiment is
called its outcome.

Consider the experiment of rolling a die. The outcomes of this experiment are 1,
2,3,4,5,or 6, if we are interested in the number of dots on the upper face of the die.

The set of outcomes {1, 2, 3,4, 5, 6} is called the sampl e space of the experiment.

Thus, the set of all possible outcomes of a random experiment is called the sample
space associated with the experiment. Sample space is denoted by the symbol S.

Each element of the sample space is called a sample point. In other words, each
outcome of the random experiment is also called sample point.

Let us now consider some examples.

Example 1 Two coins (a one rupee coin and a two rupee coin) are tossed once. Find
a sample space.

Solution Clearly the coins are distinguishable in the sense that we can speak of the
first coin and the second coin. Since either coin can turn up Head (H) or Tail(T), the
possible outcomes may be



PROBABILITY 385

Heads on both coins = (H,H) = HH

Head on first coin and Tail on the other = (H,T) = HT
Tail on first coin and Head on the other = (T,H) = TH
Tail on both coins = (T,T) =TT

Thus, the sample space is S = {HH, HT, TH, TT}

The outcomes of this experiment are ordered pairs of H and T. For the
sake of simplicity the commas are omitted from the ordered pairs.

Example 2 Find the sample space associated with the experiment of rolling a pair of
dice (one is blue and the other red) once. Also, find the number of elements of this
sample space.

Solution Suppose 1 appears on blue die and 2 on the red die. We denote this outcome
by an ordered pair (1,2). Similarly, if ‘3’ appears on blue die and ‘5’ on red, the outcome
is denoted by the ordered pair (3,5).

In general each outcome can be denoted by the ordered pair (X, y), where X is
the number appeared on the blue die and Yy is the number appeared on the red die.
Therefore, this sample space is given by

S = {(X, y): X is the number on the blue die and y is the number on the red die}.
The number of elements of this sample space is 6 x 6 = 36 and the sample space is
given below:

{(1,1),(1,2), (1,3), (1,4), (1,5), (1,6), (2,1),(2,2), (2,3), (2,4), (2,5), (2,0)
(3.1),(3,2),(3.3), 3.4, (3.5), (3,6), (4.1), (4,2), (4.3), (4,4), (4.5), (4,6)
(5.1),(5,2).(5.3), (5:4), (5.5), (5,6), (6,1), (6,2), (6.3), (6,4), (6.5), (6,6)}

Example 3 In each of the following experiments specify appropriate sample space

(i) Aboy hasa 1 rupee coin, a 2 rupee coin and a 5 rupee coin in his pocket. He
takes out two coins out of his pocket, one after the other.

(i) A person is noting down the number of accidents along a busy highway
during a year.

Solution (i) Let Q denote a 1 rupee coin, H denotes a 2 rupee coin and R denotes a 5
rupee coin. The first coin he takes out of his pocket may be any one of the three coins
Q, H or R. Corresponding to Q, the second draw may be H or R. So the result of two
draws may be QH or QR. Similarly, corresponding to H, the second draw may be
QorR.

Therefore, the outcomes may be HQ or HR. Lastly, corresponding to R, the second
draw may be H or Q.

So, the outcomes may be RH or RQ.
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Thus, the sample space is S={QH, QR, HQ, HR, RH, RQ}
(i) The number of accidents along a busy highway during the year of observation
can be either 0 (for no accident ) or 1 or 2, or some other positive integer.
Thus, a sample space associated with this experiment is S= {0,1,2,...}

Example4 A coin is tossed. If it shows head, we draw a ball from a bag consisting of
3 blue and 4 white balls; if it shows tail we throw a die. Describe the sample space of
this experiment.

Solution Let us denote blue balls by B, B,, B, and the white ballsby W , W , W_ W .
Then a sample space of the experiment is

S ={HB, HB,, HB,, HW , HW , HW , HW,, T1, T2, T3, T4, T5, T6}.
Here HB, means head on the coin and ball B, is drawn, HW, means head on the coin
and ball W, is drawn. Similarly, Ti means tail on the coin and the number i on the die.

Example 5 Consider the experiment in which a coin is tossed repeatedly until a head
comes up. Describe the sample space.

Solution In the experiment head may come up on the first toss, or the 2nd toss, or the
3rd toss and so on till head is obtained. Hence, the desired sample space is

S= {H, TH, TTH, TTTH, TTTTH,...}

| EXERCISE 16.1

In each of the following Exercises 1 to 7, describe the sample space for the indicated
experiment.
1. A coin is tossed three times.

A die is thrown two times.

A coin is tossed four times.

A coin is tossed and a die is thrown.

A coin is tossed and then a die is rolled only in case a head is shown on the coin.

2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the

sample space for the experiment in which a room is selected and then a person.

7. One die of red colour, one of white colour and one of blue colour are placed in a
bag. One die is selected at random and rolled, its colour and the number on its
uppermost face is noted. Describe the sample space.

8. An experiment consists of recording boy—girl composition of families with 2
children.
(1) What is the sample space if we are interested in knowing whether it is a boy

or girl in the order of their births?

o U1k LGOFIO
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(i) What is the sample space if we are interested in the number of girls in the
family?

9. Abox contains 1 red and 3 identical white balls. Two balls are drawn at random

in succession without replacement. Write the sample space for this experiment.

10. An experiment consists of tossing a coin and then throwing it second time if a
head occurs. If a tail occurs on the first toss, then a die is rolled once. Find the
sample space.

11. Suppose 3 bulbs are selected at random from a lot. Each bulb is tested and
classified as defective (D) or non — defective(N). Write the sample space of this
experiment.

12. A coin is tossed. If the out come is a head, a die is thrown. If the die shows up
an even number, the die is thrown again. What is the sample space for the
experiment?

13. The numbers 1, 2, 3 and 4 are written separatly on four slips of paper. The slips
are put in a box and mixed thoroughly. A person draws two slips from the box,
one after the other, without replacement. Describe the sample space for the
experiment.

14. Anexperiment consists of rolling a die and then tossing a coin once if the number
on the die is even. If the number on the die is odd, the coin is tossed twice. Write
the sample space for this experiment.

15. A coinistossed. If it shows a tail, we draw a ball from a box which contains 2 red
and 3 black balls. If it shows head, we throw a die. Find the sample space for this
experiment.

16. A die is thrown repeatedly untill a six comes up. What is the sample space for
this experiment?

16.3 Event

We have studied about random experiment and sample space associated with an
experiment. The sample space serves as an universal set for all questions concerned
with the experiment.

Consider the experiment of tossing a coin two times. An associated sample space
is S = {HH, HT, TH, TT}.

Now suppose that we are interested in those outcomes which correspond to the
occurrence of exactly one head. We find that HT and TH are the only elements of S
corresponding to the occurrence of this happening (event). These two elements form
the set E= { HT, TH}

We know that the set E is a subset of the sample space S . Similarly, we find the
following correspondence between events and subsets of S.
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Description of events Corresponding subset of ‘S’
Number of tails is exactly 2 A={TT}

Number of tails is atleast one B = {HT, TH, TT}
Number of heads is atmost one C={HT, TH, TT}

Second toss is not head D= {HT, TT}

Number of tails is atmost two S = {HH, HT, TH, TT}
Number of tails is more than two (0]

The above discussion suggests that a subset of sample space is associated with
an event and an event is associated with a subset of sample space. In the light of this
we define an event as follows.

Definition Any subset E of a sample space S is called an event.

16.3.1 Occurrence of an event Consider the experiment of throwing a die. Let E
denotes the event “ a number less than 4 appears”. If actually ‘1’ had appeared on the
die then we say that event E has occurred. As a matter of fact if outcomes are 2 or 3,
we say that event E has occurred

Thus, the event E of a sample space S is said to have occurred if the outcome
o of the experiment is such that @ € E. If the outcome @ is such that @ ¢ E, we say
that the event E has not occurred.

16.3.2 Typesof events Events can be classified into various types on the basis of the
elements they have.

1. Impossibleand Sure Events The empty set ¢ and the sample space S describe
events. In fact ¢ is called an impossibleevent and S, i.e., the whole sample space is
called the sure event.

To understand these let us consider the experiment of rolling a die. The associated
sample space is

S=1{1,2,3,4,5,6}

Let E be the event “ the number appears on the die is a multiple of 7”. Can you
write the subset associated with the event E?

Clearly no outcome satisfies the condition given in the event, i.e., no element of
the sample space ensures the occurrence of the event E. Thus, we say that the empty
set only correspond to the event E. In other words we can say that it is impossible to
have a multiple of 7 on the upper face of the die. Thus, the event E = ¢ is an impossible

event.
Now let us take up another event F “the number turns up is odd or even”. Clearly
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F=1{1,2,3,4,5,6,} =S, i.e., all outcomes of the experiment ensure the occurrence of
the event F. Thus, the event F = S is a sure event.

2. Simple Event If an event E has only one sample point of a sample space, it is
called a simple (or elementary) event.
In a sample space containing n distinct elements, there are exactly n simple
events.
For example in the experiment of tossing two coins, a sample space is
S={HH, HT, TH, TT}
There are four simple events corresponding to this sample space. These are
E = {HH}, E={HT}, E;= { TH} and E,={TT}.
3. Compound Event If an event has more than one sample point, it is called a
Compound event.
For example, in the experiment of “tossing a coin thrice” the events
E: ‘Exactly one head appeared’
F: ‘Atleast one head appeared’
G: ‘Atmost one head appeared’ etc.
are all compound events. The subsets of S associated with these events are
E={HTT,THT,TTH}
F={HTT,THT, TTH, HHT, HTH, THH, HHH}
G= {TTT, THT, HTT, TTH}
Each of the above subsets contain more than one sample point, hence they are all
compound events.

16.3.3 Algebra of events In the Chapter on Sets, we have studied about different
ways of combining two or more sets, viz, union, intersection, difference, complement
of a set etc. Like-wise we can combine two or more events by using the analogous set
notations.

Let A, B, C be events associated with an experiment whose sample space is S.

1. Complementary Event For every event A, there corresponds another event
A’ called the complementary event to A. It is also called the event ‘not A’.

For example, take the experiment ‘of tossing three coins’. An associated sample
space is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let A={HTH, HHT, THH} be the event ‘only one tail appears’

Clearly for the outcome HTT, the event A has not occurred. But we may say that
the event ‘not A’ has occurred. Thus, with every outcome which is not in A, we say
that ‘not A’ occurs.
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Thus the complementary event ‘not A’ to the event A is
A’ = {HHH, HTT, THT, TTH, TTT}

or A'={w:me Sand o gA} =S —A.

2. The Event ‘A or B’ Recall that union of two sets A and B denoted by A U B
contains all those elements which are either in A or in B or in both.

When the sets A and B are two events associated with a sample space, then
‘A U B’ is the event ‘either A or B or both’. This event ‘A B’ is also called ‘A or B’.
Therefore Event ‘AorB’= AUB

={w:me Aor e B}

3. The Event ‘A and B’ We know that intersection of two sets A N B is the set of
those elements which are common to both A and B. i.e., which belong to both
‘A and B’.
If A and B are two events, then the set A n B denotes the event ‘A and B’.
Thus, ANnB={w:mwe Aand w € B}

For example, in the experiment of ‘throwing a die twice’ Let A be the event
‘score on the first throw is six” and B is the event ‘sum of two scores is atleast 11’ then

A = {(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},and B={(5,6),(6,5),(6,6)}
so ANB={(6)5),(6,6)}
Note that the set A N B = {(6,5), (6,6)} may represent the event ‘the score on the first
throw is six and the sum of the scores is atleast 11°.
4. The Event ‘A but not B We know that A-B is the set of all those elements
which are in A but not in B. Therefore, the set A-B may denote the event ‘A but not
B’.We know that
A-B=AnNnDB’

Example 6 Consider the experiment of rolling a die. Let A be the event ‘getting a
prime number’, B be the event ‘getting an odd number’. Write the sets representing
the events (i) Aor B (ii) A and B (iii) A but not B (iv) ‘not A’.
Solution Here S={1,2,3,4,5,6},A={2,3,5} and B= {1, 3,5}
Obviously
(i) ‘AorB’=AuUB={1,2,3,5}

(i) ‘Aand BB=AnNB={3,5}

(i) ‘AbutnotB’= A-B={2}

(iv) ‘not A’=A"={1,4,6}
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16.3.4 Mutually exclusive eventsIn the experiment of rolling a die, a sample space is
S=1{1,2,3,4,5, 6}. Consider events, A ‘an odd number appears’ and B ‘an even
number appears’

Clearly the event A excludes the event B and vice versa. In other words, there is
no outcome which ensures the occurrence of events A and B simultaneously. Here

A={1,3,5} and B= {2, 4, 6}

Clearly AN B =¢, i.e., A and B are disjoint sets.

In general, two events A and B are called mutually exclusive events if the
occurrence of any one of them excludes the occurrence of the other event, i.e., if they
can not occur simultaneously. In this case the sets A and B are disjoint.

Again in the experiment of rolling a die, consider the events A ‘an odd number
appears’ and event B ‘a number less than 4 appears’

Obviously A= {1,3,5} and B= {1, 2, 3}
Now3 e A aswellas3 e B
Therefore, A and B are not mutually exclusive events.
Remark Simple events of a sample space are always mutually exclusive.
16.3.5 Exhaustive events Consider the experiment of throwing a die. We have
S=1{1,2,3,4,5, 6}. Let us define the following events

A: ‘anumber less than 4 appears’,
B: ‘a number greater than 2 but less than 5 appears’
and C: ‘a number greater than 4 appears’.

Then A= {1, 2,3}, B={3,4} and C = {5, 6}. We observe that
AuBuUC={1,2,3}u{3,4} U{5,6}=S.

Such events A, B and C are called exhaustive events. In general, if E, E,, ..., E_aren
events of a sample space S and if

n
EluE2uE3u...uEn=_ulEi =S
I=

then E, E, ..., E_are called exhaustive events.In other words, events E, E, ..., E_
are said to be exhaustive if atleast one of them necessarily occurs whenever the
experiment is performed.

Further, if E, N E=¢ fori#] ie., events E and E are pairwise disjoint and

n
Y E; =S, then events E, E,, ..., E_are called mutually exclusive and exhaustive
1=

events.
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We now consider some examples.

Example 7 Two dice are thrown and the sum of the numbers which come up on the
dice is noted. Let us consider the following events associated with this experiment

A: ‘the sum is even’.

B: ‘the sum is a multiple of 3.
C: ‘the sum is less than 4°.

D: ‘the sum is greater than 11°.

Which pairs of these events are mutually exclusive?

Solution There are 36 elements in the sample space S = {(X, y): X,y=1,2,3,4,5,6}.
Then

A=1{(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),3, 1), 3, 3),(3,5), (4,2), (4. 4),
(4,6), (5, 1), (5,3), (5,5), (6,2), (6,4), (6,6)}
B=1(1,2),(2,1),(1,5), (5, 1), (3, 3), (2,4), (4, 2), (3, 6), (6, 3), (4, 5), (5, 4),

(6, 6)}
C={(1,1),(2,1),(1,2)} and D= {(6, 6)}
We find that

AnNnB=1{(,5),(2,4),3,3),(4,2),(51),(6,6)} #0

Therefore, A and B are not mutually exclusive events.
Similarly AN C#0,AnD#¢, BN C=dpand BN D #¢.
Thus, the pairs, (A, C), (A, D), (B, C), (B, D) are not mutually exclusive events.
Also C N D = ¢ and so C and D are mutually exclusive events.
Example 8 A coin is tossed three times, consider the following events.

A: ‘No head appears’, B: ‘Exactly one head appears’ and C: ‘Atleast two heads
appear’.
Do they form a set of mutually exclusive and exhaustive events?
Solution The sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
and A= {TTT}, B= {HTT, THT, TTH}, C = {HHT, HTH, THH, HHH}
Now

AuBuUC={TTT, HTT, THT, TTH, HHT, HTH, THH, HHH} = S

Therefore, A, B and C are exhaustive events.
Also, AnB=0,AnC=¢andBNnC=0
Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.

Hence, A, B and C form a set of mutually exclusive and exhaustive events.
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| EXERCISE 16.2]

1. A dieisrolled. Let E be the event “die shows 4” and F be the event “die shows
even number”. Are E and F mutually exclusive?
2. A dieis thrown. Describe the following events:

(i) A:anumber less than 7 (i) B: anumber greater than 7
(i) C:amultiple of 3 (iv) D:anumber less than 4
(v) E:an even number greater than 4 (vi) F:anumber not less than 3

Also find AUB,ANB,BUC,ENnF,DNE,A-C,D-E,ENnF,F

3. An experiment involves rolling a pair of dice and recording the numbers that
come up. Describe the following events:
A: the sum is greater than 8, B: 2 occurs on either die
C: the sum is at least 7 and a multiple of 3.
Which pairs of these events are mutually exclusive?

4. Three coins are tossed once. Let A denote the event ‘three heads show”, B
denote the event “two heads and one tail show”, C denote the event” three tails
show and D denote the event ‘a head shows on the first coin”. Which events are

(1) mutually exclusive?  (ii) simple? (ii1) Compound?
5. Three coins are tossed. Describe

(1) Two events which are mutually exclusive.

(i) Three events which are mutually exclusive and exhaustive.

(i) Two events, which are not mutually exclusive.

(iv) Two events which are mutually exclusive but not exhaustive.

(v) Three events which are mutually exclusive but not exhaustive.
6. Two dice are thrown. The events A, B and C are as follows:

A: getting an even number on the first die.

B: getting an odd number on the first die.

C: getting the sum of the numbers on the dice < 5.

Describe the events

i A’ (i) notB (i) AorB
(iv) Aand B (v) AbutnotC (vi) BorC
(vii) Band C (vii) AnB N’

7. Refer to question 6 above, state true or false: (give reason for your answer)
(i) A and B are mutually exclusive
(i) A and B are mutually exclusive and exhaustive
(i) A=B
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(iv) A and C are mutually exclusive
(v) A and B’ are mutually exclusive.
(vi) A’,B’, C are mutually exclusive and exhaustive.

16.4 AxiomaticApproach to Probability

In earlier sections, we have considered random experiments, sample space and
events associated with these experiments. In our day to day life we use many words
about the chances of occurrence of events. Probability theory attempts to quantify
these chances of occurrence or non occurrence of events.

In earlier classes, we have studied some methods of assigning probability to an
event associated with an experiment having known the number of total outcomes.

Axiomatic approach is another way of describing probability of an event. In this
approach some axioms or rules are depicted to assign probabilities.

Let S be the sample space of a random experiment. The probability P is a real
valued function whose domain is the power set of S and range is the interval [0,1]
satisfying the following axioms

(i) ForanyeventE, P(E) >0 (i) P(S)=1

(iii) If E and F are mutually exclusive events, then P(E U F) = P(E) + P(F).

It follows from (iii) that P(¢) = 0. To prove this, we take F = ¢ and note that E and ¢
are disjoint events. Therefore, from axiom (iii), we get

P(Eud)=P(E)+P(p)or PE)=PE)+P(¢)ie. P(dp)=0.

Let S be a sample space containing outcomes ®,, ®,,...,®,, 1.€.,

S={o,0, ..o}
It follows from the axiomatic definition of probability that
(i) 0<P(w)<1foreachwe S
(i) P(w)+P(w)+.. +P(w)=1
(iii) For any event A, P(A) = 2 P(®,), ® € A.

It may be noted that the singleton {®} is called elementary event and
for notational convenience, we write P(w,) for P({w, }).

1
For example, in ‘a coin tossing’ experiment we can assign the number 5 to each
of the outcomes H and T.
1 1
ie. P(H) = 5 and P(T) = 5 (1

Clearly this assignment satisfies both the conditions i.e., each number is neither
less than zero nor greater than 1 and
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P(H) + P(T) = +%=1

1
2

1 1
Therefore, in this case we can say that probability of H= 5 and probability of T = B

1 3
If we take P(H) = 1 and P(T) = 1 ... (2)

Does this assignment satisfy the conditions of axiomatic approach?

1 3
Yes, in this case, probability of H = Z and probability of T = 1

We find that both the assignments (1) and (2) are valid for probability of
Hand T.

In fact, we can assign the numbers p and (1 — p) to both the outcomes such that
0<p<landP(H)+P(T)=p+(1- p) =1

This assignment, too, satisfies both conditions of the axiomatic approach of
probability. Hence, we can say that there are many ways (rather infinite) to assign
probabilities to outcomes of an experiment. We now consider some examples.

Example 9 Let a sample space be S = {®, ®,,..., ® ;. Which of the following
assignments of probabilities to each outcome are valid?

Outcomes o, o, o, 0, 0, O
1 1 1 1 1 1
@ %5 s 6 6 6 &6
(b) 1 0 0 0 0 0
1 2 1 1 1 1
© 533 3 173
1 1 1 1 1 3
@ % 12 6§ 6 & 2

(e) 01 02 03 04 05 06

Solution (a) Condition (i): Each of the number p(,) is positive and less than one.
Condition (ii): Sum of probabilities
1 1 1

1 1 1
—+—F+—+—+—+—=1
6 6 6 6 6 6
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Therefore, the assignment is valid

(b) Condition (i): Each of the number p(®,) is either 0 or 1.
Condition (ii) Sum of the probabilities=1+0+0+0+0+0=1
Therefore, the assignment is valid

(c¢) Condition (i) Two of the probabilities p(w;) and p(®,) are negative, the assignment
is not valid

3
(d) Since p(w,) = ) > 1, the assignment is not valid

(e) Since, sum of probabilities=0.1+0.2+0.3+0.4+0.5+ 0.6 =2.1, the assignment
is not valid.

16.4.1 Probability of an event Let S be a sample space associated with the experiment
‘examining three consecutive pens produced by a machine and classified as Good
(non-defective) and bad (defective)’. We may get 0, 1, 2 or 3 defective pens as result
of this examination.

A sample space associated with this experiment is

S = {BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG},
where B stands for a defective or bad pen and G for a non — defective or good pen.
Let the probabilities assigned to the outcomes be as follows

Sample point: BBB BBG BGB GBB BGG GBG GGB GGG

1 1 1 1 1 1 1 1

Probability: 3 3 3 3 3 3 3 3

Let event A: there is exactly one defective pen and event B: there are atleast two
defective pens.
Hence A= {BGG, GBG, GGB} and B = {BBG, BGB, GBB, BBB}
Now P(A) = 2P(»;),Vo; € A
1 1

1
= P(BGG) + P(GBG) + PGGB) = ¢+ ¢+ 5=

| W

and P(B) = X P(o,),Vo, €B

111
= P(BBG) + P(BGB) + P(GBB) + P(BBB) = o+ + o+ =

Let us consider another experiment of ‘tossing a coin “twice”
The sample space of this experiment is S = {HH, HT, TH, TT}

Let the following probabilities be assigned to the outcomes

I_4_1
g8 2
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1 1 2 9
P(HH) = 7, P(HT) = = P(TH) = —, P(TT) = ¢

Clearly this assignment satisfies the conditions of axiomatic approach. Now, let

us find the probability of the event E: ‘Both the tosses yield the same result’.
Here E={HH, TT}
Now P(E) = X P(w,), forallw. € E

=P(HH) + P(TT) = l+i_i

T PEHD PN = 8 =7
For the event F: ‘exactly two heads’, we have F = {HH}

1

and P(F) = P(HH) = Z

16.4.2 Probabilities of equally likely outcomes Let a sample space of an
experiment be

S={o,0,.., 0}
Let all the outcomes are equally likely to occur, i.e., the chance of occurrence of each
simple event must be same.

ie. P(w)=p, forallm, € S where 0 < p<1
n
Since ZP(wi)zl e, prp+..+p(ntimes)=1
i1
e ol
or np=1lie., p=—

Let S be a sample space and E be an event, such that n(S) = n and n(E) = m. If
each out come is equally likely, then it follows that

Number of outcomes favourable to E

m
P(E)= n Total possible outcomes

16.4.3 Probability of the event “A or B’ Let us now find the probability of event
‘AorB’, ie,P(AuUB)

Let A= {HHT, HTH, THH} and B= {HTH, THH, HHH} be two events associated
with ‘tossing of a coin thrice’

Clearly A U B = {HHT, HTH, THH, HHH}
Now P (A U B) = P(HHT) + P(HTH) + P(THH) + P(HHH)
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If all the outcomes are equally likely, then

P(AUB) L 11,141
8§ 8 8 8 8 2
3
Also P(A) = P(HHT) + P(HTH) + P(THH) = ¢
3
and P(B) = P(HTH) + P(THH) + P(HHH) = <

3 3 6
Therefore P(A) + P(B) = §+§ =3

It is clear that P(AuUB) # P(A) + P(B)

The points HTH and THH are common to both A and B . In the computation of
P(A) + P(B) the probabilities of points HTH and THH, i.e., the elements of A "B are
included twice. Thus to get the probability P(A _ B) we have to subtract the probabilities
of the sample points in A N B from P(A) + P(B)

ie. P(AUB) = P(A)+P(B)-2P(»;),Vo, e AN B
= P(A)+P(B)-P(ANB)
Thus we observe that, P(A UB)=P(A)+P(B)-P(A"B)

In general, if A and B are any two events associated with a random experiment,
then by the definition of probability of an event, we have

P(AUB)=Xp(o;),Yo, e AUB.

Since AuUB=(A-B)uU(AnB)uU(B-A),

we have

P(AUB)= [ZP(coi Wo, € (A—B)] + [ZP((Di Wo,eAn B]+ [ZP(coi )W eB- A]
(because A-B, A n B and B — A are mutually exclusive) .. (1)

Also P(A)+P(B)=[X p(w;,) V&, € A]+[Z p(e;) Vo; €B]
= [XP(0,)Vo; € (A-B)U(ANB)] + [ZP(w )Voy, € B-A)U(ANB)]
= [ZP(w,)Vo, € (A-B)|+[ZP(0,)Vo, € (ANB)]+ [ZP(w,)Vo, € (B-A)]+
[XP(0))Vo; € (ANB)]
= P(AUB)+[XP(0)Vo; e ANB] [using (1)]
= P(AUB)+P(ANB).
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Hence P(AUB)=P(A)+P(B) -P(ANB).
Alternatively, it can also be proved as follows:
AUB=AuU (B-A), where A and B — A are mutually exclusive,
and B=(AnB)u (B-A), where A" B and B — A are mutually exclusive.
Using Axiom (iii) of probability, we get
P(AUB)=P(A)+P(B-A) .. (2)
and PB)=P(ANB)+P(B-A) .. (3)
Subtracting (3) from (2) gives
P(AuB)-PB)=PA)-P (A NB)
or P(AUB)=P(A)+P (B)-P((ANnB)
The above result can further be verified by observing the Venn Diagram (Fig 16.1)

Fig 16.1

If A and B are disjoint sets, i.e., they are mutually exclusive events, then AN B = ¢
Therefore P(ANB)=P(¢)=0
Thus, for mutually exclusive events A and B, we have

P(AUB)=P(A)+P(B),
which is Axiom (iii) of probability.
16.4.4 Prabability of event ‘not A’ Consider the event A = {2, 4, 6, 8} associated
with the experiment of drawing a card from a deck of ten cards numbered from

1 to 10. Clearly the sample space is S = {1, 2, 3, ...,10}
Ifall the outcomes 1, 2, ...,10 are considered to be equally likely, then the probability

of each outcome is E
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Now P(A) =P(2) + P(4) + P(6) + P(8)
1 1 1 1 4 2
=—+t—F—F+—=—==
10 10 10 10 10 5
Also event ‘notA’= A" ={1,3,5,7,9, 10}
Now P(A") =P(1) + P(3) + P(5) + P(7) + P(9) + P(10)
_6_3
10 5
3 2
Thus, P(A") = 3= l—gzl—P(A)

Also, we know that A” and A are mutually exclusive and exhaustive events i.e.,
ANnA'=pandAUA =S

or P(A U A’ =P(S)
Now P(A) + P(A") =1, by using axioms (ii) and (iii).
or P(A") =Pmot A)=1-P(A)

We now consider some examples and exercises having equally likely outcomes
unless stated otherwise.

Example 10 One card is drawn from a well shuffled deck of 52 cards. If each outcome
is equally likely, calculate the probability that the card will be
(i) adiamond (i) not an ace
(iii) a black card (i.e., a club or, a spade)  (iv) notadiamond
(v) not a black card.

Solution When a card is drawn from a well shuffled deck of 52 cards, the number of
possible outcomes is 52.
(i) Let A be the event 'the card drawn is a diamond'

Clearly the number of elements in set A is 13.

Theref PA—E—l
erefore, P( “ 522

i.e. Probability of a diamond card = Z

(i) We assume that the event ‘Card drawn is an ace’ is B
Therefore ‘Card drawn is not an ace’ should be B’.

4 1 12

n—1_ =l-—=l-—=—
We know that P(B’) =1 - P(B) 50 13 13



PROBABILITY 401

(i) Let C denote the event ‘card drawn is black card’

Therefore, number of elements in the set C =26

ie. P(C)= ézl
52 2

1
Thus, Probability of a black card = 5 .
(iv) We assumed in (i) above that A is the event ‘card drawn is a diamond’,
so the event ‘card drawn is not a diamond’ may be denoted as A' or ‘not A’

1 3
Now P(notA)=1- P(A) = I_Z:Z

(v) The event ‘card drawn is not a black card’ may be denoted as C” or ‘not C’.

1 1
We know that P(not C)=1—- P(C) = 1—5:5

1

Therefore, Probability of not a black card = 5

Example 11 A bag contains 9 discs of which 4 are red, 3 are blue and 2 are yellow.
The discs are similar in shape and size. A disc is drawn at random from the bag.
Calculate the probability that it will be (i) red, (ii) yellow, (iii) blue, (iv) not blue,
(v) either red or blue.

Solution There are 9 discs in all so the total number of possible outcomes is 9.
Let the events A, B, C be defined as
A: ‘the disc drawn is red’
B: ‘the disc drawn is yellow’
C: ‘the disc drawn is blue’.
(1) The number of red discs =4, i.e., N (A) =4

4
Hence P(A) = 9
(i) The number of yellow discs =2, i.e., n (B) =2

2
Therefore, P(B) = 9

(i) The number of blue discs = 3, i.e., N(C) =3
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3 1
Thereft P(C)= ===
erefore, ©) 973
(iv) Clearly the event ‘not blue’ is ‘not C’. We know that P(not C) = 1 — P(C)
1 2
Therefore P(not C) = 1—5 = E

(v) The event ‘either red or blue’ may be described by the set ‘A or C’
Since, A and C are mutually exclusive events, we have

P(A or C) = P (A UC)=P(A) + P(C) = —+

NeRIFN

7
9

W | =

Example 12 Two students Anil and Ashima appeared in an examination. The probability
that Anil will qualify the examination is 0.05 and that Ashima will qualify the examination
is 0.10. The probability that both will qualify the examination is 0.02. Find the
probability that

(a) Both Anil and Ashima will not qualify the examination.

(b) Atleast one of them will not qualify the examination and
(c¢) Only one of them will qualify the examination.

Solution Let E and F denote the events that Anil and Ashima will qualify the examination,
respectively. Given that

P(E) =0.05, P(F) = 0.10 and P(E n F) = 0.02.
Then
(a) The event ‘both Anil and Ashima will not qualify the examination’ may be
expressedas E' " F’.
Since, E” is ‘not E’, i.e., Anil will not qualify the examination and F” is ‘not F, i.e.,
Ashima will not qualify the examination.
Also E'NF =(EUF) (by Demorgan's Law)
Now P(E U F)=P(E) + P(F) - P(E N F)
or PEEUF)=0.05+0.10- 0.02=0.13
Therefore PE" "F)=P(EUF)' =1- PEUF)=1- 0.13=0.87

(b) P (atleast one of them will not qualify)
=1 - P(both of them will qualify)
=1- 0.02=0.98
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(c) The event only one of them will qualify the examination is same as the event
either (Anil will qualify, and Ashima will not qualify) or (Anil will not qualify and Ashima
will qualify)i.e., ENF or E" N F, where ENF" and E" N F are mutually exclusive.

Therefore, P(only one of them will qualify) =P(ENF or E" N F)
~P(ENF)+PE NF)=P(E)-PENF)+PF)-P(ENF)
=0.05-0.02+0.10-0.02=0.11

Example 13 A committee of two persons is selected from two men and two women.
What is the probability that the committee will have (a) no man? (b) one man? (c) two
men?

Solution The total number of persons = 2 + 2 = 4, Out of these four person, two can
be selected in 4C2 ways.
(a) Nomen in the committee of two means there will be two women in the committee.

Out of two women, two can be selected in 2C2 =1 way.

2
Therefore P(no man): 4C2 b 1x2x1 :l
C, 4x3 6

(b) One man in the committee means that there is one woman. One man out of 2

can be selected in *C, ways and one woman out of 2 can be selected in *C, ways.

Together they can be selected in >C, x *C, ways.

2 2

C,x°C, 2x2 2

Therefore  P(One man)=—1——"'= _Z
4C2 2x3 3

(c) Two men can be selected in 2C2 way.

2

C 1 1

P(Two men)=—2= ==

Hence ( ) 4C2 4C2 6

| EXERCISE 16.3|

1. Which of the following can not be valid assignment of probabilities for outcomes

of sample Space S = {ml,(oz,m3,co4,co5,co6,m7}



A coin is tossed twice, what is the probability that atleast one tail occurs?
A die is thrown, find the probability of following events:

(i) A number greater than or equal to 3 will appear,

®
0.01
1

7
0.2

0.2

2
14

®
0.05
1

7
0.3

0.3

3
14

®
0.03
1

7
0.4

0.4

4
14

0.5
-0.2

S
14

(i) A number less than or equal to one will appear,
(iv) A number more than 6 will appear,

(v) Anumber less than 6 will appear.

A card is selected from a pack of 52 cards.

(a) How many points are there in the sample space?
(b) Calculate the probability that the card is an ace of spades.

0.6
0.1

6
14

0.7
0.3

15
14

(c) Calculate the probability that the card is (i) an ace (ii) black card.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both
tossed. find the probability that the sum of numbers that turn up is (i) 3 (ii) 12
There are four men and six women on the city council. If one council member is

selected for a committee at random, how likely is it that it is a woman?

A fair coin is tossed four times, and a person win Re 1 for each head and lose

From the sample space calculate how many different amounts of money you can
have after four tosses and the probability of having each of these amounts.

Three coins are tossed once. Find the probability of getting
(iii) atleast 2 heads

2
If 11 is the probability of an event, what is the probability of the event ‘not A’.

(i) 2 heads
(v) no head
(viii) no tail
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Assignment o,
(a) 0.1
b 1
(c) 0.1
(d) -0.1
1
©) 14
2.
3.
(1) A prime number will appear,
4.
5.
6.
7.
Rs 1.50 for each tail that turns up.
8.
(1) 3 heads
(iv) atmost 2 heads
(vii) exactly two tails
9.
10.

A letter is chosen at random from the word ‘ASSASSINATION’. Find the

(vi) 3tails
(ix) atmost two tails

probability that letter is (i) a vowel (ii) a consonant



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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In a lottery, a person choses six different natural numbers at random from 1 to 20,
and if these six numbers match with the six numbers already fixed by the lottery
committee, he wins the prize. What is the probability of winning the prize in the
game? [Hint order of the numbers is not important. ]
Check whether the following probabilities P(A) and P(B) are consistently defined
(i) P(A)=0.5, P(B)=0.7, AN B)=0.6
(i) P(A)=0.5PB)=04,P(AUB)=0.8
Fill in the blanks in following table:

P(A) P(B) P(ANB) P(A U B)
) 1 1 1
@ 3 5 15
(i) 0.35 o 0.25 0.6
(i) 0.5 0.35 o 0.7

3 1
Given P(A) = 5 and P(B)= 5 Find P(A or B), if A and B are mutually exclusive

events.

1 1 1
If E and F are events such that P(E) = 1 P(F) = B and P(E and F) = IR find

(1) P(E or F), (ii) P(not E and not F).

Events E and F are such that P(not E or not F) = 0.25, State whether E and F are
mutually exclusive.

A and B are events such that P(A) = 0.42, P(B) = 0.48 and P(A and B) = 0.16.
Determine (i) P(not A), (ii) P(not B) and (iii) P(A or B)

In Class XI of a school 40% of the students study Mathematics and 30% study
Biology. 10% of the class study both Mathematics and Biology. If a student is
selected at random from the class, find the probability that he will be studying
Mathematics or Biology.

In an entrance test that is graded on the basis of two examinations, the probability
of arandomly chosen student passing the first examination is 0.8 and the probability
of passing the second examination is 0.7. The probability of passing atleast one of
them is 0.95. What is the probability of passing both?

The probability that a student will pass the final examination in both English and
Hindi is 0.5 and the probability of passing neither is 0.1. If the probability of
passing the English examination is 0.75, what is the probability of passing the
Hindi examination?
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21. Inaclass of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for
both NCC and NSS. If one of these students is selected at random, find the
probability that

(i) The student opted for NCC or NSS.
(i) The student has opted neither NCC nor NSS.
(i) The student has opted NSS but not NCC.

Miscellaneous Examples

Example 14 On her vacations Veena visits four cities (A, B, C and D) in a random
order. What is the probability that she visits
(i) A before B? (i) A before B and B before C?
(i) A first and B last?  (iv) A either first or second?
(v) A just before B?

Solution The number of arrangements (orders) in which Veena can visit four cities A,
B, C, or D is 4! i.e., 24.Therefore, n (S) = 24.
Since the number of elements in the sample space of the experiment is 24 all of these
outcomes are considered to be equally likely. A sample space for the
experiment is
S = {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB

BACD, BADC, BDAC, BDCA, BCAD, BCDA

CABD, CADB, CBDA, CBAD, CDAB, CDBA

DABC, DACB, DBCA, DBAC, DCAB, DCBA}
(i) Let the event ‘she visits A before B’ be denoted by E

Therefore, E = {ABCD, CABD, DABC, ABDC, CADB, DACB
ACBD, ACDB, ADBC, CDAB, DCAB, ADCB}

n(E) 12 1
P e
(i) Let the event ‘Veena visits A before B and B before C’ be denoted by F.
Here F = {ABCD, DABC, ABDC, ADBC}

n(F) 41

Therefore, P(F)= n(s) 4 6

Students are advised to find the probability in case of (iii), (iv) and (v).
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Example 15 Find the probability that when a hand of 7 cards is drawn from a well
shuffled deck of 52 cards, it contains (i) all Kings (ii) 3 Kings (iii) atleast 3 Kings.

Solution Total number of possible hands = 52C7

(i) Number of hands with 4 Kings = *C 4 X 48C3 (other 3 cards must be chosen
from the rest 48 cards)
‘e, xte, 1
7, 7735

Hence P (a hand will have 4 Kings) =

(i) Number of hands with 3 Kings and 4 non-King cards =*C, x B )
‘C,x®e, 9
2, 1547

(iii) P(atleast 3 King) = P(3 Kings or 4 Kings)
P(3 Kings) + P(4 Kings)

9 1 _ 46
1547 7735 7735

Therefore P (3 Kings) =

Example 16 If A, B, C are three events associated with a random experiment,
prove that

P(AUBUC) = P(A)+P(B)+P(C)-P(AnB)-P(ANC)
-P(BNC)+P(ANBNC)

Solution Consider E = B U C so that
PAUBUC)=P(AUE)

= P(A)+P(E)-P(ANE) (D)
Now
P(E)=P(BuUC)
=P(B)+P(C)-P(BNC) )
Also ANE=AN(BuUC) = (AnB)U(ANC)[using distribution property of
intersection of sets over the union]. Thus

P(ANE)=P(ANB)+P(ANC)- P[(ANB)N(ANC)]
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=P(ANB)+P(ANC) - P[ANBNC] .. (3)
Using (2) and (3) in (1), we get
P[AUBUC]=P(A)+P(B)+P(C)-P(BNC)
-~ P(ANnB)-P(ANC)+P(ANBNC)

Example 17 In a relay race there are five teams A, B, C, D and E.

(a) What is the probability that A, B and C finish first, second and third,
respectively.

(b) Whatis the probability that A, B and C are first three to finish (in any order)
(Assume that all finishing orders are equally likely)

Solution If we consider the sample space consisting of all finishing orders in the first

5!
three places, we will have 3 P, ie., =5 x4 x 3 =60 sample points, each with

(5-3)

1
bability of — .
aprobability of -

(a) A, BandC finish first, second and third, respectively. There is only one finishing
order for this, 1.e., ABC.

1
Thus P(A, B and C finish first, second and third respectively) = "

(b) A, B and C are the first three finishers. There will be 3! arrangements for A, B
and C. Therefore, the sample points corresponding to this event will be 3! in
number.

36 1

So P (A, B and C are first three to finish) = % = 0 = 10

Miscellaneous Exercise on Chapter 16

1. A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles
are drawn from the box, what is the probability that
(1) all will be blue? (ii) atleast one will be green?

2. 4 cards are drawn from a well — shuffled deck of 52 cards. What is the probability
of obtaining 3 diamonds and one spade?



10.

PROBABILITY 409

A die has two faces each with number ‘1°, three faces each with number ‘2’ and
one face with number ‘3°. If die is rolled once, determine

(i) P(2) (ii) P(1 or 3) (iii) P(not 3)

In a certain lottery 10,000 tickets are sold and ten equal prizes are awarded.
What is the probability of not getting a prize if you buy (a) one ticket (b) two
tickets (c) 10 tickets.

Out of 100 students, two sections of 40 and 60 are formed. If you and your friend
are among the 100 students, what is the probability that

(a) you both enter the same section?
(b) you both enter the different sections?

Three letters are dictated to three persons and an envelope is addressed to each
of them, the letters are inserted into the envelopes at random so that each envelope
contains exactly one letter. Find the probability that at least one letter is in its
proper envelope.

A and B are two events such that P(A) = 0.54, P(B) = 0.69 and P(A N B) =0.35.
Find (i) P(A U B) (ii) P(A"nB") (iii))P(ANB") (iv)P(BNA")

From the employees of a company, 5 persons are selected to represent them in
the managing committee of the company. Particulars of five persons are as follows:

S. No. Name Sex Age in years
1. Harish M 30
2 Rohan M 33
3. Sheetal F 46
4 Alis F 28
5. Salim M 41

A person is selected at random from this group to act as a spokesperson. What is
the probability that the spokesperson will be either male or over 35 years?

If 4-digit numbers greater than 5,000 are randomly formed from the digits
0,1, 3,5, and 7, what is the probability of forming a number divisible by 5 when,
(1) the digits are repeated? (ii) the repetition of digits is not allowed?

The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e.,
from 0 to 9. The lock opens with a sequence of four digits with no repeats. What
is the probability of a person getting the right sequence to open the suitcase?
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Summary
In this Chapter, we studied about the axiomatic approach of probability. The main
features of this Chapter are as follows:
@ Sample space: The set of all possible outcomes
@ Sample points: Elements of sample space
@ Event: A subset of the sample space
@ Impossible event : The empty set
@ Sure event: The whole sample space
@ Complementary event or ‘not event’ : The set A" or S — A
¢ Event A or B: The set AU B
¢ Event A and B: The set AN B
¢ Event A and not B: The set A— B
¢ Mutually exclusive event: A and B are mutually exclusive if AN B = ¢

¢ Exhaustive and mutually exclusive events: Events E , E. ..., E_ are mutually
exclusive and exhaustive if E, WE, U .OE =SandE, NE =¢ Vi#]

@ Probability: Number P () associated with sample point @, such that
() 0<P(w) <1 (i) Y P(w;) forallme S=1

(i) P(A)= Z P(o for all ® e A. The number P (m,) is called probability
of the outcome w..
® Equally likely outcomes: All outcomes with equal probability
# Probability of an event: For a finite sample space with equally likely outcomes

Probability of an event P(A)= (( )) where N(A) = number of elements in

the set A, n(S) = number of elements in the set S.
@ If A and B are any two events, then
P(A or B) = P(A) + P(B) — P(A and B)
equivalently, P(A U B) = P(A) + P(B) — P(A n B)
@ If A and B are mutually exclusive, then P(A or B) = P(A) + P(B)

¢ If A is any event, then
P(not A) =1 —P(A)
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Historical Note

Probability theory like many other branches of mathematics, evolved out of
practical consideration. It had its origin in the 16th century when an Italian physician
and mathematician Jerome Cardan (1501-1576) wrote the first book on the subject
“Book on Games of Chance” (Biber de Ludo Aleae). It was published in 1663
after his death.

In 1654, a gambler Chevalier de Metre approached the well known French
Philosopher and Mathematician Blaise Pascal (1623—1662) for certain dice
problem. Pascal became interested in these problems and discussed with famous
French Mathematician Pierre de Fermat (1601-1665). Both Pascal and Fermat
solved the problem independently. Besides, Pascal and Fermat, outstanding
contributions to probability theory were also made by Christian Huygenes (1629—
1665), a Dutchman, J. Bernoulli (1654—1705), De Moivre (1667-1754), a
Frenchman Pierre Laplace (1749—1827), the Russian P.L Chebyshev (1821-1897),
A. A Markov (1856—1922) and A. N Kolmogorove (1903—1987). Kolmogorov is
credited with the axiomatic theory of probability. His book ‘Foundations of
Probability’ published in 1933, introduces probability as a set function and is
considered a classic.



Appendix 1

INFINITE SERIES

A.1.1 Introduction

As discussed in the Chapter 9 on Sequences and Series, asequence a,, &, ..., @, ...
having infinite number of termsis called infinite sequence and itsindicated sum, i.e.,
a +a,+a,+..+a +..iscaled aninfinte series associated with infinite sequence.
This series can a so be expressed in abbreviated form using the sigma notation, i.e.,

a+tatat. .. +an+...=zak
k=1

In this Chapter, we shall study about some special types of series which may be
required in different problem situations.
A.1.2 Binomial Theorem for any I ndex

In Chapter 8, we discussed the Binomial Theorem in which the index was a positive
integer. In this Section, we state a more general form of the theorem in which the
index isnot necessarily awhole number. It gives usaparticular type of infinite series,
called Binomial Series. We illustrate few applications, by examples.

We know the formula

(L+x)"="C, +"C, x+... +"C, X
Here, nis non-negative integer. Observe that if we replace index n by negative
integer or afraction, then the combinations "C, do not make any sense.

We now state (without proof), the Binomial Theorem, giving aninfinite seriesin
which the index is negative or afraction and not a whole number.

Theorem The formula
m(m-1) 2y m(m-1)(m-2) B
1.2.3

(1+ %)™ =1+ mx+

holds whenever |x| <1.
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Remark 1. Note carefully the condition | x | < 1, i.e., — 1< x < 1 is necessary when m
is negative integer or a fraction. For example, if wetakex= —2and m= -2, we
obtain

(1-2)? =1+ (-2)(-2) +%(_2)2 ;..

or 1=1+4+12+...
Thisisnot possible

2. Notethat there areinfinite number of termsin the expansion of (1+ x)™, when m
isanegative integer or afraction

Consider (a+b)"

1
1
Q
7\
=
+
oo
N—
1

3
I
Q
3
7\
=
+
| o
3

1
Q
3
+
gg
N
O
+

b
Thisexpansion isvalid when a <1 or equivalently when |b | <] a].

The general term in the expansion of (a+ b)™is

m(m-1)(m-2)...(m-r +1)a™ b’
123.r
We give below certain particular cases of Binomial Theorem, when we assume

x| <1, these are left to students as exercises:
1L L+X)t=1-x+x-=x3+...
2. (1-X)1=1+x+xX2+x3+...
3 (A+X)72=1-2x+3x — &3C+...
4, (1 — X)2=1+22X+32+43C+ ...

Example 1 Expand (1—2) i ,when | x| < 2.
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Solution We have

_ 1+@(_x)+@(zy+...

TN
T
N | X
|
N~
|

1 2 1.2 2
2
= 1+§+31+...
4 32
A.1.3 Infinite Geometric Series
From Chapter 9, Section 9.5, a sequence a,, a,, a,, ..., a,is called GP, if
% =r (constant) for k = 1, 2, 3, ..., n=L. Particularly, if we take a, = a, then the

resulting sequence a, ar, ar?, ..., ar! istaken asthe standard form of GP, whereais
first term and r, the common ratio of G.P.

Earlier, we have discussed the formula to find the sum of finite series
a+ar+ar?+ ... +ar"-*whichisgiven by

a(l—r”)
ST

In this section, we state the formula to find the sum of infinite geometric series
at+ar+ar?+..+a" 1+ .. andillustrate the same by examples.

Let us consider the GP. 1, E il
3 9
2
Herea=1,r = E.Wehave
n
1—@ 2)"
S, =1_—2:3[1—(§) ] .. (1)

2 n
Let us study the behaviour of (Ej as n becomes larger and larger.
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n 1 5 10 20
2 n
(5) 0.6667 0.1316872428 0.01734152992 0.00030072866

n
We observe that as n becomes larger and larger, (E] becomes closer and closer to

2 n
zero. Mathematically, we say that as n becomes sufficiently large, (5] becomes

2 n
sufficiently small. In other words, as N — oo, (5] — 0. Consequently, we find that

the sum of infinitely many termsisgivenby S=3.
Thus, for infinite geometric progression a, ar, ar?, ..., if numerical vaue of common
ratior islessthan 1, then

a(l—r”) a ar”
Sh= 1-r :1—r_1—r

n

— 0. Therefore,

: . ar
Inthiscase, 1" _s 0 @ n— oo since |r [<1 and then 1

a
S“_)E aS N—oow.

Symboalically, sumto infinity of infinite geometric seriesis denoted by S. Thus,

a
we have  S=——
1-r
For example
1 1
(|) 1+2+ 2+?+ —j=2
1 1 1 1 1 2
(i) 1-=+5-—S+.= = =3
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Example 2 Find the sum to infinity of the GP. ;
-5 5 -5

416" 64"
. -5 1
Solution Here a=7 and F=—Z.AISO [r|<1.

D3
Hence, the sum to infinity is —4— =4 - 1.
1 5
1+~
4 4
A.1.4 Exponential Series

Leonhard Euler (1707 — 1783), the great Swiss mathematician introduced the number

einhiscaculustextin 1748. Thenumber eisuseful incalculusas n inthe study of the
circle.

Consider thefollowing infinite series of numbers

1+1+i+£+i+
a2 3 4 - (D)
The sum of the series given in (1) is denoted by the number e
Let us estimate the value of the number e.

Sinceevery term of the series (1) ispositive, itisclear that itssumisalso positive.

Consider the two sums
i+i+i+ +i+
3 4 5 T - @
1 1 1 1
and ?+F+?+""+F+m .. (3
Observe that
1 1 di_g hich i 1 1
3!_6an 2 4,ch glves3! 72
1_1 42 1 hichaives = <=
2= o2 an 7 8’W ic glV%m >3
11 Ll ichaives t< X
5!—120an » 16,W|c glveﬁs! >
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Therefore, by analogy, we can say that
1.1
n 2mte
We observe that each term in (2) is less than the corresponding termin (3),

whenn> 2

N O Y i S I
Therefore | 5% "y Tt S\ 2 TR T T T e T - (4)

1 1
Adding (1+ I 5) on both sides of (4), we get,

( 1 1) [1 1 1 1 j

I+ —+— [+ o+ —+—+.+—+..

o2 3 4 5 n!

<{(1+1+1j+(i2+i3+i4+...+ 1_1+...j} - (9)
2 22 2 2 2"

1 1 1 1 1
=<1+ 1+E+?+§+?+...+2H+...

1-=

Left hand side of (5) representsthe series (1). Thereforee< 3 and aso e> 2 and
hence2<e<3.

Remark The exponential seriesinvolving variable x can be expressed as

Example 3 Find the coefficient of x2 in the expansion of e**3 as a series in
powers of X.

Solution In the exponential series

x X X
e =l —+—+—+..
r 2 3

replacing x by (2x + 3), we get
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2
3= 14 (2x+3) .\ (2x+3) .
i 2!

(2x+3)" _ (3+2%)"
=

Here, the general termis '
n!

. This can be expanded by the

Binomial Theorem as
e o3 (2947 6,320+t (24)'

n n—-2~2
Here, the coefficient of x?is ZT . Therefore, the coefficient of X2 in the whole
seriesis

nC 3!’1—222 0 n n— 1 3” 2

n; 2n! - ZZ

n=2
0 3n—2
- 2;( “) lwsingni =n(n-1) (0 - 2]
— 2{1+§+3—2+§+..1
TPTRE

2e® .
Thus 2€? is the coefficient of x? in the expansion of 3,
Alternatively e+ = @ . e~

{1+ 2x (ZX) (ZX)3+..}
= 1 2! 3!

3 22 3
Thus, the coefficient of x? in the expansion of €2*3is € 5= 2e

Example 4 Find the value of €, rounded off to one decimal place.

Solution Using the formula of exponential series involving x, we have

X X2 X3 n

=l
21 3 n!
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Putting x = 2, we get

, . 2 22 28 2% 5 6
=lt—+—F+—+—+—+—+...
1 20 3 4 5 6

=1+2+2+ﬂ+2+i+i+...
3 3 15 45

> the sum of first seven terms > 7.355.

On the other hand, we have

) 2 22 2 22\ 25( 2 22 28
€<t —+—+_—F+— [+ | I+ + o+ +..
o2 3 4 5! 6 6° 6

2
4 1 (1 41 1 2
=l+—|l+=+| |+ | =T+—| — | = T7+==
15[ 3 (3) J 15/, 1 7+5 4
Thus, € lies between 7.355 and 7.4. Therefore, the value of €, rounded off to one
decimal place, is7.4.

A.15 Logarithmic Series

Another very important seriesislogarithmic serieswhich isalsointheform of infinite
series. We state the following result without proof and illustrate its application with an
example.

Theorem If | x| <1, then

2 3
log, (1+ X) = x—X?+X§—...

The series on the right hand side of the above is called the logarithmic series.

The expansion of log, (1+X) is valid for x = 1. Substituting x = 1 in the
expansion of log, (1+x), we get
1

11
log.2=1—-—+=—"——+...
De 2 3 4
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Example5If o, B arethe roots of the equation x* — px+q=0, prove that

2 2 3 3
o+ o+
B2 o, 00 4B s

Ioge(1+ px+qx2)=(cx+B)x— 5 3

a’x? o’ B2 B3
Solution Right hand side = {GX— 5 3 —---}{ﬁX—T*-T—---
= log, (1+ a.x)+log(1+ px)
= Ioge(1+(oc+[3)x+oc[3x2)
= log, (1+ px+ax°) = Left hand side.
Here, we have used the facts a+B=p and aff=q . We know this from the

given roots of the quadratic equation. We have also assumed that both |ax|< 1 and
IBx[<1.
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Much of our progress in the last few centuries has made it necessary to apply
mathematical methods to real-life problems arising from different fields — be it Science,
Finance, Management etc. The use of Mathematics in solving real-world problems
has become widespread especially due to the increasing computational power of digital
computers and computing methods, both of which have facilitated the handling of
lengthy and complicated problems. The process of translation of a real-life problem
into a mathematical form can give a better representation and solution of certain
problems. The process of translation is called Mathematical Modelling.

Here we shall familiaries you with the steps involved in this process through
examplesWe shall first talk about what a mathematical model is, then we discuss the
steps involved in the process of modelling.

Mathematical modelling is an essential tool for understanding the world. In olden days
the Chinese, Egyptians, Indians, Babylonians and Greeks indulged in understanding
and predicting the natural phenomena through their knowledge of mathematics. The
architects, artisans and craftsmen based many of their works of art on geometric
prinicples.

Suppose a surveyor wants to measure the height of a toiggrhysically very
difficult to measure the height using the measuring tape. So, the other option is to find
out the factors that are useful to find the height. From his knowledge of trigonpmetry
he knows that if he has an angle of elevation and the distance of the foot of the tower
to the point where he is standing, then he can calculate the height of the tower

So, his job is now simplified to find the angle of elevation to the top of the tower
and the distance from the foot of the tower to the point where he is standing. Both of
which are easily measurable. Thus, if he measures the angle of elevatiGraad 40
the distance as 450m, then the problem can be solved as given in Example 1.
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The angle of elevation of the top of a tower from a point O on the ground,
which is 450 m away from the foot of the towsr4C. Find the height of the tower

We shall solve this in dirent steps.

We first try to understand the real problem. In the problem a tower is given and
its height is to be measured. lletlenote the height. It is given that the horizontal
distance of the foot of the tower from a particular point O on the ground is 450 m. Let
d denotes this distanc&hend = 450m.We also know that the angle of elevation,
denoted by, is 4C.

The real problens to find the heighl of the tower using the known distarete
and the angle of elevatidh

The three quantities mentioned in the problem are height,

distance and angle of elevation. B
So we look for a relation connecting these three quantities.
This is obtained by expressing it geometrically in the following
way (Fig 1).
AB denotes the toweOA gives the horizontal distance h
from the point O to foot of the towerlAOB is the angle of
elevation. Then we have \
h 0440 A
tan® = — orh=dtan@ . (Q) 450 m
d Fig 1

This is an equation connectifgh andd.

We use Equation (1) to soleWe haved = 40°. andd = 450m.Then we get
h =tan 40 x 450 = 450 x 0.839 = 377.6m

Thus wegot that the height of the tower approximately 378m.

Let us now look at the different steps used in solving the problem. In step 1, we
have studied the real problem and found that the problem involves three parameters
height, distance and angle of elevation. That means in this step wetlidiee the
real-life problem and identified the parameters.

In the Step 2, we used some geometry and found that the problem can be
represented geometricalyg given in Fig 1. Then we used the trigonometric ratio for
the “tangent” function and found the relation as

h=dtan6

So, in this step we formulated the problem mathematiddigt means we found
an equation representing the real problem.
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In Step 3, we solved the mathematical problem and gohth&77.6m. That is

we found

Solution of the problem.
In the last step, we interpreted the solution of the problem and stated that the

height of the tower is approximately 378 call this as

Interpreting the mathematical solution to the real situation
In fact these are the steps mathematicians and others use to study various real-

life situationsWe shall consider the question, “why is it necessary to use mathematics
to solve different situations.”

Here are some of the examples where mathematics is used effectively to study

various situations.

1.

Proper flow of blood is essential to transmit oxygen and other nutrients to various
parts of the body in humanbeings as well as in all other anifmaisonstriction

in the blood vessel or any change in the characteristics of blood vessels can
change the flow and cause damages ranging from minor discomfort to sudden
death. The problemis to find the relationship between blood flow and physiological
characteristics of blood vessel.

In cricket a third umpire takes decision of a LBW by looking at the trajectory of

a ball, simulated, assuming that the batsman is not there. Mathematical equations
are arrived at, based on the known paths of balls before it hits the batéegan’

This simulated model is used to take decision of LBW

Meteorology department makes weather predictions based on mathematical
models. Some of the parameters which affect change in weather conditions are
temperature, air pressure, humiditynd speed, etd.he instruments are used to
measure these parameters which include thermometers to measure temperature,
barometers to measure airpressure, hygrometers to measure humidity
anemometers to measure wind speed. Once data are received from many stations
around the country and feed into computers for further analysis and interpretation.

Department oAgriculture wants to estimate the yield of rice in India from the
standing crops. Scientists identify areas of rice cultivation and find the average
yield per acre by cutting and weighing crops from some representative fields.
Based on some statistical techniques decisions are made on the average yield of
rice.

How do mathematicians help in solving such problems? They sit with experts in
the area, for example, a physiologist in the first problem and work out a

mathematical equivalent of the problem. This equivalent consists of one or more
equations or inequalities etc. which are called the mathematical models. Then
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solve the model and interpret the solution in terms of the original problem. Before
we explain the process, we shall discuss what a mathematical model is.

A mathematical model is a representation which comprehends a situation.
An interesting geometric model is illustrated in the following example.

(Bridge Problem) Konigsbgris a town on the Pregel Riyevhich in the

18th century was a German Island C
town, but now is Russiawithin River Bank B
the town are two river islands
that are connected to the banV~
with seven bridges as show-¥
in (Fig 2).

People tried to walk aroun: #
the town in a way that only
crossed each bridge once, but it
proved to be difficult problem.
Leonhard Euler a Swiss Fig 2
mathematician in the service of
the Russian empire Catherine the Great, heard about the problem. In 1736 Euler proved
that the walk was not possible to do. He proved this by inventing a kind of diagram
called a network, that is made up of vertices River bank
(dots where lines meet) and arcs (lines) (Fig3). A

He used four dots (vertices) for the two
river banks and the two islands. These have
been marked, B and C, D.The seven linedsland C Island D
(arcs) are the seven bridg¥su can see that
3 bridges (arcs) join to riverbark, and 3 join

Island D

River Bank A

to riverbank B. 5 bridges (arcs) join to island River bank
C, and 3 join to island D. This means that all B
the vertices have an odd number of arcs, so Fig 3

they are called odd vertices (An even vertex
would have to have an even number of arcs joining to it).

Remember that the problem was to travel around town crossing each bridge only
once. On Eulés network this meant tracing over each arc only once, visiting all the
vertices. Euler proved it could not be done because he worked out that, to have an odd
vertex you would have to begin or end the trip at that vertex. (Think about it). Since
there can only be one beginning and one end, there can only be two odd vertices if you
are to trace over each arc only once. Since the bridge problem has 4 odd vertices, it
just not possible to do!
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After Euler proved his Theorem, much River bank
water has flown under the bridges in Konigsberg. A
In 1875, an extra bridge was built in Konigsberg,
joining the land areas of river banksand B
(Fig 4). Is it possible now for the Konigsbergial&nd € Island D
to go round the cityusing each bridge only once?
Here the situation will be as in FigAfter

the addition of the new edge, both the vertices Rive;ba“k
A and B have become even degree vertices. Fig 4

However D and C still have odd degree. So, it
is possible for the Konigsbergians to go around the city using each bridge exactly once.

The invention of networks began a new theory called graph theory which is now
used in many ways, including planning and mapping railway networks (Fig 4).

Here, we shall define what mathematical modelling is and illustrate the different
processes involved in this through examples.

Mathematical modelling is an attempt to study some part (or form) of the
real-life problem in mathematical terms.

Conversion of physical situation into mathematics with some suitable
conditions is known as mathematical modelling. Mathematical modelling is
nothing but a technique and the pedagogy taken from fine arts and not from the
basic sciences. Let us now understand the different processes involved in Mathematical
Modelling. Four steps are involved in this procéss.an illustrative example, we
consider the modelling done to study the motion of a simple pendulum.

This involves, for example, understanding the process involved in the motion of simple
pendulumAll of us are familiar with the simple pendulufthis pendulum is simply a

mass (known as bob) attached to one end of a string whose other end is fixed at a
point.We have studied that the motion of the simple pendulum is periddiqeriod
depends upon the length of the string and acceleration due to gsaviiyhat we need

to find is the period of oscillation. Based on this, we give a precise statement of the
problem as

How do we find the period of oscillation of the simple pendulum?
The next step is formulation.

Consists of two main steps.
In this, we find out what are the factors/
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parameters involved in the problem. For example, in the case of pendulum, the factors
are period of oscillation (T), the mass of the ) éffective lengthl{) of the pendulum

which is the distance between the point of suspension to the centre of mass of the bob.
Here, we consider the length of string as effective length of the pendulum and acceleration
due to gravity ), which is assumed to be constant at a place.

So, we have identified four parameters for studying the problem.dNowurpose
is to find T. For this we need to understand what are the parametersféuattiaé
period which can be done by performing a simple experiment.

We take two metal balls of two &#fent masses and conduct experiment with
each of them attached to two strings of equal lentfesmeasure the period of
oscillation.We make the observation that there is no appreciable change of the period
with mass. Nowwe perform the same experiment on equal mass of balls but take
strings of different lengths and observe that there is clear dependence of the period on
the length of the pendulum.

This indicates that the massis not anessential parameter for finding period
whereas the lengthis an essential parameter

This process of searching thesential parameterds necessary before we go
to the next step.

This involves finding an equation, inequality or a
geometric figure using the parameters already identified.
In the case of simple pendulum, experiments were conducted in which the values
of period T were measured for different value$. dihese values were plotted on a
graph which resulted in a curve that resembled a parabola. It implies that the relation
between T andl could be expressed

T2 =K . (1)

2
It was found thak =4% . This gives the equation

T=2n\g .. (2)

Equation (2) gives the mathematical formulation of the problem.

The mathematical formulation rarely gives the answer directly
Usually we have to do some operation which involves solving an equation, calculation
or applying a theorem etc. In the case of simple pendulums the solution involves applying
the formula given in Equation (2).
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The period of oscillation calculated for two different pendulums having different
lengths is given iffable 1
Table 1

[ 225 cm 275cm
T 3.04 sec 3.36 sec

The table shows that for= 225 cm, T = 3.04 sec and for 275 cm, T = 3.36 sec.

A mathematical model is an attempt to stublg essential characteristic of a real life
problem. Many times model equations are obtained by assuming the situation in an
idealised context. The model will be useful only if it explains all the facts that we would
like it to explain. Otherwise, we will reject it, or else, improve it, then test it again. In
other wordswe measure the effectiveness of the model by comparing the results
obtained from the mathematical model, with the known facts about the real
problem. This process is called validation of the model. In the case of simple
pendulum, we conduct some experiments on the pendulum and find out period of
oscillation.The results of the experiment are giveifatble 2.

Table 2
Periods obtained experimentally for four different pendulums

Mass (gms) [ Length (cms) Time (secs)
385 275 3.371
225 3.056
230 275 3.352
225 3.042

Now, we compare the measured value$ahle 2 with the calculated values given in
Table 1.

The difference in the observed values and calculated values gives théerror
example, folt = 275 cm, and mass = 385 gm,

error = 3.371-3.36 = 0.01

which is small and the model is accepted.

Once we accept the model, we have to interpret the mddelprocess of
describing the solution in the context of the real situation is called interpretation
of themodel. In this case, we can interpret the solution in the following way:

(a) The period is directly proportional to the square root of the length of the
pendulum.
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(b) Itis inversely proportional to the square root of the acceleration due to gravity

Our validation and interpretation of this model shows that the mathematical model
is in good agreement with the practical (or observed) values. But we found that there
is some error in the calculated result and measured result. This is because we have
neglected the mass of the string and resistance of the medium. So, in such situation we
look for a better model and this process continues.

This leads us to an important observation. The real world is far too complex to
understand and describe complet&le just pick one or two main factors to be
completely accurate that may influence the situation. Then try to obtain a simplified
model which gives some information about the situatidmstudy the simple situation
with this model expecting that we can obtain a better model of the situation.

Now, we summarise the main process involved in the modelling as

(a) Formulation (b) Solution (c) Interpretation/dlidation
The next example shows how modelling can be done using the techniques of finding
graphical solution of inequality

A farm house uses atleast 800 kg of special food.ddilyspecial food is
a mixture of corn and soyabean with the following compositions

Table 3
Material | Nutrients present per Kg Nutrients present per KGost per Kgﬁ
Protein Fibre
Corn .09 .02 Rs 10
Soyabear|| .60 .06 Rs 20

The dietary requirements of the special food stipulate atleast 30% protein and at most
5% fibre. Determine the daily minimum cost of the food mix.

Here the objective is to minimise the total daily cost of the food which
is made up of corn and soyabean. So the variables (factors) that are to be considered
are

x = the amount of corn
y = the amount of soyabean
z = the cost
The last column iffable 3 indicates thaf x, y are related by the equation
z=1 + 20y . (1)
The problem is to minimisewith the following constraints:
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(a) The farm used atleast 800 kg food consisting of corn and soyabean
i.e.,x+y=800
. (2)
(b) The food should have atleast 30% protein dietary requirement in the proportion
as given in the first column dhble 3.This gives

0.0%+0.6/=20.3k+Y) - (3
(c) Similarly the food should have atmost 5% fibre in the proportion given in
2nd column offable 3.This gives
0.0 + 0.06y < 0.05 &k +) .. (4)
We simplify the constraints given in (2), (3) and (4) by grouping all théicieets
of X, y.

Then the problem can be restated in the following mathematical form.
Minimise z subject to

X+y =800
0.21x-.30/<0
0.0%-.0y=0

This gives the formulation of the model.

This can be solved graphicalljhe shaded region in Fig 5 gives the possible
solution of the equations. From the graph itis clear that the minimum value is got at the

Y
Mmimlsez :10x+20
_________ y
1500 R
S z
1000 - 7 »
g W
| M
500 $x‘3—b%
| | |

0 500 1000 1500

Optimum: x = 470.6 kg
y=3294kg
z=Rs 11294

Fig 5
point (470.6,329.4) i.ex,=470.6 angy = 329.4.
This gives the value afas z= 10 x 470.6 + 20 x 329.4 4294
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This is the mathematical solution.

The solutiom can be interpreted as saying that, “The minimum cost of the
special food with corn and soyabean having the required portion of nutrient contents,
protein and fibre is Rs1294 and we obtain this minimum cost if we use 470.6 kg of
corn and 329.4 kg of soyabean.”

In the next example, we shall discuss how modelling is used to study the population
of a country at a particular ten

Suppose a population control unit wants to find out “how many people will
be there in a certain country after 10 years”

We first observe that the population changes with time and it
increases with birth and decreases with deaths.

We want to find the population at a particular time.tidetnote the time in years.
Thent takes values 0, 1, 2, t 5 0 stands for the present time, 1 stands for the next
year etc. For any time letp (t) denote the population in that particular year

Suppose we want to find the population in a particular, wegt, = 2006. How
will we do thatWe find the population by Jan. 1st, 2088d the number of births in
that year and subtract the number of deaths in thatlyeta ) denote the number of
births in the one year betweérandt + 1 and D{) denote the number of deaths
betweent andt + 1. Then we gethe relation

Pt+1)=PO+BH-DO
Now we make some assumptions and definitions

B(t)
1. P_(t) is called thebirth rate for the time intervat tot + 1.

D(Y)
2. P_(t) is called thadeath rate for the time intervat tot + 1.

1. The birth rate is the same for all intervals. Likewise, the death rate is the same
for all intervals. This means that there is a condbamialled the birth rate, and a
constant, called the death rate so that, fortalO,

=10 4=D ) 0
P() P¢)

2. There is no migration into or out of the population; i.e., the only source of population

and
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change is birth and death.
As a result of assumptions 1 and 2, we deduce th&t>for
Pt+1)=P0)+B({-DO
= P + bP() —dP()
= (1 +b-d) Pf) .. (2)
Settingt = 0 in (2) gives
P(1) = (1 +b-d)P (0) .. (3)
Settingt = 1 in Equation (2) gives
P(2) =1 +b-d) P (1)
=(1+b-d) (1 +b-d) P (0) (Using equation 3)
= (1 +b—d)* P(0)
Continuing this waywe get
Pt) = (1 +b—d)' P (0) .. (4
fort=0, 1, 2, ..The constant 1 b —d is often abbreviated byand called thgrowth
rate or, in more high-flown language, tivalthusian parameter, in honor of Robert
Malthus who first brought this model to popular attention. In termsBduation (4)
becomes
Pt) = P(Oy! : t=0,1,2,.. .. (5)

P(t) is an example of aexponential function. Any function of the forner !, wherec
andr are constants, is an exponential function.
Equation (5) gives the mathematical formulation of the problem.

Suppose the current population is 250,000,000 and the rates 8ré2 andi = 0.01.
What will the population be in 10 years? Using the formula, we calculate P(10).
P(10) = (1.02? (250,000,000)
=(1.104622125) (250,000,000)
=276,155,531.25

Naturally, this result is absurd, since one ¢drdve 0.25 of a person.
So, we do some approximation and conclude that the population is 276,155,531
(approximately). Here, we are not getting the exact answer because of the assumptions
that we have made in our mathematical model.

The above examples show how modelling is done in variety of situations using
different mathematical techniques.
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Since a mathematical model is a simplified representation of a real problem, by its
very nature, has built-in agsiptions and approximations. Obvioyshe mostimportant
guestion is to decide whether our model is a good one or not i.e., when the obtained
results are interpreted physically whether or not the model gives reasonable answers.
If a model is not accurate enough, we try to identify the sources of the shortcomings.
It may happen that we need a new formulation, new mathematical manipulation and
hence a new evaluation. Thus mathematical modelling can be a cycle of the modelling
process as shown in the flowchart given below:
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|[EXERCISE 1.1 |

@iv), (v), (vi), (vii) and (viii) are sets.
e (i)e (i) e (viye (v)e (vi)e

A ={3,-2,-1,0,1,2,3,4,5,6 } (i) B={1,2,3,4,5}

C=1{17,26,35,44,53,62,71,80} (iv) D=1{2,3,5}

E={T, R, LGO,N,M,E; Y} (vi F={B,E T,R}
X:x=2"nenand 1<n<5}

F
{xX:x=3n,neNvand 1 £n<4} (i) {
{Xx:x=5"nenand 1 £n<4 } (iv) {
{X:x=r,nenand 1 £n<10}
A={1,3,5...} @@ B=1{0,1,2,3,4}
C={-2,-1,0,1,2} vy D={L,0,Y,A}
E = { February, April, June, September, November }
F={b,cdfghj}
< (c) (i) > (a) (iil) <> (d) (iv) <> (b)

|EXERCISE 1.2|

X: X1is an even natural number}

(iii), (iv)

Finite  (ii) Infinite (i) Finite (iv) Infinite (v) Finite
Infinite (ii) Finite (i) Infinite (iv) Finite (v) Infinite
Yes (i) No (iii) Yes (iv) No

No (i) Yes 6. B=D,E=G

| EXERCISE 1.3

c (i) & (i) < (iv) @ v) @ (vi) c
c

False (ii)) True (iii) False (iv) True (v) False  (vi) True
(v), (vii), (viii), (ix), (xi)

o, {a} (o, {a}, {b},{ab}

O, {1 {25 {35 {L2} {1,3},{2,3},{123} (iv) ¢

(-4, 6] i) (—12,-10) (i) [0,7)

(iv) [3,4]

{X:x eR,-3<x<0} (i) {x:xeR 6<x<12}
{X:Xx e R,6<x<12} (iv) {X R:=23<x<5} 9 (iii)
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| EXERCISE 1.4
1. () XuY={l,235} (i) AuB={abceiou}
@) AuB={x:x=1,2,4,5 oramultiple of 3 }
(ivy AuUB={x:1<x<10,xe N} (v) AuB={1,2,3}
2. Yess AUB={ab,c} 3 B
4. (1) {1,2,3,4,5,6} (i) {1,2,3,4,5,6,7,8} (i) {3,4,5,6,7,8}
(iv) {3,4,5,6,7,8,9,10} (v){1,2,3,4,5,6,7,8}
(viy {1,2,3,4,5,6,7,8,9,10} (vii) {3,4,5,6,7,8,9,10}
5 () XnY={1,3} () An B={a} @ {3} @@v)o ()¢
6. (@) {7,9,11} @) {11,13} (i) ¢ (iv) {11}
™ o vi) {7,9,11} (vii) ¢
(vii) {7,9,11} (ix) {7,9,11} x) {7,9,11,15}
7. (i) B @) C (i) D (iv) o
V) {2} (vi) {x:Xxis an odd prime number } 8. (i)
9. () {3,6,9,15,18,21} (ii)) {3,9,15,18,21} (iii) {3,6,9,12,18,21}
(iv) {4,8,16,20) (v) {2,4,8,10,14,16} (vi) {5,10,20}
(vi)) {20} (viii) {4,8,12,16} (ix) {2,6,10, 14}
(x) {5,10,15} (xi) {2,4,6,8,12, 14,16} (xii) {5,15,20}
10. ) {ac} @i {f. g} (iii) {b,d }
11. Setofirrational numbers 12. (i)F (i) F (i) T (iv) T
| EXERCISE 1.5
LG {567,809 (i) {1,3579} (ii)y {7,8,9}
@iv) {5,7,9} v) {1,2,3,4} (vi) {1,3,4,5,6,7,9}
2. (@ {defght (@ {abch} (i) {b,d,fh}
(iv) {b,cde)
3. (i) {X:Xxisan odd natural number }
(i) { x:X is an even natural number }
(i) {X:X € N and xis not a multiple of 3 }
(iv) {X:Xis apositive composite number and X=1 ]
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(v) {X:Xisapositive integer which is not divisible by 3 or not divisible by 5}
(vi) { x:xe N and X is not a perfect square }
(vii) { X:Xe N and X is not a perfect cube }

(viii) {X:Xe Nand X =3 } (ix) {Xx:Xxe Nandx = 2}
9
x) {x:xe Nandx<7} (xi) {x:Xxe Nand X < 5}
A' is the set of all equilateral triangles.
1 U (i) A (i) ¢ @iv) ¢
|EXERCISE 16|
2 2.5 3. 50 4. 42
30 6. 19 7. 25,35 8. 60

Miscellaneous Exercise on Chapter 1

Ac B, AcC, BcC, DcA, DcB, DcC
(i) False (i) False  (iii) True (iv) False (v) False
(vi) True
False 12. WemaytakeA={1,2},B={1,3},C={2,3}
325 14. 125 15. (i) 52, (i) 30 16. 11
| EXERCISE 2.1

x=2andy=1 2. The number of elements in A X B is 9.
GxH=1{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)}
HxG={(5,7),(5,8),(4,7),(4,8),(12,7),(2,8)}

(i) False

PxQ={(m n), (m m), (n, n), (n, mj

(i) True
(ii)) True
AxA={-1,-1),-11),0,-1),(,1)}
AXAxXA={-1,-1,-1),(-1,-1, 1), (-1,1,-1), (-1, 1, 1), (1,-1,-1), (1,1, 1),
(I, 1,-1),(1, 1, 1)}
A={ab},B={xy}
AxB=/{(1,3),(1,4),(2,3),(2,4)}
A x B will have 24 = 16 subsets.

A= {XYV,z} and B= {1,2}
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A={-1,0, 1}, remaining elements of
AXA are (_15 _1)’ (_19 1): (Oa _1)5 (05 0), (15 _1): (13 O)a (15 1)

|[EXERCISE 2.2 |

R=1{(1,3),(2,6),(3,9),(4,12)}
Domain of R = {1, 2, 3, 4}
Range of R={3,6,9, 12}
Co domain of R = {1, 2, ..., 14}
R=1{(1,6),(2,7), (3, 8)}
Domain of R = {1, 2, 3}
Range of R = {6, 7, 8}
R=1{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4), (5, 6)}
(i) R={(xy):y=x-2forx=5,6,7}
(i) R=1{(5,3),(6,4),(7,5)}. Domain of R = {5, 6, 7}, Range of R={3,4, 5}
O R={(1,1),(12),(,3),(1,4),(1,6),(24),(2,06), (2 2), (4, 4), (6, 6),
(3,3),3,6)}
(i) DomainofR={1,2,3,4, 6}
(i) Range of R=1{1,2,3,4, 6}
Domain of R=1{0, 1,2, 3,4,5,} 7. R=1{(2,8),(3,27),(5,125),(7,343)}
Range of R=1{5,6,7,8,9, 10}
No. of relations from A into B = 2° 9. Domain of R=2Z
Range of R=2Z

| EXERCISE 2.3

(i) yes, Domain={2,5,8, 11, 14,17}, Range = {1}
(i) yes, Domain=(2,4, 6,8, 10, 12, 14}, Range = {1,2,3,4,5,6,7}
(i) No.
() Domain = R, Range = (— <o, 0]
(i) Domain of function = {X: -3 <x<3}
Range of function = {X: 0 < x< 3}
1 fO)y=-5 (@i f(7H=9 (i) f(-3)=-11

(1 tO)=32 (i) t(28)= % (iii) t(-10)=14 (iv) 100
(i) Range = (=0, 2) (i) Range=1[2,) (i) Range =R
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Miscellaneous Exercise on Chapter 2

2.1 3. Domain of function is set of real numbers except 6 and 2.
Domain =1, o), Range = [0, o)

Domain = R, Range = non-negative real numbers

Range = Any positive real number X such that 0 < x <1

(f+g)x=3x-2 8.a=2,b=-1 9 (i) No (i) No  (iii)No
f-g)x=-x+4

f X+1 3
— |x= , X#E—
g) 2x-3 2

(1) Yes, (ii) No 11. No 12. Rangeof f={3,5,11,13}
| EXERCISE 3.1|
_sm 1oz 4 _26m
0 5 (i) = (i) ) =5
() 39°22°30”  (ii)-229°5"29” (iii) 300° (iv)210°
207
12 4.12°36' 5. 5~ 6. 5:4
N 4 1 T
i (i) 3 (if}) 75
|EXERCISE 3.2 |

: 2 1
sin X=——3,cosec X=———,sec X=-2,tan X=\/§,cot X=——=
NE)

2 NE)
5 4
cosec X=§,cos X=——,sec X=——,tan X=——,cotX=—§
. 4 5 3 5 4
SIn X=——,C0S€C X=——,C0S X=——,8eC X=——,tan X=—
5 4 5 3 3
. 12 13 5 12 5
SIn X=——,C08€C X=——,C08 X=—,tan X=——,Cot X=——
13 12 13 5 12
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. 5 13 12 13 12
sin X=—,C0SeC X=—,C0S X=——,86C X=——,C0t X=——
13 5 13 12 5

8. 3 9. = 10. 1

S -
\‘
[\

| EXERCISE 3.3]

J3+1
0 ﬁ (i) 2- 3

|EXERCISE 3.4

4n T T Sm T
_nﬂ:"‘g,nez 2 _1_12nni_,nez

K

3 1 b

5_7[ In 5w T ll=n
6 6 6 6

n
—,Mm+— neZ 4, —,—,m+ED)"— nez
6 6
nm b s
XZ?OI‘XZHTC, ne Z 6. X=(2n+1)z,0f2nﬂi§, ne Z
nIm T
X=mn+(-1)"—or(2n+1)— ne Z
6 2
nm nm

X= or +37T VA 9 X—n7t orn7t+7t Z
=—,0r —+—.n S OX=—, t—=n
2 2 g 'S 3 3ME

Miscellaneous Exercise on Chapter 3

V5 25
557
Js 3
EREENG

J8+2415 ’\/8—2\/E 2 i3

4 4




13.

ANSWERS 439

EXERCISE 5.1
3 2.0 3. 4. 14+28i
2-7i 6 _Ban 7 1—7+ié 8 4
- 510 3003 o
242 —22 107 4 3 N
-——-26l . — = L —+i= 120 X2 2
10 27 H 25 25 14 14
[ 14, ﬂi
2
|EXERCISE 5.2 |
—2n St -t . . -m
—_— 2,— \/5 COS — +18in —
2, 3 2. p 3. ( 2 4)

NG cos3—n+isin3—7r 5. V2 cos_—37t+isinﬂ
4 4 4 4

T .. T T .. T
3 (cos T+ i sin T) 7. 2(cos—+lsm—j 8. cos—+Isin—
6 6 2
|[EXERCISE 53|
MENGE 3433 —1+/7i
' 2. —— 3. ——— 4.
+4/31 2 > -
3+ /11 . 1+ 7] : —1£4/7i . NEENEY
2 ) 22 SN

1 J2v2 1 NG

N
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Miscellaneous Exercise on Chapter 5

307+599i

2-21 442

(i) V2 (cos3—n+i sin3—n] (ii) \/E(cos3—n+i sin3—nj
4 4 ) 4 4

2 4
—+—i 7. liﬁi 8. iiﬁi 9. 3i—\/ﬁi
3 3 2 27 27 3 21
N2 .. 1 3mn
2 12, O)—,@)0 13, —=— 14. x=3,y=-3
5 2 4
2 17. 1 18. 0 20. 4
| EXERCISE6.1|
1 {1,2,3,4} @@ {..-3,-2,-1,0,1,2,3,4,}
(i) No Solution i) {..-4,-3}
(1) { - 25 - 1; 07 1} (11) (—oo’ 2)
(i {-1,0,1,2,3,..} (i) (=2, =)
(_45 <><’) 6. (_ 2, _3) 7. (—oo’ _3] 8. (—oo’ 4]
(— oo, 6) 10. (—oo, —6) 11. (o, 2] 12. (= eo, 120]
(4, =) 14, (—oo, 2] 15. (4, ) 16. (oo, 2]
<3 >-1
X<3, éx—l—l—l—o—ﬁ 18. x=-1, <x|?. T >
01234 -101
x>-1 2
>_ 1, €Torrr—> 20. > ——, o >
X 241012 X 7 -101
Greater than or equal to 35 22. Greater than or equal to 82

(5,7),(7,9)

9 cm

24,

(6,8),(8,10), (10,12)

26. Greater than or equal to 8 but less than or equal to 22
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EXERCISE 6.2

2.

_ N WA W

Y
46¢’7
’b?,—'
qj

_3_21012345 >X
1_'
4

Y’
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7. Y 8.

9.
N
-3
v
1. Y 2.
N
y=2\
X" 9 >X
4
5; y=2¢<
y «
X/

v
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A
9. X 10. Y
§ \ 30
25
N 0
3 \ *+Nw§;~
y:2 i \ J"§30
5
X'¢ > e e
01234\?78 X X—2—15—0—_5505101520 303 X
-10
Y 9. 15 22
I X 20 v,
v %, N
YH—A N A4 @
% v
12. Y
N
8+
J‘bx 74
1"’% 61
135 s
41
et 2N /
X' X
—4-3-2-11]01773 £56 7 8
e [
$/“/§.
A\ 4
YY
13.
Y
A —
x=3
»
18 1
16 1
14 1
12 1
10 1
8.
6.
4
2.
! & i i
X € '(y é
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Miscellaneous Exercise on Chapter 6

> oo

> oo

[2, 3] 2. (0,1] 3. [-4,2]
EEn
(—23,2] 5. 3 3 "3
-5,5)
(-5,95) —00 €—+ —_——
-6-5-4-3-2-1012 3456 789
L7
-1,7) —00 €—t—i—0 O
3-2-10123 456 7 8910
(5, )
(5, =) —o0 oo
-1012345¢6 738
[-7,11]
[-7,11]
—co&e

Between 20°C and 25°C

More than 320 litres but less than 1280 litres.
More than 562.5 litres but less than 900 litres.
9.6<MA<L16.8

EXERCISE 7.1

(i) 125, (i) 60. 2. 108
8 6. 20

3. 5040

o——+> 0
-7-6-5-4-3-2-1012 3456 7 8 910111213

4. 336
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EXERCISE 7.2
(i) 40320, (ii) 18 2. 30,No 3. 28 4.
(i) 30, (i) 15120

| EXERCISE 7.3|
504 2. 4536 3. 60 4. 120,48
56 6. 9 7. ()3, (i)4 8. 40320
(i) 360, (ii) 720, (iii) 240 10. 33810
(i) 1814400, (i) 2419200, (iii) 25401600

| EXERCISE 7.4
45 2. ()5,G)6 3. 210 4. 40
2000 6. 778320 7. 3960 8. 200
35

Miscellaneous Exercise on Chapter 7

3600 2. 1440 3. (i) 504, (i) 588, (iii) 1632
907200 5. 120 6. 50400 7. 420
iC XBC, 9. 2880 10. 2C+2C,, 11. 151200

EXERCISE 8.1 |
1-10x + 40x2 — 80> + 80x* — 32%°
32 40 20 5, X
—~ 3 5X —X —
X X X 8 32
64 X5 —576 X5 + 2160 X* — 4320 X+ 4860 X — 2916 X + 729
X 5% 10 10 5 1
243 81 27  9x 3x X

15 6 1
x* 6xt 15xF 20 — — —
x* xt Xt

884736 7. 11040808032 8. 104060401
9509900499 10. (1.1 > 1000  11. (@b + ab’); 40 /6

2+ 15X + 15¢ + 1), 198
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EXERCISE 8.2|
1512 2. -101376 30 (1) fc, Xy
(-1)"*C, Ty 5. — 1760 Xy’ 6. 18564
-105 435
TX’@X 8. 61236 xy° 10. n=7,r=3
m=4

Miscellaneous Exercise on Chapter 8

9
a=3;b=5n=6 2. a=7 3. 171
396./6 6. 22+ 12a° — 10a* — 4a’ + 2
0.9510 8. n=10
16 8 32 16 X X Xt
— -5+t X+—+_—+—-5
X X X X 2 2 16

27x0 — 54ax® + 117ax* — 116a°% + 117a*x* — 54a’x + 27a°

EXERCISE 9.1
3,8,15,24,35 2 D> ] 3. 2,4,8,16and 32
9 9 D) 9 . 2! 3’4’5’6 . 9 9 9 an
Yy o 3 and] 5. 25,-125,625,-3125,15625
6626 6 o o Teh e
3921 75 49
_l_!_121and_ . . T
2272 2 7. 65,93 8 128
729 10 360
23

3,11,35,107,323; 3+11+35+107+323+ ..

-1 -1-1 -1 -1 -1 -1 -1
1= — =1+ | — [+ — |+ — |+ — |+
2 6 24120 (2) [6) (24) (120)
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16.
19.
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35 8
2,2,1,0,—-1; 2+24+14+0+(-1)+.. 14. I,Z,E,Eandg
| EXERCISE 9.2|
1002001 2. 98450 4. 50r20 6. 4
n 179
—(5n+7 . v .
2( ) 8. 2q ol 10. 0
27 14. 11,14,17,20 and 23 15. 1
14 17. Rs245 18. 9
EXERCISE 9.3
PEP 2. 3072 4. =2187
1
(a) 13", (b) 12", (c) 9" 6. +1 7. —|1-(0.1)"
6
V7 - [1— =5 "} X (1= x*"
7(\B+1) 321 o -] ( 2)
1+a 1-x
22+§(3“—1) 12. r=§orz;Terrnsarez,l,éoré,l,z
2 25 57722775
16 _ 16/,
4 14, —s2—(2"-1) 15. 2059
=4 810 ra-8.16,-32,64,. 18. @(10“—1)—§n
3373 81 9
496 20. IR 21. 3,-6,12,-24 26. 9and27
n=_7 30. 120,480,30 (2) 31. Rs 500 (1.1)"
X -16x+25=0
| EXERCISE 9.4
g(n+1)(n+2) 5 n(n+1)(n:2)(n+3)
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23.
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31.
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g(n+1)(3n2+5n+1) 4 % 5. 2840

n(n+1)2(n+2)
12

3n(n+ 1) (n+3) 7.

n(n-+1) (3n2 +23n+34)
12

g(n+1)(2n+1)+2(2"—1) 10. 2(2n+1)(2n—1)

Miscellaneous Exercise on Chapter 9

58,11 4. 8729 5. 3050 6. 1210
4 8. 160:6 9. +3 10. 8,16,32
4 12. 11
50 5n 2n 2
N2 (10" 1) =22 iy == (1-10""
() 2 (10" =1)=T5 i) S ) 22. 1680
ng n 2
E(n +3n+5) 25 ﬁ(zn +9n+13)

Rs 16680  28. Rs39100 29. Rs43690 30. Rs 17000; 20,000
Rs 5120 32. 25 days

|EXERCISE 10.1]|

121 .

——square unit.
(0’ a)a (0’ - a) and (_\/ga,O) or (0, a.), (O, - a)’ and (\/56.,0)

\ . 15 1
@) Y2 = il (i) [% =] 4|50 5.~
-3 8. x=1 10. 135°

1 1 1
1 and 2, or 5 and 1, or — 1 and -2, or —5 and—1 14. 5, 104.5 Crores
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|[EXERCISE 10.2

y=0andx=0 2. x-2y+10=0 3. y=nmx

(\/§+1)X—(\/§—1)y=4(\/§—1) 5 2Xx+y+6=0

X—\/§y+2\/§=0 7. 5x+3y+2=0

VBx+y=10  9.3x-4y+8=0 10. 5x-y+20=0

(1+nx+ 3(1 +ny=n+11 12. x+y=5

X+2y—-6=0,2Xx+y—-6=0

V3x+y-2=0and/3x+y+2=0 15, 2x-9y+85=0
192 .

L=""-(C-20)+124942  17. 1340litres.  19. 2kx + hy = 3kh,

90

| EXERCI SE 10.3]

1 1 5 5
i =—=X+0,-=,0; (il)) Y=-2X+—,-2,=; (iii)) y=0x+
H Yy 7 7 @)y 3 3 (1) y=0x+0,0,0
. X y_ . .. 1+l:1§_2-
@) Z+€—1.4,6, (i) 37277
2
2. : : 2 : : .
@) Yy= 3 intercept with y-axis = 73 and no intercept with x-axis.
(i) Xcos 120° + ysin 120° =4, 4, 120° (ii) X cos 90° + y sin 90° =2, 2, 90°;
(i) Xcos 315°+ysin315°= 2./2, 2./2,315° 4. 5 units
i gunits (ii)L prT units
(=2, 0)and (8, 0) 6. (1) 17 NI .
3Xx—4y+18=0 8. y+7x =21 9. 30°and 150°
22
9

(ﬁ+2)x+(2ﬁ—1)y=8ﬁ+1 or (ﬁ—2)x+(1+2ﬁ)y=—1+8ﬁ
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_ 68 49 15
2X+y=5 14, |55 5s 15. m=_.c=7
y-x=1, 2

Miscellaneous Exercise on Chapter 10
Tn
(@)3,(b)£2,(c)6orl 2. ?,1
8 32
2X—3y=6,-3X+2y=6 4, 0,—5 : 0,?
[sin(_ —0)| 5

— 6. X=—— 7. 2Xx=3y+18=0
2|sin d 22 Y
k? square units 9. 5 11. 3x—-y=7, x+3y=9

235 .
13x+ 13y=6 14. 1:2 15. 1;;/_umts
The line is parallel to X - axis or parallel to y-axis
1+5+/2
x=1, y=1. 18. (-1, - 4). 19. 7‘F
13
18X+ 12y +11=0 22. ?0 24. 119x+ 102y =125
| EXERCISE 11.1|
X+y —4y=0 2. X +y+4x-6y-3=0
36x2 +36y*—36x— 18y +11=0 4, X +y -2x-2y=0
X+ Yy +2ax+2by +2b2=0 6. ¢(-5,3),r=6
1 1
c2,4),r =65 8. o4,-5),r=53 9 C(Z,O);F:Z
X4y —6X—8y+ 15=0 11. X+y —7x+5y—14=0
XA +AX-21=0& ¥ +y —12x+11=0
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X+y —ax—by =0 14X +y—4x—4y =5
Inside the circle; since the distance of the point to the centre of the circle is less
than the radius of the circle.

EXERCISE 11.2

F (3, 0), axis - X - axis, directrix X=— 3, length of the Latus rectum = 12

3 3
F (0, 5 ), axis - Yy - axis, directrix y=— > length of the Latus rectum =6

F (-2, 0), axis - X - axis, directrix X= 2, length of the Latus rectum =8
F (0,—4), axis - y - axis, directrix y = 4, length of the Latus rectum =16

5 . .. .
F (5 , 0) axis - X - axis, directrix X=— % , length of the Latus rectum =10

-9 9
F (0, T) ,axis - y - axis, directrix y= —, length of the Latus rectum =9

4
y2 = 24x 8. x=-12y 9. y=12x
y? = —8X 11. 2y =9x 12. 2x2 =25y
|EXERCISE 11.3

F (£4/20,0); V (* 6, 0); Major axis = 12; Minor axis = 8 , e = @,
16

Latus rectum = 3

F (0, £/21); V (0, £ 5); Major axis = 10; Minor axis =4 , e = g;
8

Latus rectum = 5

7
F (x7, 0); V (£ 4, 0); Major axis = 8; Minor axis = 6 , € = % ;

N | o

Latus rectum =
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3
4. F (0, £{/75); V (0, 10); Major axis = 20; Minor axis = 10 , e = % ;

Latus rectum = 5

13
5. F (£413.0); V (£ 7, 0); Major axis =14 ; Minor axis = 12 , e = g;
72
Latus rectum = 7
o . . 3
6. F (0, +104/3 ); V (0, 20); Major axis =40 ; Minor axis = 20 , e = - b
Latus rectum = 10
242
7. F (0, = 42); V (0, 6); Major axis =12 ; Minor axis =4 , e = T\/_;
4
Latus rectum =§
15
8. F(O,i\/g); V (0, 4); Major axis = 8 ; Minor axis = 2 , € = g;
1
Latus rectum =5
. . . . NG
9. F (£45,0); V (£ 3, 0); Major axis = 6 ; Minor axis = 4 , e = 5
8
Latus rectum =§
2 2 2 2 2 2
10, =+L g 1. 2 12, LY
25 9 144 169 36 20
2 2 2 2 2 2
13, 2+l 14, 24X 15, =+ Lo
9 4 1 5 169 144
2 2 2 2 2 2
16. = +L =1 17. L4 ¥ o 18. 2+ ¥ o)

64 100 16 7 25 9
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2 2
Xy
10 40

5
Foci (£ 5, 0), Vertices (£ 4, 0); e= Z; Latus rectum =

2

X
20. X +4y =52 or —+

52

|EXERCISE 11.4

2

y

13

N | o

Foci (0 £ 6), Vertices (0, = 3); e=2; Latus rectum = 18

13
Foci (0, i\/ﬁ ), Vertices (0, + 2); e= g; Latus rectum =9

5
Foci (£ 10, 0), Vertices (% 6, 0); e=§ ; Latus rectum =?

Foci (0, i\/@ ), Vertices (0, £ 4); e=

64
214 6 Ji4 45
Foci (0,——=), Vertices (0, = ); e=—— Latus rectum =——
075 O+75)e=73 " 3
49
@; Latus rectum =—
4 2
22 22
g ¥ xX 5 ¥ X
25 39 9 16
2 2 22
11. y__X_=1 12. X__y_=
25 144 25 20
2 2 22
14. X__9L:1 15. y__x_:1
49 343 5 5

Miscellaneous Exercise on Chapter 11

Focus is at the mid-point of the given diameter.

2.23 m (approx.)
2 2

3 + y =1

81 9

8/3a

3. 9.11 m (approx.)

6. 18squnits

4.

1.56m (approx.)
X2 2

+
25 9
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|EXERCISE 12.1]

1. yand z- coordinates are zero 2. Yy - coordinate is zero
3. L1V, VIIL V, VL, 11, III, VII
4. (i) XY -plane @i xvy,0) (ii)) Eight
|EXERCISE 12.2|
1. (@)2J5 (i) V43 i) 2426 (iv) 25
4. x=2z=0 5 9 +25y* +252-225=0
|EXERCISE 12.3|
(=4 127 .
| —,—,— 1)(—8,17,3 .
1. ()(555)()( ) 2. 1:2
3. 2:3 5. (6,—4,-2),(8,-10,2)
Miscellaneous Exercise on Chapter 12
16
1. (1,-2,8) 2. 7347 3. a=-2, b=—?,c=2
4. (0,2,0)and (0,6, 0)
2_
5. (4,-2,6) 6. x2+y2+22—2x—7y+22=k 109
|[EXERCI SE 13.1
2 ;
1. 6 2. 7 3w 4.
5 L o s , U 5 108
2 C 4 7
1
9. b 10. 2 11. 1 12. —
13. 2 14. 2 15+ 6. ~
b b T om
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24.
25.
27.

29.

30.

32.

11.

MATHEMATICS
a+l1

4 18. T 19. 0 20. 1

0 22. 2 23. 3,6

Limit does not exist at X= 1

Limit does not exist at X=0 26. Limit does not exist at Xx=0

0 28. a=0,b=4

im f=0and M f(x)=(a-a)(@-a)..(@a-a)

}(1_1)1; f (X) exists for all a# 0. 31. 2

For }(133 f (X) to exists, we need m=n; 1)(1_11} f (X) exists for any integral value

of mand n.
| EXERCISE 13.2]
20 2. 99 3.1
X _2
@) 3% (i) 2x-3 (i) (iv) (x—1)’
" +a(n-Dx"* +a’(n-2)x"> +..+a™"
a-b

() 2x—a-b (i) 4ax(a’+b) i) (x-b)

nx" —anx"™! - x" +a"
(x-a)’

-3 24
(i) 2 (i) 20@—15¢+6x—4 (i) 7(5+2X) (V) 15+ 5

— 36 -2 X(3x-2)
(V)7+F (vi) (X+1)2 (3x—1)2 10. —sin X
(1) cos 2x (if) sec X tan X
(il) Ssec X tan X — 4sin X (iv) — cosec X cot X

(v) —3cosec® X — 5 cosec X cot X (vi) 5cos X+ 6sin X
vii) 2sec’ X — 7sec X tan X
(vii)
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20.

22.
23.

24,

25.

26.

Miscellaneous Exercise on Chapter 13

1
2
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()~ 1 (i) 5 (i) cos (x+ 1) (iv) —sin(x—gj 2.1

I
rala

ad bc
ex d’

—apx* —2bpx+ar —bq

4. 2c (axt+b) (cx + d) + a (cx + d)y?

(px2 +qx+r)2

2

Jx

(ax+b)™" (cx+d)™ [mc(ax+b)+na(cx+d)]

— cosec® X — cosec X cot® X

2

. 2)
S;m X cos X

bccosx adsinx bd

2
c dcosXx

x> 5Xcos X 3Xxsin X 20sin X 12cos X

) 2ax b
, 2
6. (x—l)2 “ad bx ¢
2
apx- 2bpx bg ar 4da 2 .
P P zq 10. Sa — sin X
ax b X X
12. na(ax+b)™
14. cos (x+a)
1
16. 1 sin X
2sec X tan X o
18. ———— 19. nsin Xcos X
sec X 1
cos a
2
COS“X

x*sin X sin X 2Xcos X

gsinx ax* sin X

tan2X X cos X

35 15Xcos X 28cos X 28xsin X 15sin X

P gcosX 2aXx cosX

X tanX 1

sin X

2
3X 7cos X
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T .
Xcosz 2sin X Xcos X 1 tanX Xsec’X
27. 28. 2
sin2x 1 tanx

29, x secx 1 sec’x X tan X . 1 sec Xtan X

30 sin X N Xcos X

sin" 'x

EXERCISE 14.1

1. (1) This sentence is always false because the maximum number of days in a
month is 31. Therefore, it is a statement.

(i) This is not a statement because for some people mathematics can be easy
and for some others it can be difficult.

(i) This sentence is always true because the sum is 12 and it is greater than 10.
Therefore, it is a statement.

(iv) This sentence is sometimes true and sometimes not true. For example the
square of 2 is even number and the square of 3 is an odd number. Therefore,
it is not a statement.

(v) This sentence is sometimes true and sometimes false. For example, squares
and rhombus have equal length whereas rectangles and trapezium have
unequal length. Therefore, it is not a statement.

(vi) It is an order and therefore, is not a statement.

(vit) This sentence is false as the product is (—8). Therefore, it is a statement.

(viii) This sentence is always true and therefore, it is a statement.

(ix) Itisnot clear from the context which day is referred and therefore, it is not
a statement.

(x) This is a true statement because all real numbers can be written in the form
a+ixo.

2. The three examples can be:

(i) Everyone in this room is bold. This is not a statement because from the
context it is not clear which room is referred here and the term bold is not
precisely defined.

(ii) She is an engineering student. This is also not a statement because who
‘she’ is.

(i) “‘cos’0 is always greater than 1/2”. Unless, we know what 6 is, we cannot
say whether the sentence is true or not.



@)
(i)
(iii)
(iv)
(v)

@)
(i1)

@)
(i)
(iii)

(@)
(i)
(iii)

(iv)

(i)
(iii)
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EXERCISES14.2

Chennai is not the capital of Tamil Nadu.
2 is a complex number.

All triangles are equilateral triangles.

The number 2 is not greater than 7.

Every natural number is not an integer.

The negation of the first statement is “the number X is a rational number.”
which is the same as the second statement” This is because when a number
is not irrational, it is a rational. Therefore, the given pairs are negations of
each other.

The negation of the first statement is “X is an irrational number” which is
the same as the second statement. Therefore, the pairs are negations of
each other.

Number 3 is prime; number 3 is odd (True).

All integers are positive; all integers are negative (False).

100 is divisible by 3,100 is divisible by 11 and 100 is divisible by 5 (False).

EXERCISE 14.3 |

“And”. The component statements are:

All rational numbers are real.

All real numbers are not complex.

“Or”. The component statements are:

Square of an integer is positive.

Square of an integer is negative.

“And”. the component statements are:

The sand heats up quickily in the sun.

The sand does not cool down fast at night.

“And”. The component statements are:

X =2 is a root of the equation 3 —x—10=0

X = 3 is a root of the equation 3 —x—10=0

“There exists”. The negation is

There does not exist a number which is equal to its square.
“For every”. The negation is

There exists a real number X such that X is not less than X + 1.
“There exists”. The negation is

There exists a state in India which does not have a capital.
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(1)
(if)
(ii)

V)
(it)
(iii)
(iv)

™)

(@)

(i1)

(ii)

(iv)

V)

V)
(if)

No. The negation of the statement in (i) is “There exists real number X and
y for which X +y #y + X”, instead of the statement given in (ii).

Exclusive
Inclusive
Exclusive
EXERCISE 14.4
A natural number is odd implies that its square is odd.

A natural number is odd only if its square is odd.

For a natural number to be odd it is necessary that its square is odd.

For the square of a natural number to be odd, it is sufficient that the number
isodd

If the square of a natural number is not odd, then the natural number
is not odd.

The contrapositive is

If a number X is not odd, then X is not a prime number.

The converse is

If a number X in odd, then it is a prime number.

The contrapositive is

If two lines intersect in the same plane, then they are not parallel

The converse is

If two lines do not interesect in the same plane, then they are parallel

The contrapositive is

If something is not at low temperature, then it is not cold

The converse is

If something is at low temperature, then it is cold

The contrapositive is

If you know how to reason deductively, then you can comprehend geometry.
The converse is

If you do not know how to reason deductively, then you can not comprehend
geometry.

This statement can be written as “If X is an even number, then X is
divisible by 4”.

The contrapositive is, If X is not divisible by 4, then X is not an even number.
The converse is, If X is divisible by 4, then X is an even number.

If you get a job, then your credentials are good.

If the banana tree stays warm for a month, then it will bloom.



4.

5.

2.

(i)
(iv)
a (i)
(i1)
b ()
(if)

(1)
(if)
(ii)
(iv)
™)

(M)
(if)
(ii)
(iv)

(M)

(it)

(i)
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If diagonals of a quadrilateral bisect each other, then it is a parallelogram.
If you get A" in the class, then you do all the exercises in the book.

Contrapositive
Converse
Contrapositive
Converse
EXERCISE 14.5
False. By definition of the chord, it should intersect the circle in two points.

False. This can be shown by giving a counter example. A chord which is not
a dimaeter gives the counter example.

True. In the equation of an ellipse if we put a = b, then it is a circle
(Direct Method)

True, by the rule of inequality

False. Since 11 is a prime number, therefore /] is irrational.

Miscellaneous Exercise on Chapter 14

There exists a positive real number X such that x—1 is not positive.

There exists a cat which does not scratch.

There exists a real number X such that neither X> 1 nor X< 1.

There does not exist a number X such that 0 < x < 1.

The statement can be written as “If a positive integer is prime, then it has no
divisors other than 1 and itself.

The converse of the statement is

If a positive integer has no divisors other than 1 and itself, then it is a prime.
The contrapositive of the statement is

If positive integer has divisors other than 1 and itself then it is not prime.
The given statement can be written as “If it is a sunny day, then I go
to a beach.

The converse of the statement is

If I go to beach, then it is a sunny day.

The contrapositive is

If I do not go to a beach, then it is not a sunny day.

The converse is

If you feel thirsty, then it is hot outside.

The contrapositive is

If you do not feel thirsty, then it is not hot outside.
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(i) If you log on to the server, then you have a password.

(i) If it rains, then there is traffic jam.

(iii) If you can access the website, then you pay a subscription fee.

(1) You watch television if and only if your mind in free.

(i) You get an A grade if and only if you do all the homework regularly.
(i) A quadrilateral is equiangular if and only if it is a rectangle.
The compound statement with “And” is 25 is a multiple of 5 and 8
This is a false statement.

The compound statement with “Or” is 25 is a multiple of 5 or 8
This is true statement.
Same as Q1 in Exercise 14.4

EXERCISE 151

3 2. 84 3. 233 4. 7
6.32 6. 16 7. 323 8. 5.1
157.92 10. 11.28 11. 10.34 12. 735

EXERCISE 15.2

n+1 n*-1
9,9.25 2. —, 3. 16.5,74.25 4. 19,43.4
2 12
100, 29.09 6. 64,1.69 7. 107,2276 8. 27,132
93, 105.52,10.27 10. 5.55,43.5

EXERCISE 15.3 |

B 2. Y 3. ()B, (i)B
A 5. Weight

Miscellaneous Exercise on Chapter 15

4,8 2. 6,8 3. 24,12
(i) 10.1, 1.99 (ii) 10.2, 1.98
Highest Chemistry and lowest Mathematics 7. 20,3.036
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| EXERCISE 16.1|

{HHH, HHT, HTH, THH, TTH, HTT, THT, TTT}
{(X%y):Xy=12734,5,6}

{(1,1),(1,2),(1,3), ..., (1,6), (2,1), (2,2), ..., (2,6), ..., (6, 1), (6, 2), ..., (6,6)}
{HHHH, HHHT, HHTH, HTHH, THHH, HHTT, HTHT, HTTH, THHT, THTH,
TTHH, HTTT, THTT, TTHT, TTTH, TTTT}

{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

{H1, H2, H3, H4, H5, H6, T}

{XB,, XB,, XG,, XG,, YB,, YG,, YG,, YG,}

{R1,R2,R3,R4,R5,R6, W1, W2, W3, W4, W5, W6, B1, B2, B3, B4, B5, B6}
(i) {BB, BG, GB, GG} (ii) {0, 1,2}

{RW, WR, WW}

[HH, HT, T1, T2, T3, T4, T5, T6}

{DDD, DDN, DND, NDD, DNN, NDN, NND, NNN}

{T,H1,H3, HS5, H21, H22, H23, H24, H25, H26, H41, H42, H43, H44, H45, H46,
H61, H62, H63, H64, H65, H66}

{(1,2),(13), (14), (2,1),(2.3), (2:4), (3,1), (3,2), (3.4), (4.1), (4.2), (4.3)}

{IHH, 1HT, 1TH, 1TT, 2H, 2T, 3HH, 3HT, 3TH, 3TT, 4H, 4T, SHH, 5HT, 5TH,
5TT, 6H, 6T}

{TR,, TR,, TB , TB,, TB,, H1, H2, H3, H4, H5, H6}

{6, (1,6), (2,6), (3,6), (4,6), (5,6), (1,1,6), (1,2,6), ..., (1,5,6), (2,1,6). (2,2,6), ...,
2,5,6), ...,(5,1,6), (5,2,6), ... }

| EXERCISE 16.2 |

No.

i {1,2,3,4,5,6} (i) ¢ (i) {3, 6} (iv) {1,2,3} (v) {6}
(vi) {3,4,5,6},AuB={1,2,3,4,5,6}, AnB=0¢, BUC= {3,6}, ENF= {6},

DAE = o,

A-C={1,24,5},D-E={1,23},EnF' =0, F = {1, 2}
A={(3,6),(4,5),(5,4),(6,3),(4,6), (5,5), (6,4), (5,6), (6,5), (6,6)}
B=1{(1,2),(2,2),(3,2),(4,.2),(5,2),(6,2),(2,1),(2,3), (2,4), (2,5), (2,6)}
C={(3,6),(6,3),(5,4),(4,5), (6,6)}
A and B, B and C are mutually exclusive.

(i) AandB;Aand C;Band C; Cand D (ii) Aand C (iii) Band D

(1) “Getting at least two heads”, and “getting at least two tails”

(i) “Getting no heads”, “getting exactly one head” and “getting at least two
heads”
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(i) “Getting at most two tails”, and “getting exactly two tails”

(iv) “Getting exactly one head” and “getting exactly two heads”

(v) “Getting exactly one tail”, “getting exactly two tails”, and getting exactly
three tails”

There may be other events also as answer to the above question.

6. A= {(2,1),(2,2),(2,3), (2.4), (2.5), (2.6), (4,1), (4.2), (4.3), (4,4), (4,5), (4,6),
(6,1),(6,2), (6,3), (6,4),(6,5), (6,6)}
B =11, 1), (12), (1,3), (1,4), (1,5), (1,6), 3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(5,1),(5,2), (5,3), (5.4), (5,5), (5,6)}
C= {1, 1,(1,2),(1,3),(1.4), (2,1),(2,2),(2,3), (3,1), 3,2), (4, 1)}
@) A= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (3,1), (3,2, (3.3), (3:4), (3,5), (3,6,
(5,1),(5.2),(5,3),(5.4),(5,5),(5.6)} =B
(i) B'={(2,1),(2,2),(2,3),(2:4),(2,5),(2,6), (4,1), (4,2), (4.3), (4.4), (4.5), (4.6),
(6,1),(6.2),(6,3), (6:4),(6,5), (6,6)} =A
(i) AUB={(1,1),(1,2),(1,3),(1,4),(1,5), (1,6), (3,1), (3,2), (3.3), (3.:4), (3.5),
(3,6), (5,1), (5,2), (5,3), (5:4), (5,5), (5,6), (2,1), (2,2), (2,3), (2.5),
(2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4),
(6,5),(6,6)} =S

(iv) AnB=0¢
(v) A-C={(24),(2,5),(2,6),(4.2),(4.3), (4,4), (4.5), (4,6),(6,1), (6,2), (6,3),
(6,4), (6,5),(6,6)}

(viy BuC={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(3,1),(3,2),
(3.3),(3:4),(3,5), (3,6), (4,1), (5,1), (5,2), (5.3), (5.4), (5,5), (5,6)}
(vi) BN C={(1,1),(1,2),(1,3),(1,4),(3,1),(3,2)}
(viii) ANB'nC’'={(24),(2,5),(2,6),(4,2),(4,3),(4,4),(4,5),(4,6), (6,1),(6,2),
(6,3),(6,4), (6,5), (6,6)}
7. (i) True (ii) True (iii) True (iv) False (v) False (vi) False
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ANSWERS 465

Rs 4.00 gain, Rs 1.50 gain, Re 1.00 loss, Rs 3.501loss, Rs 6.00 loss.

1 1 3
P ( Winning Rs 4.00) = 16’ P(Winning Rs 1.50) = 1 P (Losing Re. 1.00) = 2

1 1
P (Losing Rs 3.50) = 1 P (Losing Rs 6.00) = I
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(i) No, because P(AnB) must be less than or equal to P(A) and P(B), (ii) Yes

7 4
)— (i)0.5 (iii)0.15 14. =
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NS5 3 . 3
(‘)g (i) 3 16. No 17. (i)0.58 (ii) 0.52 (iii) 0.74
0.6 19. 0.55 20. 0.65
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Miscellaneous Exercise on Chapter 16
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